Pierre Deligne
Willem Kuyk (Eds.)

Modular Functions
of One Variable lll

Lecture Notes in Mathematics

Antwerp, Belgium 1972

@ Springer




ecture Notes In
Mathematics

Edited by A. Dold and B. Eckmann

350

Modular Functions
of One Variable lli

Proceedings International Summer School
University of Antwerp, RUCA
July 17—August 3, 1972

Edited by W. Kuijk and J-P. Serre

SpringerVerlag
Berlin Heidelberg New York Tokyo



Editors

Willem Kuijk
Rijksuniversitair Centrum Antwerpen, Leerstoel Aigebra
Groenenborgerlaan 171, 2020 Antwerpen, Belgium

Jean-Pierre Serre
Collége de France, 11, pl. Marcelin Berthelot
75231 Paris Cedex 05, France

1st Edition 1973
2nd Corrected Printing 1986

Mathematics Subject Classification {(1970): 10D 05, 10D 25, 10C 15, 14K 22,
14K 25

ISBN 3-540-06483-4 Springer-Verlag Berlin Heidelberg New York Tokyo
ISBN 0-387-06483-4 Springer-Verlag New York Heidelberg Berlin Tokyo

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,
reproduction by photocopying machine or similar means, and storage in data banks. Under

§ 54 of the German Copyright Law where copies are made for other than private use, a fee is
payable to “Verwertungsgesellschaft Wort", Munich.

© by Springer-Verlag Berlin Heidslberg 1973

Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2146/3140-543210



Preface

This is Volume 3 of the Proceedings of the Interna-
tional Summer School on
"Modular functions of one variable and
arithmetical applications"
which took place at RUCA, Antwerp University, from

July 17 to August 3, 1972.

It contains papers by P.Cartier-Y.Roy, B.Dwork, N.Katz,
J-P.Serre and H.P.F.Swinnerton-Dyer on congruence proper-
ties of modular forms, £-adic representations, p-adic

modular forms and p-adic zeta functions.
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ON £-ADIC REPRESENTATIONS AND CONGRUENCES
FOR COEFFICIENTS OF MODULAR FORMS

1. Introduction.

The work I shall describe in these lectures has two themes, a classical
one going back to Ramanujan [8] and a modern one initiated by Serre [ 9]
and Deligne [3]. To describe the classical theme, let the unique cusp

form of weight 12 for the full modular group be written
s = qff (1-¢M? = Trg” (1)
1 1
and note that the associated Dirichlet series has an Euler product

fr(mn™® = n(1-<(p)p™® + pi1725)71
so that all the (n) are known as soon as the 1(p) are.
Write also ov(n) for the sum of the vth powers of the positive divisors
of n; thus in particular °v(P) = 1 + p’. Ramantjan was the first to
observe that, modulo certain powers of certain small primes, there are
congruences which connect t(n) with some of the cv(n). A good deal of
work has gone into proving such congruences; the strongest results known

to me which have been obtained by classical methods are as follows

* Many of the results described in these lectures were first obtained
in correspondence between Serre and me during the last five years;
the disentanglement of our respective contributions is left to the
reader, as an exercise in stylistic analysis. The dedication is from

both of us.
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t(n) = °11(") mod 211 if n =1 mod 8,
t(n) = 1217 °11(") mod 213 if n = 3 mod 8,
(2)
t(n) = 1537 oll(n) mod 212 if n = 5 mod 8,
= 1“‘ =
t(n) = 705 °11(n) mod 2 if n = 7 mod 8,
-610 mod 36 if n=1mod 3,
(n) = n 01231(n) 7 (3)
mod 3° if n = 2 mod 3;
= .~30 3 . . .
7(n) = n 074(n) mod §” if n is prime to §; (4)
mod 7 if n = 0,1,2 or 4 mod 7,
t(n) = nog{(n) 2 (s)
mod 7° if n = 3,5 or 6 mod 7;
1(p) = 0 mod 23 if p is a quadratic non-residue '\
of 23,
w(p) = 2 mod 23 if p = w? + 23v? for integers (8)
u# 0, v,
1(p) = -1 mod 23 for other p # 23;
t(n) = cil(n) mod 691. (7)

Of these, (2) is due to Kolberg [6], (3) to Ashworth [1], (4) to Lahivi
(see [7]), (5) to Lehmer [7], (6) to Wilton [13] and (7) to Ramanujan [8];
the present formulations of (3) and (4) are not those of the original au-
thors but those that appear least unnatural in the light of the multipli-
cativity of 1(n) and Theorem 1 below. The proofs, whether laborious as
with (2) to (4) or elegant as with (6) and (7), do little to explain why
such congruences occur, though they shed some light on the reasons why

these particular primes occur; for example 23 = (2k - 1) where k = 12 is
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the weight of A, and 691 divides the numerator of the Bernoulli number
by,
The existence of such congruences raises two obvious questions. First,
are there congruences for 1(n) modulo primes other than 2,3,5,7,23 and
691; and second, are the congruences (2) to (7) best possible or could
one with greater labour prove congruences modulo even higher powers of
the primes cited ? These questions are the subject matter of these lec-
tures. It will be shown that there are no congruences for t(n) modulo
any other primes. Again, it will be shown that in a well-defined sense
the last three congruences (2) are best possible; but it will also be
shown how they can be improved by making use of additional information
about n. Similar arguments can probably be applied to the other congru-

ences (3) to (7), some of which are certainly not best possible.

To attack these questions we need some limitation on the types of con-
gruence that can occur; and this is provided by our second theme. In
1968 Serre [9] put forward a conjecture relating £-adic representations
and coefficients of modular forms; and he showed that the existence of
congruences such as (2) to (7) fitted well with the conjecture. Serre's
conjecture was proved by Deligne; see [3] and also the lecture of Lang-
lands at this conference. We state here only a special case, which will
be sufficient for our purpose; there is no reason to suppose that a si-
milar study of more general modular forms will yield any essentially new

phenomena.

The following notation will be used throughout these lectures. Let £ be
a prime number; denote by Kl the maximal algebraic extension of @ rami-
fied only at £, and by bi the maximal subfield of K, abelian over Q.
For any prime p # £ denote by Frob(p) the conjugacy class of Frobenius

elements of p in Gal(Kz/Q); by abuse of language we shall sometimes speak
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of Frob(p) as if it were simply an element of the Galois group. By class-
field theory there is a canonical isomorphism Gal(K%b/Q) “'Zz , the group
of f-adic units; and this induces a canonical character

xp : Gal(K,/@Q) = cal(x3P/Q) 5z

with the property that

xl(Frob(p)) = p for all p # £.

THEOREM 1. (Serre-Deligne). Let f = Zanqn be a cusp form of weight k

for the full modular group, and suppose that a, = i, that every a, is in

Z , and that the associated Dirichlet series has an Euler product

-8

fan™® = H(l-app-s+pk_1-zs)'1. (8)

Then there is a continuous homomorphism

Pp ¢ Gal(KL/Q) - GL2(Z£),

depending on f, such that pL(Frob(p)) has characteristic polynomial

2 _ 4 x 4 pk?

X
p

for each p # £.

The conditions on f are certainly satisfied by the unique cusp forms of
weights 12,16,18,20,22 and 26, though very possibly by no other form;

of these, A is the most glamorous though in the end the form of weight 16
will prove even more interesting. Note that the Theorem in particular im-

plies

det o Pp = xi-l. (9)

Now if the image of Pp is small enough, a knowledge of the determinant of
an element of the image will imply some £-adic information about the trace

of that element; and so in particular a knowledge of p (or even an appro-
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ximate £-adic knowledge of p) will imply some £-adic information about
ap. This is just the meaning of the congruences (2) to (7), with cer-
tain reservations in the case of (6) and with their arguments restric-
ted to primes. Conversely the existence of such congruences implies a
restriction on the image of Pps since the set of Frobenius elements is
dense in the full Galois group and therefore any congruence relation be-

k-1

tween ap and p is also a valid congruence relation between the trace

and determinant of every element of the image of Pg-

In what follows we shall use a tilde consistently to denote reduction

mod £; thus for example ;l is the induced map
Gal(KL/Q) i GLZ(Zt) - GL2(F£).

By (9) the image of det o fe is just the (k-1)th powers inzz; so to find
the image of pp @ major step will be to find its intersection with SLZ(ZLL
In particular, if this intersection is the whole of SLZ(ZL) then the im-

)k-l

age of p, will be the entire inverse image of (Zz in GL2€EZ). In

view of the following lemma, it is enough to look at the image of ;t.

LEMMA 1. Suppose that £ > 3 and that G is_a subgroup of GLZ(ZZ) which is

closed in the £-adic topology. If the image of G under reduction mod £

contains SLZ(PL) then G contains SLZ(ZL)‘

PROOF. For each n > 0, denote by Gn the image of G in GLZ(Z/LHZ). Since
G is closed, to prove the lemma it is enough to prove that Gn 2> SLZ(Z/LHZD
for each n > 0. This holds by hypothesis for n = 1, and it will follow

by induction on n once we have proved for each n > 1 that Gn contains the

kernel of

SL,(@/£"8) ~ SL,@/t" 7).
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Call this kernel H . We start with the case n = 2; now H2 is genera-

ted by the three matrices I + £u, where u = (o 1),(O 0) or (1 -1), s0
00 10 1 -1

it is enough to prove that G2 contains the images of these three matri-

ces. In each case u? = 0 and I + u is in SLZ(Z), whence there is an

element o in G such that ¢ = I + u mod £, that is
6 =1 +u+ v

for some matrix v with elements in Zt. Now

ol eTrueav) 4ot (ut endt =T+ 80 moa £2

since all the other terms which occur when the powers of (u + £v) are

2 which va-

written out in full either contain a factor £2 or a factor u
nishes. (For £ = 3 the argument breaks down at this point, because of
the presence of a term 3uvu.) This proves that 62 2 H2. To prove that
6, @ H, for n > 2 we use induction on n, so we assume that G _, 2 H_ _,.

zn-l

Let I + v, where v has elements in Zt’ be a representative of an as-

12y mod £771 is in H _, and

signed element of H . The image of I + £ 1

therefore in Gn so there is an element ¢ of G such that

-1°
o =1+ &% mod £7°°1,

By an argument similar to the one above, it follows that

al =71+ ln-lv mod ln,

which proves that Gn S H . This completes the proof of the lemma.

There are analogous results for £ = 2 and £ = 3, in which Fl is replaced
by Z/(8) or Z/(9) respectively; and the examples given by Serre ([ 10},

p. IV - 28) show that the condition £ > 3 in the lemma cannot be dropped
without some modification. The proofs of these analogous results are es-

sentially contained in the proof of the lemma.
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Indeed for £ = 3 we now have Gz 2 H, by hypothesis, and the inductive
proof that Gn o) Hn for each n > 2 works as before; for £ = 2 we have

G2 > H2 and G3 2 H3 by hypothesis, and the induction works provided n > 3.

In the application of lemma 1 G will be the image of pp and will certain-
ly be closed since Galois groups are compact. It will be convenient to

say that £ is an exceptional prime for the cusp form f if the image of Pp

does not contain SLZ(ZZ); with this definition lemma 1 can be rewritten

as follows.

COROLLARY. Suppose that £ > 3; then £ is exceptional for f if and only if

the image of ;l does not contain SL,(F,). For £ = 2 or 3 this is still

a sufficient condition for £ to be exceptional for f.

We need not be more precise for £ = 2 or 3, since for each of the six cusp
forms which we shall particularly consider, the sufficient condition is
then satisfied. Indeed Serre has conjectured that for £ < 11 there is no
continuous homomorphism Gal(KL/Q) i GLZ(El) whose determinant is an odd
power of Xg and whose image contains SLz(EZ)‘ He further conjectures that
for any £ such a homomorphism is always connected in an obvious sense with

a modular form mod £ which is an eigenfunction of all Tp with p # £.

It is now advantageous to replace our original search for congruences for
ap by the apparently more general search for primes exceptional for f.

In this search the first step will be to classify those subgroups of
GLz(FL) which do not contain SLZ(PZ)' It turns out that each such sub-
group is small encugh for there to be a non-trivial algebraic relation
which is satisfied by the trace and determinant of any of its elements.

Hence we obtain a finite list of possible types of congruence relation

mod £ between p and ap; and for each exceptional prime £ one of these
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congruence relations must hold. To test the validity of the possible re-
lations, we develop a structure theorem for the ring of modular forms

mod £; this gives us (with one exception) a decision process for the pos-
sible relations and thence (up to finitely many undecided cases) a list

of the exceptional primes for any f. All this occupies §§2-4.

For congruences modulo higher powers of £ the position is less satisfac-
tory, primarily because at present we lack a structure theorem for modu-
lar forms mod £°. We confine ourselves in §5 and the Appendix to two
particular topics which illustrate again the benefits that come from com-
bining the congruence and the representation-theory approaches. It is
shown in §4% that the congruences (6) are equivalent to the fact that the
image of ;23 is isomorphic to §,, the symmetric group on three elements.
In §5 we deduce from this last statement that the second congruence (6)

11 pod 232, Again, the congruences (2}

can be improved to 1(p) = 1 + D
turn out to be sufficient to determine the image of Pps @ result whose
proof has been put in the appendix because of the heavy algebra involved;

and a number of further results flow from this.

Much of the material of these lectures can be found, more succinctly pre-

sented, in a recent Bourbaki seminar of Serre [11].

2. The possible images of :2.

In this section we classify the subgroups of GL2(r£) and determine which
of them are candidates to be the image of ;Z; and to each such candi-
date which does not contain SLZ(PL) we determine at least some of the as-
sociated congruence relations mod £ between p and ap. All the group
theory involved is at least fifty years old, except for the terminology;

but I know of no convenient and easily accessible account of it.



11
SwD-11

We first define certain standard types of subgroup of GLZ(Fl)’ which
for this purpose will be considered as acting on V, a vector space of

dimension 2 over Fl‘ A Borel subgroup is any subgroup conjugate to the

group of non-singular upper triangular matrices; thus there is a one-
one correspondence between the Borel subgroups and the one-dimensional
subspaces W of V, the subgroup corresponding to W consisting of those

transformations which have W as an eigenspace.

A Cartan subgroup is a maximal semi-simple commutative subgroup; there

are two kinds of Cartan subgroups, the split and the non-split. (When

£ = 2, the group which fits the construction of a split Cartan subgroup
consists oniy of the identity and is therefore not maximal; it turns out
most convenient to say that split Cartan subgroups only happen for

£ > 2.) A split Cartan subgroup is any subgroup conjugate to the group

of non-singular diagonal matrices; thus there is a one-one correspondence
between split Cartan subgroups and unordered pairs of distinet one-dimen-
sional subspaces W1 and w2 of V, the subgroup corresponding to w1 and w2
consisting of those transformations which have W, and W, as eigenspaces.

A split Cartan subgroup is the direct product of two cyclic groups of or-
der (£ - 1).

To define a non-split Cartan subgroup requires more notation. Let V(2)
be the vector space obtained from V by quadratic extension of the under-

(2 which is

lying field Fl; let W' be any one-dimensional subspace of V
not induced by a subspace of V, and let W" be the conjugate of W' over

Et' The non-split Cartan subgroup corresponding to W' or W" consists of
those elements of GLZ(Ft) which have W' and W" as eigenspaces. An ele-
ment of the subgroup is uniquely determined by its eigenvalue with res-
pect to W'; so a non-split Cartan subgroup is isomorphic to the multipli-

cative group of the field of 22 elements, and is therefore cyclic of cr-

der (£% - 1).
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An element of the normalizer of a Cartan subgroup (of either kind) must
either fix or interchange the two eigenspaces associated with the Cartan
subgroup; if it fixes them, it already lies in the Cartan subgroup. It

follows that any Cartan subgroup is of index two in its own normalizer.

LEMMA 2., Let G be a subgroup of GLZ(FL)' If the order of G is divisible

by £, then either G is contained in a Borel subgroup of GL2(F£) or G con-

tains SLZ(FZ)' If the order of G is prime to £, let H be the image of

G in PGLZ(FL); then

(i) H is cyclic and G is contained in a Cartan subgrcup, or

(ii) H is dihedral and G is contained in the normalizer of a Cartan sub-

group but not in the Cartan subgroup itself, or

(iii) H is isomorphic to AU’ S, or AS’ where S denotes the symmetric and

and A the alternating group.

In case (ii) £ must be odd; in case (iii) £ must be prime to 6,6 or 30

respectively.

PROOF. Suppose first that the order of G is divisible by £, and choose ¢
in G of order exactly &; then there is a unique one-dimensional subspace

W of V which is an eigenspace of o. If every element of G has W as an

eigenspace, then G is contained in the Borel subgroup associated with W.

If not, let-c, be an element of G which maps W to some other cne-dimen-

1

sional space W'; then 010011 is an element of G of order exactly £ with
W' as its only eigenspace. Take W and W' as coordinate axes in V; then

for some non-zero b,c we have

b 1 (1 O).

- (1 -1 _
c = (O 1), 040047 = (0 3

But it is easy to see that these two matrices generate SLz(FL)’ which

must therefore be contained in G; this proves the lemma in this case.

Henceforth we can assume that the order of H is prime to £. The analo-
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gous result for finite subgroups of GLZ(C) is well knownj; all we have
to do is choose a not toc geometric proof of that result and mimic it.
As is only proper, we follow Klein [5). Since the order of H is prime
to £, every element of H is semi-simple and every element other than the
identity has just two eigenvectors over the algebraic closure of Fz.
Note first that if two elements of H have one eigenvector in common they
have both eigenvectors in common. For if not, suppose that oy and o,
have just one eigenvector in.common; then by a change of axes we can

write them in the form

_ a0 _ (o B
04 = (0 d) and o, = (O 6)

where every letter is non-zero. The commutator

-1 -1 1 o lg(1-a"ta)

%9192 91%2 Ho 1
is not the identity because a ¥ d; so it is an element of H which has or-

der £, contrary to hypothesis.

The set of eigenvectors of non-trivial elements of H is finite and inva-
riant under H; let Egavnesty be representatives of the orbits under H and
for each & let vy > 1 be the number of elements of H which fix £ If
h is the order of H then the orbit of £; contains h/ui elements; so by
counting the number of pairs (non-trivial element of H and an eigenvector

of it) in two different ways we obtain the identity
2h - 2 = h(u1 - 1)/u1 +...4 h(uv - 1)/”v

which can be rewritten as

2(1 - n™hH 1.

= (1 - u;l) +o..4 (2 - u;

An easy calculation shows that the solutions of this,with each v di-

viding h, fall into the following five classes:
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(1) v = 2, pq = up = h.
(ii) v = 3, h even, uy = uy = z, u, = Yah.
(iii) v = 3, h = 12, Mg =2, uy F My F 3.
(iv) v = 3, h = 24, My = 2, My T 3, ug = 4.
(v) v = 3, h = 60, By = 2, My = 3, ugy = 5.

It only remains to identify the corresponding groups.

For (i), all elements of H have the same eigenvectors, so they must form
a cyclic group; and all elements of G have the same eigenvectors, so
they lie in the associated Cartan subgroup. For (ii), assume for conve-
nience h > 4. Then the orbit of §3 consists of two elements, each fixed
by half the members of H; so H has a cyclic subgroup Ho of index 2,
which must be normal in H. The inverse image of H in G must be in a
Cartan subgroup of GLZ’ and the remaining elements of G interchange the
two eigenspaces associated with this Cartan subgroup; so G lies in the
normalizer of a Cartan subgroup but not in the Cartan subgroup itself.

A similar argument works when h = 4.

In the remaining cases we need only identify H with Ay, S, or A respec-

5
tively. For (iii), the orbit of L has four elements and these‘are per-
muted by H. The induced representation of H is faithful because no non-
trivial element of H has more than two eigenvectors; so H is isomorphic
to a subgroup of Sq of order 12, which must be A, Similarly in (iv) the
orbit of 52 contains eight vectors; but these are the only vectors which
are eigenvectors of elements of H of order 3, so they can naturally be
regarded as four pairs. If there were a non-trivial element of H which
fixed each of these pairs, it would be of order 2 and would therefore

have to interchange the elements of each pair. This property would define
it uniquely, so it would be in the centre of H and H would have elements

of order 6, which it does not. So the homomorphism of H into the permu-

tation group of these four pairs has trivial kernel and thus H is isomor-

phic to Sy +
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In case (v) a direct representation of H as a group of permutations of
five elements involves some rather artificial manoeuvres and it is bet-
ter to proceed as follows. Since every By is prime, every element of H
has prime order; and since any two eigenvectors associated with elements
of the same order are equivalent under H, any two cyclic subgroups of the
same order are conjugate. So any normal subgroup of H contains all or
none of the elements of any given order. But H has 15 elements of order
2, 20 elements of order 3, and 24 elements of order 5; so H can have no
non-trivial normal subgroup. Since the only simple group of order 60 is

AS’ H must be isomorphic to A5. This completes the proof of the lemma.

COROLLARY 1. Let oe be any continuous homorphism Gal(Kl/Q) - GLz(Zl)

such that det o p, = xk-l for some even integer k. Let G C GL,(F,) be
——————a 2 L - 2V e =

the image of SL and let H be_the image of G in PGLZGFZ). Suppose that

G does not contain SLZ(Fl)‘ Then

(i) G is contained in a Borel subgroup of GL2(P£); or

(ii) G is contained in the normalizerof a Cartan subgroup, but not in

the Cartan subgroup itself; or

(iii) H is isomorphic to Sy~

PROOF. Any subgroup of a split Cartan subgroup is contained in a Borel
subgroup - for example the one corresponding to one of the two eigenspa-
ces of the Cartan subgroup. So we have only to show that the cases of G
contained in a non~-split Cartan subgroup, or of H isomorphic to A, or AS’
can be neglected. For the first of these, let C be a non-split Cartan

subgroup, so that C is cyclic of order e? - 1); then the homomorphism
Py ¢ Gal(K,/Q) ~ C

must factor through Gal(bi/Q) ~ Zz because C is commutative. Since the
image of Zz has order prime to £, its order must divide (£ - 1); so the
image lies in the set of matrices al with a ¥ 0, and thus is in a Borel

subgroup. An alternative argument is to consider an element ¢ of
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Gal(Kp/Q) which corresponds to complex conjugation under some complex em-
bedding of K,. Now 62 = 1 and xl(a) = -13 so ;£(°) has eigenvalues 1 and
-1, and therefore cannot be in a non-split Cartan subgroup. However this

argument breaks down when £ = 2.

In proving that H cannot be Ay or Ay, we can assume that £ > 2. Consider

the commutative diagram :

- dgt *
Gal(Kl/Q) G E,

|

H *E‘;/E‘t*z ~ {1}

By hypothesis the image of G in Fz consists of all (k - 1)th powers and
k is even; so the lower line is onto, which means that H must have a sub-

group of index 2. Neither Ay nor A5 has such a subgroup.

COROLLARY 2. let f = Xanqn be a cusp form of weight k for the full modu-

lar group, such that a, = 1, every a_ is in Z, and the associated Dirich-

let series has an Euler product; and let

pp ¢ Gal(Kz/Q) i GL2GZ£)

be the continuous homomorphism given by Theorem 1. Suppose that the image

of ;Z does not contain SL2(EZ)’ so that £ is an exceptional prime for f.

Then the three cases listed in Corollary 1 imply respectively the follo-

wing congruences for the coefficients of f

(i) There is an integer m such that a = n™ Og—q1-op(m) mod £ for all n
prime to £.
(ii) ay 2 0 mod £ whenever n is a quadratic non-residue mod £.
(iii) pl-kag % 0,1,2 or 4 mod £ for all primes p # L.

PROOF. In case (i) we may without loss of generality suppose that the Bo-
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rel subgroup involved consists of the upper triangular matrices; thus
for any o in Gal(Kz/Q) we can write

- (a(o) B(o)) .

ppla) 0 &(o)

Now a thus defined is a continuous homomorphism Gal(KllQ) - Fz, and must

therefore be equal to ;Lm for some integer m. Moreover aé = ;zk-i by
Theorem 1, so that 6§ = ;lk—l-m- Taking ¢ = Frob(p) we obtain
a, = ™+ pk_l-m mod £ (10)

for p X £, and the congruence for a, follows from this and (8).

For case (ii), note first that we can assume £ > 2; for every proper sub-
group of GL2(F2) is contained in either a Cartan or a Borel subgroup.
Let C be the Cartan subgroup and N its normalizer, and consider the homo-

morphism
Gal(Kz/Q) -+ N = N/C ~ {1}.

By hypothesis this is onto; and since the image is commutative the homo-
morphism factors through Gal(Kib/Q) “‘Zz. The onlyr continuous homomor-
phism of this last group onto {#1} is the one whose kernel is the squares;
and it follows that ;t(Frob(p)) is in C if and only if p is a quadratic
residue mod £. Now let o be an element of N not in C; after a field ex-
tension if necessary, o interchanges two one-dimensional subspaces of the
space on which it operates, and can therefore be put in the form (2 ;).

So a has zero trace. Hence ap = 0 mod £ whenever p is a quadratic non-re-

sidue mod £, by Theorem 1; and the same conclusion follows for a, by (8).

For (iii), note that every element of H has order 1,2,3 or 4; so every
element of G has characteristic roots of the form Au,Au—l where one of
uz’uu,ue or u8 is equal to 1. Enumeration of cases now proves the Corol-

lary.
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We may distinguish (iii) from (ii) as follows. By an argument similar

to that used for case (ii), the image of Frob(p) in H lies in Au if and
only if p is a quadratic residue mod £. Since Frobenius elements are
dense in any Galois group, there are an infinity of p such that the image
of Frob(p) in H has order 4; such p are quadratic non-residues mod &

and satisfy

3. Modular forms mod £.

For any integer v > 0 we write

. © 2v-1n by, = n
8,, = AL(1 - 2v) + g I—t-;%— = g+ § PP

where b2v is the (2v)th Bernoulli number; and

E2v = -quZv/va =1 4+ ... .

For v > 1 these are different normalizations of the Eisenstein series of
weight 2v. This 62 is essentially the n, of the classical theary; it is
not a modular form but satisfies a similar functional equation. Follow-

ing Ramanujan [ 8] we write

P=E, =1~ 240, (n)q",

L
"
tr
n

1+ QMOZoa(n)qn,

=
"

™
"

1 - souZoS(n)q“.

Any modular form of weight k can be expressed as an isobaric polynomial

in Q and R (which have weights 4 and 6 respectively). More specifically,

17284 = Q° - R%; (1)
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and if f is a modular form and A the additive group generated by the
coefficients of the g-series expansion of f, then f has a unique ex-
pression as an isobaric element of A[{Q,A]l ® RA[Q,4). To find an expli-
cit expression for f we have in general to comﬁare g-series expansions;

but for Eisenstein series we can use the recurrence relation

(n - 2)(n + 5)Fn =z 12(FUFn + F

+4 F

.4 FnFM)’ (12)

6" n-2

valid for any even n greater than 2, in which we have simplified the al-

gebra by writing

F, = Gn/(n - 2!

This may be proved by substituting the standard expansion

Plz30,0,) = 272+ 2

I (_1)m (21)2m z2m—2 F2m

w

~N

for the Weierstrass p-function into the differential equation

Ky = 6632 _l/zgz'
The first few cases give

2 a3 2 _ A2
= Q“,E;q = QR, 691E,, = u41Q° + 250R",E,, = Q°R; (13)

values up to E3 inclusive will be found in Ramanujan [8], Table I.

2

Henceforth, following Ramanujan, we write

the essential property of this operator in the present context is as fol-

lows.

LEMMA 3. Let f be a modular form of weight k; then (12¢f - kPf) is a

modular form of weight (k + 2).
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The proof of lemma 3 is by direct calculation of the effect of modular
transformations on (128f - kPf); it can be found in Ogg's lectures at
this conference. A similar calculation shows that (126P - P?) is a
modular form of weight 4. Examination of the constant terms in the q-

series expansions now gives

36Q -~ PQ = -R, 28R - PR = -Q°,
(14)
120P - P2 = -q, 64 - PA =0 .
We can reformulate lemma 3 .in terms of the operator 3 defined by
3 = 126 - kP on modular forms of weight k. (15)

COROLLARY. 9 is the derivation on the graded algebra of modular forms

such that 9Q = -4R and 3R = -6Q2,

We can now define modular forms mod £. Denote by & the local ring of Q
at £ - that is, the ring of rational numbers with denominator prime to

£. Let Mk be the # -module of those modular forms of weight k whose gq-
series expansions have all their coefficients in s; and let ﬁk CF, {lqll
be the Fz-vector space whose elements consist of the Zgnqn as f = Zanqn
runs through the elements of Mk’ (Here, as always, the tilde denotes re-
duction mod -£.) Then the F,-algebra of modular forms mod £ is just the
sum of the ﬁk' We have now to determine the structure of this algebra,
which we shall write ﬁ; and since the argument involves certain Eisen-

stein series we shall need some standard results on the £-adic nature of

Bernouilli numbers.

LEMMA 4, (von Staudt-Kummer).
(i) If (£ - 1)|2v then £b, = -1 mod £.

(ii) If (£ - 1)\2v then b v/2v is Z-integral and its residue class mod £

2
only depends on 2v mod{(£ -1).
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For a proof see [2], pp.38u4-6.

It is convenient to adopt the following notations, even though they in-
volve a slight abuse of language. Let f be a function which has a g-se-
ries expansion Xanqn such that every a, is in®’; then f will denote the
formal power series z;nqn. Again, let ¢(X,Y) be a polynomial in #1X,Y]};
then ;(X,Y) will denote the polynomial in F£[X,Y] obtained from ¢ by re-
duction of the coefficients mod £. However, the natural arguments for

¢ will be Q and R; and since Q and R are algebraically independent even
over € we shall allow ourselves to regard them as independent transcen-
dentals and therefore as acceptable formal arguments for 3- Thus z(Q,R)
is a polynomial in two variables with coefficients in FZ’ whereas ;(a,ﬁ)
is the element of F£[[q]] obtained from this polynomial by substitution.
In particular if f is in Mk then there is a unique polynomial ¢ such that
$(Q,R) = £; for £ > 3 the coefficients of ¢ are in ¢ and ;(a,ﬁ) = f.
Note that the derivation 3 on &[Q,R] induces a derivation, also written

3, on FKIQ,R], and that © analogously extends to lelq]].

From now until the end of the proof of lemma 5, we assume that £ > 3,
The cases £ = 2 and £ = 3 are anomalous because an element of Mk cannot
necessarily be written as an isobaric polynomial of o[ Q,R]; see (11).
Fortunately they are also trivial, and the analogues of Theorem 2 for
them will be stated and proved as Theorem 3. TFor £ > 3 there is a ring

homomorphism
o[Q,Rl ~ F,IQ,Rl ~ H

which extends o - Fl and is onto; to determine the structure of M we have
only to find the kernel of the right hand arrow. Denote by A and B the

two isobaric polynomials such that

A(QsR) = E,_ 45 B(Q,R) = Ep, -
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By lemma 4(i), El—l is in My_4: and since by lemma 4(ii)
b£+1/(£+1) =Y, b, = -1/12 mod £, (16)

E£+1 is in M£+1. So A and B have coefficients in ¢ .

THEOREM 2. Suppose that £ > 3. Then
(i) A(Q,R) = 1 and B(Q,F) = P;
(ii) dA(Q,R) = B(Q,R) and 3B(Q,R) = - QA(Q,R);

(iii) X(Q,R) has no repeated factor and is prime to §(Q,R);

(iv) M is naturally isomorphic to thQ,R]/(Z-l) and has a natural grading

with values in Z/(£-1).

PROOF. The first part of (i) follows from lemma 4(ii). Moreover

= d£ mod £

Q.
"

for any integer d, whence cl(n) = oe(n); and the second part of (i) now

follows from (16). Thus OX(G,ﬁ) = 0 whence
3A(Q,EK) = PAQ,R) = P = B(Q,K).
This means that 3A-B has a g-series every coefficient of which is divisi-

ble by £; since it is a modular form of weight £+1, it must lie in £6] Q,R}

and thus 3A = B. Again

aB(Q,R) = (126 - P)B(Q,R) = (126 - B)P = -Q

by (14), and a similar argument shows that 3B = -QK. This proves (ii).

Now suppose that A is exactly divisible by (Q3 - ERZ)n where n > 0 and
c + O is in the algebraic closure of PL. Since A(a,i) has non-zero con-

2

~3 ~ ~
stant term whereas Q° - R® has zero constant term, we cannot have c = 1;

8O

3(Q% - SR%) = 123 - 1% R
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is prime to (Q3 - ERZ). Moreover by consideration of degree n < £. It
- &RHL

follows from 3A = B that B is exactly divisible by (Q3 sy and if

n > 1 it follows from 3B = -QK that A is exactly divisible by
(Q3 - ERZ)H-Z, contrary to hypothesis. A similar argument works for po-

wers of Q or R. Thus A has no repeated factors and its simple factors do

not divide B. This proves (iii).

Denote by a the kernel of the map F£[Q,R]-*F£[[q]] obtained by substitu-
ting 5 and R for Q and R; clearly a contains A - 1, and a is prime be-
cause the image is an integral domain. If a were maximal then 5 and R
would be algebraic over Fl’ which is absurd because the coefficient of q
in at least one of them is non-zero. Since EllQ,R] has dimension 2, in
order to prove that a = (A - 1) it is now enough to prove that A - 1is

an irreducible polynomial. If not, let
$(Q,R) = ¢n(Q,R) + ¢n_1(Q,R) +...4 1

be an irreducible proper factor of A - 1, where ¢, is isocbaric of weight
v, and let ¢ be a primitive (£ - 1)th root of unity in Fl; then writing
E2Q, EsR for Q,R does not alter A - 1, so that ¢(E2Q,83R) is also a fac-
tor of A - 1. But this is not equal to ¢(Q,R) and hence is coprime to it}
S0 ¢(Q,R)¢(52Q,E3R) divides A - 1. By considering terms of highest weight
we see that (¢n(Q,R))2 divides K, which is absurd because A has no repea-

ted factors. This completes the proof of Theorem 2.

Note that 3 is an operator of weight 2 on ﬁ; and the same is true of ©
since P is a modular form mod £ of weight 2, It is this last property
which makes the theory of modular forms mod £ so much tidier than the clas-

sical theory.

It follows from Theorem 2 that Z(Q,R) is the Hasse invariant of the asso-
ciated elliptic curve. This may be proved in one of two ways. On the one

hand Deligne has shown that the g-series expansion of the Hasse invariant
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reduces to 1; and Theorem 2 shows that this property characterizes A
among polynomials of weight £ - 1. On the other hand the differential
equation derived from (ii) is just that which the Hasse invariant is
known to satisfy - see Igusa [4#]. Indeed the present proof of (iii) is
essentially the same as Igusa's proof that the Hasse invariant has no
repeated roots. One may also derive explicit formulae for A and E from

(ii), as an alternative to the use of the recursion formula (12). We

list the first few cases below

£=5.  Now E, =Q; s0Q=1and# = F[R
£=7. NowEg=R; soR=1andhl:=F,IQ
£ = 11. Now ElO = QR, so that 6§ = 13 thus M is isomorphic to
FilQRIZ(QR = 1) = F,,00,Q77 .
£ = 13. Now Es)p is given by (13) and the fundamental relation is

6Q° - 5RZ = 1.
For use in the next section we introduce a filtration on M. Let f be a
graded element of ﬁ, that is to say a sum of elements of various ﬁk for
which all the relevant k are congruent mod(£ - 1). By multiplying the
summands by suitable powers of A we can make them all belong to the same

ﬁk’ so that f itself belongs to an M Define m(?), the filtration of %,

e+
to be the least k such that f belongs to ﬁk' Thus for example only the
constants have filtration O and there are no elements of filtration 2;
there are elements of filtration 4 if and only if £ > 5, and in that case

they are just the non-zero multiples of 6.

LEMMA 5. (i) Let f be a modular form of weight k such that f = $(Q,R)

for some ¢ in o[ Q,R], and suppose that f3 # 0. Then w(f) < k if and only

if A divides E.
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(ii) Let f be a graded element of ﬁ; then w(6f) < w(f) + £ + i, (17)

with equality if and only if w(E) # 0 mod £.

PROOF. (i) is obvious from Theorem 2(iv) since we are still assuming
£ > 3., To prove (ii), let k = w(f) and let f = ¢{Q,R) be a modular form

of weight k whose reduction mod £ 1is f. The inequality (17) follows from
126 = A(Q,R)29(Q,R) + kB(Q,RF

so that 120f is the image in M of (Ka} + kEE). Moreover we know by (i)

that ; is not a multiple of A (except in the trivial case f - 0), and by

Theorem 2(iii) that B is prime to Z; SO (Ka$-+k§$) is a multiple of A if

and only if k is a multiple of £. Thus the second part of the lemma fol-

lows from the first.
In the next section we shall need a technique for deciding with as little
effort as possible whether two modular forms mod £ are equal. It is often

convenient to use

LEMMA 6. Suppose that ?1 and ?2 are both in ﬁk; then they are equal if

~

and only if for each n < k/12 the coefficients of g in %1 and f2 are

equal.

PROOF. The condition is obviously necessary. Suppose it holds, and let
f1 and f2 be modular forms of weight k whose reductions mod £ are El and
?2. The standard algorithm for expressing (f1 - f2) as a polynomial of
weight k in Q,R and A only makes use of the coefficients of qn for

n < k/12 in (f1 - f2), and all these are divisible by £; so (f1 - f2) is

in £6{Q,R,A} . This proves the lemma.
We now return to the trivial cases £ = 2 and £ = 3.

THEOREM 3. If £ = 2 or £ = 3 then P = § = K = 1 and ¥ = F,[8]. There is
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no grading and 9 annihilates M.

This follows trivially from the remarks at the beginning of this sec-
tion, together with the facts that the coefficient of q in 4 is 1 and

that 34 = 0.

There is as yet no satisfactory structure theory of modular forms mod

2" where n > 1. At first sight it would seem natural to conjecture that
for £ > 3 the ideal of those elements of &{Q,R] whose gq~series expansion
has all its coefficients divisible by £" is (£,A - 1)". It is not dif-
ficult to prove this conjecture for n < £; but it is certainly false for

n>4&.

4, The exceptional primes.

In this section we show that for any f satisfying the conditions of Theo-
rem 1 the set of exceptional primes is finite and can be explicitly boun-
ded; and for the six forms A,QA,RA,Q2A,QRA and Q2RA which are known to
satisfy the conditions of Theorem 1 we find (with one case left undeci-~
ded) the complete list of exceptional primes. This also solvés our ori-
ginal problem of finding those £ for which there exist congruences for
t(n) or a_ mod £. For we have seen in §2 that to each exceptional prime
£ there correspond congruences for ap mod £; and the lemma that follows

shows that there can be no congruences for a non-exceptional prime.

LEMMA 7. Suppose that f = Zanqn satisfies the conditions of Thecrem 1;

that is, it is a cusp form with a; = 1, a, inZ and its Dirichlet series

has an Euler product. Let £ be a prime which is not exceptional for f,

and let N,N* be non-empty open sets ijlzz and Z*z respectively. Then the

set of primes p for which p is in N* and ap is in N has positive density.
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PROOF. The first step is to show that the image of the map
(pgrxp) : 6GallK,/Q) = 6L,(Z,) x Z, (18)

contains SLZ(ZK) x 1. By hypothesis, the projection of the image onto
the first factor contains SLZ(Zl); so the image of the commutator sub-
group contains Comm(SL,(Z,)) x 1. If £ > 3 this commutator subgroup is
the whole of sz(zt)’ by lemma 1 and the simplicity of SLZ(FZ)‘ Iif

£ =2 o0or 3 and ¢ in Gal(Kz/Q) is such that pz(c) is in SLz(Zt) then
xﬁ_i(o) = 1

where k is the weight of f; thus xz(c) = 1 because Zl contains no non-
trivial roots of unity of odd order.
It follows that the image of (18) consistsof all a x B with det « = Bk-%

and since we can find an element of GLz(xl) with any assigned trace in

tr -1

det o) - the map

Zz and determinant in Zz - for example (
(Tro py,xp) ¢ GallK,/Q) ~Z, xZ,

is onto. The lemma now follows from the facts that this map induces
Frob(p) -~ ap x p and that Frobenius elements are uniformly distributed

in the Galois group.

To find the exceptional primes, at least for the first two cases in the
Corollaries to lemma 2, we replace the hypothetical congruences of Corol-
lary 2 by equivalent hypothetical identities between modular forms mod £;
and we use the results of §3 to provide decision processes for these
hypothetical identities. The first step is the following lemma, which

for fixed f leaves us only finitely many possibilities to consider.

LEMMA 8. Suppose that f,Z and pp are as in Corollary 2 to lemma 2. Then

case (i) of that Corocllary can only happen if either 2m < £ <k or m = O

and £ divides the numerator of bk; and case (ii) can only happen if
£ < 2k.
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PROOF. We may suppose that £ > 3. Now case (i) is equivalent to (10),
and in that congruence the exponents are only significant mod(Z - 1).
Reducing them into the interval {0, £ - 2] and interchanging them if ne-

cessary, we can replace (10) by

1
a_=p" + p" mod £ (19)

where 0 € m<m'< & -1andm+m' =k - 1 mod(& -1); here m and m' can-

not be equal because their sum is odd. From this we obtain

- _m . . .
a, =n am,_m(n) mod £ if n is prime to £.

In general this can be written in the form

oF = ™1 3 (20)

m' - m+l

where the extra & on each side has been put in to annihilate the coeffi-
cient of qn when n is divisible by £. This is illegitimate only when

m =0, m'" = £ - 2 in which case the constant term in Gm, is not

-m+ 1

in &; in that case we have instead pap = 1 + p mod £ whence na = oi(n)

mod £ for n prime to £ and finally

oF = ot 13, -

£-1 5
2 6

G (21)

£+1°

By lemma 5(ii) we have w(8f) < k + £ + 1. But obviously m(azb) 2v
whenever 2 < 2v < £ - 1; and in applying lemma 5(ii) iteratively to find
the filtration of the right hand side of (20) we are always in the case
of equality. So provided that m' -m > 1 the filtration of the right hand
side of (20) is exactly (m' -m + 1) + (m + 1)(£ + 1). Comparing these

two results we obtain
m' +md + 1<k if 1 <m' -m<4&- 2. (22)

If £ > k thenm + m' » k - 1 by the condition below (19); and that is
only compatible with (22) if m = 0, m' = k -1 and w(f) = k. But then (20)
becomes 6(Ff - Ek> = 0; and since (fF - §k> must either vanish or have fil-

tration k, we deduce from lemma 5(ii) that it must vanish. Examination
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of the constant term now shows that £ must divide the numerator of bk'

A similar argument works for (21) and for the case m' -m = 1 in (20).

Now m(62> = £ + 1 because of §(a,§) =P together with the non-existence
of modular forms of weight 2. Once again, in applying lemma 5(ii) re-
peatedly we are always in the case of equality; so the filtration of the
right hand side of (20) is (m + 2)(£ + 1) and that of the right hand

side of (21) is £¢(£ + 1). Comparing as before with the filtration of the

left hand side we obtain

(m + 1)(L + 1) <k ifm' -m = 1,

(23)
62 - 1<k ifm=0,m =&~ 2.
These certainly imply £ < k.
Similarly case (ii) is equivalent to
of = ol + /2% (24)

and if £ > 2k and consequently w(F) = k, then the filtration of the left
hand side is k + £ + 1 whereas that of the right hand side is
k + )4(2 + 1)2. This contradiction completes the proof of the lemmaj;

for since £ is odd and k is even, neither £ = k nor £ = 2k is possible.

With a little more trouble we can improve the result in case (ii). For
suppose that k < £ < 2k; then w(6VF) = k + v(£ + 1) provided v < £ - k,

and therefore
w(e¥ X IEy = p(r1-k) +L A = n(L~A)

for some integer n > 0. It may be verified that in the further applica-

tions of lemma 5(ii) needed to obtain

w(o L+ 2%,
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no further case of inequality occurs; and since we know that that filtra-
tion is equal to w(0F) < 2(& + 1), there can be at most one more applica-
tion of 8. It follows that £ = 2k - 1 or £ = 2k - 3. A similar idea can
be applied when £ < k, but this is less useful since nearly all such £

are already exceptional primes for case (i).

We have still to consider case (iii) of Corollary 2 to lemma 2. Here the

situation is much less satisfactory, in that we no longer have a decision
process; the best we can do is to generate a finite list of primes which

certainly contains all exceptional primes of this kind. For choose

P * 2 such that ap + 0; then if £ is an exceptional prime of this type

either £ = p or £ divides one of

Since all these are non-zero (k being even), this gives a finite list of
possible £. There are some further conditions on £ in this case, which
reduce the calculations involved. It was shown at the end of §2 that
there are primes p which are quadratic non-residues mod £ and for which
£ divides ag - 2pk-1; since k is even, it follows that 2 is a quadratic

non-residue mod £. Thus

£ = £3 mod 8;
moreover taking p = 2 in the earlier condition we can now reject the se-
cond and fourth possibilities, so that

/2

£ divides a, or (a2 t 2 ).

Again , since the image of El is isomorphic to 8, there is composite epi-

morphism

Gal(K,/Q) = S, = S,

and hence there is a field K which is normal over Q with Galoils group 83
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and which is unramified except at £. The subfield of K fixed under Ag
must be Q(v%£), where the sign is plus if £ = 5 mod 8 and minus if £ = 3
mod 8; and K must be unramified over this field. Classfield theory now

shows that

Q(vEZ) has class number divisible by 3.

We can sum up our results as follows

THEOREM 4. Given a modular form f satisfying the conditions of Theorem

1, there are only finitely many primes exceptional for f. Those of ty-

pes (i) and (ii) can be explicitly determined; and there is an expli-

citly determinable finite set which contains those of type (iii).

We now apply these methods to the six known modular forms which satisfy
the conditions of Theorem 1. For this purpose it is convenient to have
a formula for the action of a power of 6 on a modular form. Let f be a

modular form of weight k, and write

for v > 1,

£, = £, £, = 3f, £ = f _, - (k+v=2)(v-1)Qf _,

where we have identified f with its expression as a polynomial in Q and

R. Then for any n # 0 we have

n
(120)7f = ) n! (k+n-1)! Ve (25)
v=0 v! (n-v)! (k+v-1)1! v

The proof is by induction on n, using (15) and the third equation (1u).

COROLLARY. (i) For the six known modular forms which satisfy the condi-

tions of Theorem 1, the exceptional primes of type (i) and the associated

values of m are given by the following table.
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Form k 2 3 5 7 11 13 17 19 23 Other £

A 12]0 0 1 1 No 691

@ 16{0 0 1 1 1 No . 3617
RA 18 |0 0 2 1 1 1 No 43867
Q%4 20]0 0 1 2 1 1 No No 283,617
QRd 22 /0 0 2 1 No 1 1 No 131,593
QRé 26 {0 0 2 2 1 No 1 1 No | 657931

Here the first two columns give the form and its weight, the last column

gives the exceptional £ > k (for which necessarily m = 0), and the other

columns give for each £ < k the value of m if £ is excepticnal, or the

word 'No' if £ is not exceptional.

(ii) For these six forms, the only exceptional primes of type (ii) are

£ = 23 for A and £ = 31 for QA.

(iii) With the possible exception of £ = 59 for QA, there are no excep-

tional primes of type (iii) for any of these six forms.

PROOF. The results for £ = 2 and £ = 3 (for which the general machinery

is not applicable) follow from Theorem 3 and the congruences

P+ p2 mod 3

it

7(p) = 0 mod 2, w(p)

which are weaker versions of (2) and (3) respectively. In the remaining
possible cases of (i) with £ < k, the only possible value of m can most
easily be determined from (13) when p = 2 or 3, together with (22) and
(23); and indeed in the case when £ is not exceptional this method proves
that there is no possible value of m. So it is only necessary to check
(20) for the positive cases in the table. This can be done either by

calculations with polynomials in Q and R or by means of lemma 6.

For (ii) it is only necessary to consider £ = 2k-1, £ = 2k-3 and those

£ < k which are not exceptional of type (i). For those cases which have
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to be rejected, the simplest method is to find a prime p which is a

quadratic non-residue mod £ and to verify that ap is not divisible by
£; for the cases with £ < k we can also argue as in the paragraph fol-
lowing equation (24%#). In the two remaining cases £ = 2k-1 and it fol-

lows from (25) that the right hand side of (24) is in M Since

k+£+1°
this is also true for the left hand side, we have only to check that

the coefficients of q, q2, q3 and qq agree - this last only for k = 16
and this can be done without even calculating them in the case of A,
since 2 and 3 are quadratic residues mod 23. It is however necessary to
check that for QA the coefficient a, = -3348 is divisible by 31.

For (iii) we have already outlined the method of calculation together
with some convenient short-cuts; these enable us to reject without dif-

ficulty all values of £ except the one given in the Corollary. This con-

cludes the proof of the Corollary.

For exceptional primes of type (i), nothing more needs to be done in res-
pect of the homomorphism ;i and the associated congruence mod £; con-
gruences modulo higher powers of £, and the information about Pp that
can be derived from them, will be discussed in §5. For exceptional pri-
mes of types (ii) and (iii) however, therestill remain interesting ques-
tions. Tor example, we have now proved the first line of (6) but we have
not proved the second or third; nor have we in this case determined
either the kernel or the image of ;23. It is however clear that the

kernel of the homomorphism
Gal(Kz/Q) > N > N/C ~ {1},

where C is a Cartan subgroup and N its normalizer, consists of those
elements of the Galois group which are trivial on Q(v~Z); and hence for
each of our two examples of case (ii) the image of ;l is canonically
isomorphic to Gal(K/Q) where K is some unramified abelian extension of

Q(V~T). 1In the case k = 12, £ = 23 it is clear from (6) that K is the
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absolute class field of Q(V-Z); for the three lines of (6) correspond
respectively to (p) remaining prime, splitting as a product of princi-
pal ideals, and splitting as a product of non-principal ideals, in
Q(v~23). From this point of view the natural way to prove (6) is by
proving

2 2 2 2
28 = pzg™ t MR+ 6T pp 2mt 4 omn o+ 30T s o3, (26)

The case k = 16, £ = 31 is extremely similar, the analogue of (6) hol-
ding with the obvious modifications; the class number of §(v/-31), like
that of Q(v-23), is 3. The analogue of (26) for this case is

2 2 2 2
2qa = 55 * MR * BnT _ gpg2mt 4 omn 4+ bnt og 31, (27

Wilton [13] proved (6) by means of (26); but this very simple proof of
(26) depends on the product formula (1) and there seems little prospect
of a similar proof of (27). However, we can argue as follows. The right
hand side of (26) or (27) is a modular form of weight 1 for PO(K) for a
certain quadratic character; so its square is a modular form of weight 2
for FO(Z). By a theorem of Serre, proved in his lecture at this confe-
rence, any modular form of weight 2 for Fo(l) whose g-series has integral
coefficients is congruent mod £ to a modular form of weight (é + 1) for
the full modular group whose g-series has integral coefficients, and

vice versé. So the square of each side of (26) or (27), reduced mod £,
By lemma 6, to prove (26) or (27) it is now enough to

lies in M£+1.

check it for the coefficients of qo,q1 and qz; and this is easy.

There remains the case £ = 59 for QA. With the help of a computer I ha-
-15_2
a

j%

can be no reasonable doubt that 59 is an exceptional prime of type (iii)

1]

ve verified that p 0,1,2 or 4 mod 59 for all p < 500; so there

for QA. There remains the problem of proving it. Let X be the fixed

field of the kernel of the homomorphism
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Gal(ng/Q) - PGLZ(FSQ);

then K/Q is ramified only at 539 and is a normal extension with Galouis
group isomorphic to Su. These specifications are enough to determine
K. 1Indeed corresponding to the sequence of subgroups each normal in

its predecessor

S, 2 Au >DVD>i1l

y

(where V is non-cyclic of order 4), we have the tower of fixed fields
@ € Q(v~59) € L C K,

Here L must be the absolute class-field of Q(v-59), which is the split-
ting field of x3 + 2x - 1 = 0. By a detailed study of the field L it
can be shown that there is just one possible K and that it is the split-

ting field of

Lifting the image of the Galois group back from PGLQ(FSQ) to GLZ(FSS) is

easy; but it is not very useful because the result is too large. It is

better to study not p but p®x7 because det o (p®x7) = X29§ and reduced

mod 59 and applied to Frob(p) this gives the quadratic residue symbol

P g

(B=). Thus the image of p®x7 in GL,(F.,) is a group S! of order 48, and
53 g 2% 59 Y

its associated field K' is a quadratic extension of K. Now 1lift oa back
to characteristic zero, as a subgroup of GLQGZ[VC7]); since there is a
natural isomorphism Gal(K'/Q) 5 S& this induces an Artin L-series asso-
ciated with K'. According to the Artin conjecture, this series and all
those obtained from it by twisting with a congruence character can be
analytically continued to holomorphic functions on the whole s-plane,

satisfying functional equations of standard type. Suppose this is so;

then by a theorem of Weil [12] the Mellin transform of the Artin L-se-
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ries will be a cusp form of weight 1 for ro(592), for a certain quadra-
tic character. By construction this cusp form will have coefficients in
Z[v~2] and will be congruent mod 59 (or more precisely modulo one of the

prime factors of 59 in Z[V-2]) to 67(QA).

To determine whether such a cusp form exists is a strictly finite cal-
culation, which does not depend on the various hypotheses which I have
used to render its existence plausible. Unfortunately, in the present
unsatisfactory state of our knowledge about modular forms of weight 1 it
is not an attractive calculation. Suppose however that such a form was

shown to exist, and let its q-series expansion be Ebnqn, where

-8 _ _ -s -2s,-1
2bnn = (1 bpp t p ) B

The Ramanujan-Petersson conjecture implies

bP =0, 1, ¢t v=-Z or ¢t 2 (28)

for all p, and even a statistical version of the conjecture (which should
be provable by classical methods without too much trouble in this case)
would prove (28) for all p outside a set of density zero. It would fol-

low that for the coefficients of QA

p—lsag Z 0,1,2 or 4 mod 59

either for all p or for all p outside a set of density zero. By lemma 7
this would be enough to prove that 59 is an exceptional prime of type

(iii) for Qa.

5. Congruences modulo powers of £.

In this case the theory is much less complete, and to the extent that
it exists it is much more dependent on heavy algebraic manipulations.
We therefore confine ourselves to certain selected topics and do not

treat even those completely.
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If a congruence such as (2) or (3) is true, then it can be proved by
brute force. We illustrate this by considering (2). For any integer

u .
’ At + w/8) = A(e™H/ %)

is a modular form of weight 12 for PO(SH), and by combining these forms

we find that for any v so is

Et(n)qn where the sum is over all n v mod 8.

A similar argument works for Ecll(n)qn; so each of the four congruences
(2) asserts the congruence of two modular forms of weight 12 for FO(BM).
Such modular forms are algebraic and integral over ¢01Q,R,4], so such a
congruence is equivalent to a certain isobaric congruence between modu-
lar forms for the full modular group. In view of the remark following
(11), to prove this last congruence one writes the difference of the two
sides as a polynomial in P,Q and R which is linear in R, and verifies
that each coefficient of the polynomial is individually divisible by the
relevant power of 2. Of course a process as crude as this would be in-
tolerably tedious to carry through; but it is one in which there is con-

siderable scope for replacing hard work by ingenuity.

There is another reasonable method, though the proofs which it would pro-
vide would be even less illuminating than the existing ones., As was
shown above, any one of the congruences (2) is equivalent to a congruen-
ce between two modular forms of weight 12 for FO(SM); and just as in
lemma 6, to prove this congruence it is enough to verify it for a limi-
ted number of coefficients - a task which is straightforward on a com-
puter. Methods analogous to this have been used by Atkin and his pupils;

see for example [1}.

Similar remarks apply to (3), though here there is the additional com=-

plication that the congruence to be proved will involve 6. However, 8

can be expressed in terms of 3, which is an operator which takes modular
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forms to modular forms, and P which is congruent modulo any assigned

prime power to a modular form, as is proved in Serre's lectures at
this conference. However, it would seem that we do not yet have the

right point of view for attacking these problems.

We now show that by means of Theorem 1 the middle equation (6) can be

painlessly improved to

2

(p) = 1 + ptlmoa 232 if p = u? + 23v?

» P 423, (29)

For if p is such a prime ;23(Frob(p)) is the identity, and hence the
image Qf Frob(p) in GLZCE/(232» has trace = 1 + det as elements of
Z/(23)2. This is just (29). By a refinement of this argument we can
determine the image of Pogs which we shall denote by 6. Let ¢* and G
be the images of G in GLZCZ/(232)) and GL2(P23) respectively. We have

already shown that G is isomorphic to S35 so without loss of generality

we can assume that G consists of the six matrices

1 0 -1 -1 0 1 0 1 1 0 -1 -1

0 1/ ,\1 0/, \~2 -1/ ,\1 0/, \-1 -1/,\0 1 .
Let V be the kernel of the homomorphism

2 ->
GL,(Z/(23)) = GL,(F,,) (30)

and let H be the intersection of G* and V. There is a natural action of
GL2(F23) on V given by 0 : v=>s v ¢! where v is in V and s is any pull-
back of ¢ for the map (30); this induces an action of G both on V and on

H. Moreover the map

1 + 23a 23b

+ (a,b,c,d)
23c 1+ 234

identifies V with a vector space of dimension 4 over F23. The irreduci-

ble components of V under the action of @ are as follows
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Vs the multiples of (1,0,0,1);
V2, the multiples of (1,2,-2,-1);
V3 defined by a + d = a - b + ¢ = 0.

Since G acts on H, H must be a sum of Vi' If H did not contain Vl’ det
would be constant on H and so p11 £ 1imod 232 for all p of the form u2 +
23v2, which is absurd. Similarly if H did not contain V2 we would have
a-d=2(b - ¢c) on H, and this would imply that (det + 2 tr) would be

constant on the inverse image of

1

in G%. Translated into terms of 7(p), this would mean that p1 + 2t(p)

would be congruent to some constant mod 232 for all p of the form

2 2

2u® + uv + 3v

- the case in the last line of (6)3; this can be seen to be false by con-
sidering the case p = 2 and p = 3. Finally, if H did not contain Vya
similar argument would show that t(p) was congruent to some constant

mod 232

for all p which are quadratic non-residues mod 23; and this
again is false. So H = V, Now an argument like those in the proof of
lemma 1 or the last part of the proof of Theorem 6 shows that G is the
entire inverse image of € under the homomorphism GL20223) - GLZ(F23).
This result is of course independent of the particular representation of

~

G chosen above.

We can also make some further additions to (2), though of a rather dif-
ferent kind. It turns out that the congruences (2) are enough to de-
termine the image not merely of ;2 but of fyp essentially uniquely. The

exact statement and proof of this fact are extremely tedious and are
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therefore relegated to the Appendix. However, certain consequences of
independent interest can be easily stated. For example, the last three

congruences (2) are best possible in the following sense.

THEOREM 5. Let N,N* be non-empty open subsets of ZZ,Z; respectively

such that no element of N* is congruent to 1 mod 8 and any o in N and 8

in N* satisfy the appropriate one of

13

1217¢1 + 81) mod 2'3 if 8 = 3 mod s,

Q
Ul

1537(1 + 81y mod 21?

Q
I

if 8 = 5 mod 8,

705(1 + 811) moa 21"

11}
~

mod 8.

=]
HY

if 8

Then there are an infinity of primes p with p in N* and t(p) in N.

PROOF., Denote by G the image of Pas which is described in detail in the
Appendix. By a straightforward but tedious calculation one verifies

that to every o and B satisfying the congruence conditions above, there

11

exist elements of G with trace a and determinant 8 The theorem now

follows because Frobenius elements are dense in Gal(Kz/Q) and therefore
their images are dense in G. The corresponding statement for the first
congruence (2) would be false. Indeed, for any given 8 = 1 mod 8 in Z;

let S = S(8) denote the set of a in 22 such that there is an element of

G with trace o and determinant 811. It may be shown that S(8) is a union

17 and that it only depends on 8 mod le

By (2), S(8) lies entirely within the residue class of (1 + 611) mod 211;

of complete residue classes mod 2

but it is never the whole of this class, and it never lies wholly within

12 contained in this class. Thus

one of the two residue classes mod 2
the first congruence (2) is best possible in the sense that it cannot be
improved to a congruence for t(p) mod 212, no matter how good a 2~adic
approximation to p we have; but unlike the other three congruences (2)

it is not best possible in the sense of Theorem 5.
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COROLLARY. The conjecture that 27|/ (p+ 1) implies 2"||t(p) is false

for each n > 13.

This conjecture is of some interest since if it were true for all n it

would follow that t(p) is never zero.

Despite this theorem, one can obtain congruences modulo higher powers

of 2 provided that one supplies more information about p; and the sim-
plest way to obtain and prove such congruences is by considering G. Sup-
pose for example that we confine ourselves to the case p = 1 mod 4, so
that p = u? 4 v2 in essentially just one way; then we can ask for con-
gruences which express 1(p) in terms of p, u and v. As in the Appendix,
denote by 815 the subgroup of G consisting of those matrices whose deter-

ab be the maxi-

minant is congruent to 1 mod u4; 1let K = Q(i) and let K
mal abelian extension of K inside K,. Then K is the fixed field of p;l
615 and 2-adic knowledge of u, v and p is essentially the same as know-
ing the Frobenius element of (u + iv) in the extension k®P/K. Indeed

there is a composite homomorphism

. R sy 3 ab - A
P 22[1] /{x 1,t 1} Gal(K""/K) Gls/‘°15’G1§

where the square brackets on the right denote the commutator subgroup.
Unfortunately, though the left hand isomorphism is canonical thereis no
direct method of specifying the right hand homomorphism; all we know is

that det o ¢ is induced by
(u + iv) » (u? + vH1L,

Since the natural map G15/[G19G15] -+ G/{G,B] has finite kernel, this
leaves only finitely many possibilities for ¢. If ¢ is known, then for
any given p = u2 + v2 we know the coset of [G15’615] in which the image
of Frob(u + iv) lies; and so we know the set of traces of elements of

this coset. Since this set of traces contains 1(p), this specifies in

terms of p,u and v an open subset of Z, in which 1(p) lies; and since
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[G15,G15] is strictly smaller than [G,G], we can reasonably hope that

this open subset is smaller than that given by (2).

So to each of the finitely many possibilities for ¢ there corresponds a
set of hypothetical congruences for 1{(p). All but one of these hypothe-
tical sets can be shown to be false by examining small values of p; the
remaining one must correspond to the true ¢ and is thereby proved. The
details of this calculation are quite unsuitable for publication; the

results are four congruences of which a typical one is

11

w(p) =1+ p +210

+5.25p-5)2 + 3.2%(p-5) + 28 (p-5) (B2-1)

16

+ 5.29(b2-1) mod 2% if p = 5 moa 16,

where p = u2 + Mb2. However, to show that this extra information does

nct always lead to an ugly result, we conclude by stating what appears

to be the analogous result for £ = 3. Write for p = 1 mod 3

2

4p = L° + 27M2 where M = 0 or 1 mod 3.

Then

0 mod 3% if M = 0 mod 3,

119 -108 _
-p = g

{p) - p

3% + 7) mod 3% if M= 1 mod 3.

However, this is based only on numerical evidence and has not yet been

proved. The first congruence (3), when n is prime, is just the state-

ment that the left hand side is divisible by 36.
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APPENDIX

We shall consistently use the foliowing notation.

An element o of GL2CZ2) will be written as

a b 14274 2YB

c d 25¢c  1+2D

here A,B,C,D are not necessarily integral, though they will be for those

¢ which primarily interest us. Moreover
S =a+d, A = ad - bc

will denote the trace and determinant of oj; in particular it follows that

8

D= Y - 1)(1 - 274) - 254 + 2%Bc  moa 213 (31)

and therefore that

14

S=1+4A-2"(- 1A+ 2%  mod 2 (32)

whenever A,B and C are integral. Finally 6,¢,¢ will be the characters

of A mod 8 whose values are given by the following table

A mod 8 1 3 5 7

8 1] 14{-11-1
¢ 1]-1] 11(-1
" 11-11(-11]1

If we have to consider several ¢ simultaneously, we shall distinguish
them by subsecripts and we shall attach the corresponding subscripts to

the associated letters a,b,c,d,A,B,C,D,S,A,0,4,9.

Let Go be the set of elements o of GLZGZZ) which satisfy the conditions
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B and C are both even if A = t 1 mod 8 and both odd if
A =1t 3 mod 8,
B+CA=Y(% + 3~ 4y) mod 16, (33)
A= 14(s + 20 - 39)(35 + 100 - 3¢) + 3(1 - ¥) = 2¢% mod 64. (3W)

(Here and throughout this appendix, all products will be integer-valued
even when they appear to contain a power of 4 .) It may be verified by
direct calculation, and will be implicit in the proof of the theorem that
follows, that Go is actually a group; and for a similar choice of rea-
sons each element of Go satisfies the appropriate one of the following

congruences

S=(1+4) mod 2*1 if A = 1 mod 8,

S = 1217(1 + A) mod 213 if A = 3 mod 8,

(35)
S = 1537(1 + A) mod 22 if A = 5 mod 8,
S = 705(1 + A) mod 2% if A = 7 moa s.

These correspond to the congruences (2) of Kolberg for (p).

THEOREM 6. Let G be a closed subgroup of GLZCEZ) such that

(i) the homomorphism det : G *-Z; is onto, and

(ii) every element o of G satisfies the appropriate congruence condi-

tion (35).

Then G can be transformed into Go by conjugation by an element of GLé(QZL

That we must allow conjugation by an element of GL2(02)’ and not meraly
by an element of GLZCZZ)’ corresponds to the fact that in Deligne's proof
of Theorem 1 the space on which the representation acts is canonically

defined, but the integral lattice in it is not canonical.
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The proof will consist of a number of steps, gradually refining G until
it is contained in Go; finally we show that a closed proper subgroup of
Go cannot satisfy condition (i) of the Theorem. We begin with a partial

normalization of G.

LEMMA 9. By suitable conjugation we can assume that G contains an ele-

ment oo such that

(36)

Moreover with this normalization A,B,C,D are integers for every ¢ in G;

and A is even if A =% 1 mod 8 and odd if A = ¢t 3 mod 8.

PROOF. The congruences (35), taken mod 29, reduce to

28 mod 22 if A = 3 mod 8,

(a -~ 1)(d - 1) - bc = (37)

O mod 29 otherwise.

In particular a + d is always even, so the image of G in GL2(F2) con-
sists of matrices of zero trace; hence this image must be the identity
or one of the three conjugate subgroups of order 2. So after conjuga-
tion we may assume that a,d are odd and c even for each ¢ in G; and it
now follows from (37) that 4|bc always. Let ZB,ZY be the greatest po-
wers of 2 which divide all b,c respectively, where ¢ runs through the

elements of G. If o,, o, are such that 2BHb1 and QYHC2 then for one

2
of o,, 0, and ¢, o, we have both 28[|b and 2Y||c; and now 4|bc gives

B + y » 2. By multiplying every b and dividing every ¢ by a fixed po-
wer of 2, which is an allowed transformation of G, we can certainly en-

sure that 8 # 1 and v » 1.

Now choose an element 9 of G with Ao = -1; by (35) it has 21u|So and
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hence its characteristic roots are.h122 and are congruent to * 1 mod
213, By conjugation we can make 9 diagonal, which proves (36); and
since the conjugation is by a matrix with integer elements and deter-
minant a unit or twice a unit, and b and ¢ are even before the conju-

gation, the ¢ in G are still integral after the transformation. How-

ever we have temporarily lost all information about g and vy.

Applying (37) to 00 which mod 213 only differs from ¢ in the signs of
b and d, we have

8

2% mod 2% if A = 5 mod 8,

(a - 1)(-d - 1) + bc = 9 .
0 mod 2° otherwise.

Adding this to (37) we obtain 28|(a - 1) if A=t 1 mod 8 and 27l](a - 1)
if 4 = £+ 3 mod 8, which proves the assertions about A. It follows also
that 27|bc, whence ad - bc = A shows that d = A mod 2. With this ad-
ditional help, (37) now gives 29|bc. With the same definition of B,y

as above, the argument we have already used now shows that B8 + y » 93
and after the allowable transfer of a power of 2 between b and ¢ for
each ¢ in G, we may suppose that 8 » 4 and y > 5. Hence B and C are in-
tegers, and we have already seen that D is an integer. This completes

the proof of the Lemma.

Using (32), the congruences (35) can be rewritten in the form

BC - Y,A(A-1) = © mod 4 if A = 1 mod 8,

2BC - YA(A-1) = Y (1$(1+A)) mod 32 if A = 3 mod 8,
(38)

BC - YA(A-1) = 3(1+A) mod 8 if A = 5 mod 8,

2BC - YLA(A-1) = ¥, (11(1+A)) mod 64 if A = 7 mod 8.

Note that D and A are linked by the congruence

D = Y% (A - 1) mod 64
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which is a weak form of (31). It is also convenient at this point to
record some formulae for the product of two matrices in A,B,C,D form;

if o = 949, then

(39)

A A, + A + B

" , + 4B,C,, B = B,A

2

all mod 2.

LEMMA 10. Each ¢ in G satisfies B + CA 0 mod 8 and the congruence con-

ditions stated in the following table

A mod 8 1 t 3
A mod 16 | Ya(ed - 1) - 2C Ye (380 + 19)

B and C even odd

PROOF. As in the proof of the previous lemma we consider also oo, where
9 satisfies (36). Applying (38) to oo, and confining ourselves to the

case A = 3 mod 8 we obtain
YAoA(A + 1) - BC = 3(1 - A) mod 8 if A = 3 mod 8,
Y4A(A + 1) -~ 2BC = Y4 (19¢1 - A)) mod 32 if A = 5 mod 8.

Combining one of these equations with the corresponding equation (38),

and using the character ¢ to unite the two cases, we obtain first

Ve (-50A + 43) = Y (388 + 19) mod 16 if A = £ 3 mod 8

A
and then on substituting this back,
BC = Y4A(A + 8) + 3(A - @) = T%(SAG + 7)(A + 218) + 56 mod 8.

But the first term on the right vanishes mod 8 because each factor is di-
visible by 8 and one of them by 16; so this congruence reduces to

BC = 56 mod 8, which is equivalent t0 B and C odd, B + CA = 0 mod 8.
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This proves the last column of the table.

Any o in G with 4 = 1 mod 8 can be written as
¢ = 040, with A1 = A2 = 3 mod 8.

It follows immediately from the multiplication formulae (39) that B and

C are even and B + C 0 mod 83 moreover mod 16 we have

- o+ 2ey + cp?

A-Yi(a - 1)+ 2C 9

A, + A

- - 1
4C,C, Yi (8,8,

1 2

- 2 2y _ _ _ -
= 2(c] + C3) V.(A1 3)(8, - 3) + 12 = 0.

This proves the statements in the table for A = 1 mod 8, and those for
A = -1 mod 8 follow on multiplication by 0ot This completes the proof

of the lemma.

We now complete the normalization of 6. Fix an element o3 with by =3

mod 8; then by lemma 10 we have

Ay = Yalhy + 5)(3 8, + 13) + 3 - 2c§ mod 16,

3

for the last term is just -2 mod 16 since C3 is odd. We can therefore
find a 2-adic unit A such that multiplying the last term on thg right
by A2 replaces the congruence by an equality. Now for every ¢ in G mul-
tiply ¢ by A and divide b by A; this is an allowed transformation and
does not affect the representation of 9 given by (36). So henceforth

we can assume that there is a o3 with

-1 - 2 =
Ay = /.(A3 +5)(38, + 13) + 3 - 2C3, Ay = 3 mod 8. (40)
COROLLARY. With the further normalization above,
A=VY(a - 8)(38 + 76) - 2¢% mod 32 if 4 = £ 1 mod 8,
A= 'Y (s + 50)(38 +138) + 3 - 2C% mod 32 if A = + 3 mod 8.
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PROOF. Suppose first that A = -1 mod 8; then the last congruence (38)
together with the facts already proved that C is even and B = C mod 8

give
2¢2 - Y4A(a - 1) = Y (11(1 + A)) mod 32,

and elementary manipulation transforms this into the statement in the

Corollary. Next, if A = 1 mod 8 apply the result just obtained to 90
where o, satisfies (36). Finally suppose that A = t 3 mod 8 and write
oq = cagl where o, satisfies (40)3; thus 6 = 8, and o has the property

stated in the Corollary since A1 =% 1 mod 8. Alsc (39) implies

+ A3 - 4C,C,A, , C=C, + 4,C, mod 32,

1 17371 1 173

Hence, working mod 32,

A - Yi(b + 56)(3b + 136) - 3 + 2C°

2 2,2 _ . 1
+ 20587 - 3 /Q(Alas + 56,)(38,8, + 136,)

+ A3 + 2C1 3

1

= Yy(A, - 8,0(3A, + 76,) + oA, + 5)(38, + 13) - Ve (8,8, + 56,)
1 1 1 1 3 3 173 1

(3A1A + 1361)

3

by (40) and the Corollary for gy This last expression vanishes mod 32,

and this completes the proof of the Corollary.

LEMMA 11. G is contained in Go'

wey

PROOF. Suppose first that &4 = 3 mod 8; sﬁbstituting the value for A mod
32 given by the last Corollary into the second congruence (38) we obtain

2BC + C2(A - 1) = A + 9 mod 32.

Since C is odd, for given C and A this congruence determines B mod 163

and as one can easily check that it is satisfied by
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B = 93(A2 + 7) - CA mod 16, this is the unique solution. Thus the con-
dition (33) certainly holds for elements of G with A = 3 mod 8. It al-
so holds when A = 5 mod 8, because in this case we can apply the result
just proved to oo, where 9 satisfies (36). Now suppose that

A = *1 mod 8, so that we can write ¢ = 0,0, where 8, = 3 mod 8. Using
(38) and the result already established, we have mod 16,

- 2
B+ CA = B1A3 + B3 + A1A3C1 + A1A3C3
= ’/2A3(A§+7) + l/z(zx§+7) +A§-1EI/2(A2- 1)

and this completes the proof of (33).

To prove (34) we suppose first that & 7 mod 8 and substitute the value

of B mod 16 given by (33) into the last congruence (38). This gives
YoA(A - 1) + 2¢28 - (A% - 1) 4 Y4 (11(1 + A)) = 0 mod &b

which for given values of C and A determines A mod 64; as one can easily

check that it is satisfied by
A=Y+ 1)(3 - 7) - 2¢2 mod 64

this must be the unique solution. This proves (34) for A = 7 pmod 8,

and it follows at once for 4 = 1 mod 8 by applying the result just ob-

tained to aJo. Now suppose that &4 = ¢t 3 mod 8 and write ¢ 20404 where
o3 satisfies (40) and therefore A1 =t 1 mod 8. Using (39) and substi-

tuting for 81 from (33) we have C = C1 + AIC3 mod 32 and

2
+ A3 - uAlcic + 2C3(A1 1) mod 64,

1 3

Using (34) for Ai’ a case in which it is already proved, and (40) for A3

we obtain, all mod 64,

A~ Y (& + 50)(36 + 138) - 3 + 2C2

+ A, + 2c§ + 2822 4 2c3<A§ - 1) - Y4(b + 58)(36 + 136) - 3

3 173



51
SwD-51

-1 - 1
ERA (A1 61) (3A1 + 761) + Y (A3 + 5) (3A3 + 13)

-1 ' 2 _
/o (Bydy + 56,0 (38,8, + 130,) + 2C4(Cy + 1) (8] - 1)

and this last expression vanishes mod 64. This completes the proof of

the lemma.

To prove the Theorem it only remains to show that 6 cannot be strictly
smaller than Go' We show first that for any fixed A all eight pairs of
congruence classes for B and C mod 16 allowed by (33) and the parity
condition just before it, actually occur. It is enough to prove this

in the special case A = 1, since the ¢ in 6 with A equal to some fixed

A1 are obtained from one of them by multiplication by the elements of G
. _ . . . -1 . .

with A = 1. Choose 01 in G with A1 = 33 then 02 =04 0100 will certain

ly have A2 = 3 and B2 = -31 mod 4. Thus ¢ = 01051 will have A = 1 and

B = B2 - B1 = 2 mod 4; and 1,0,52,...,07 will lie one in each of the

eight allowed classes.

Now for n = 0,1,2,... let Hn denote the set of o with A = 1 and

a=zdz1mod 2M13, 8L MY
clearly each Hn is a group and Go > Ho > H1 2 ... . The result we have

just proved states that G meets every coset of Ho in Go; so to prove

G = Go it is enough to prove that 6 2 Hy. Since G is closed and the Hn
form a base for the neighbourhoods of the identity in Ho, it is enough
to prove for n = 0,1,2,... that G meets each of the eight cosets of
Hn+1 in Hn. We begin with the case n = 0. For g, and o, in G and

1 -

_ - 1 . . _ .
o = 010201 02 , which we use in the form 0102 = 00201, it follows from

(39) that
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A = 4(B,C, - B,C, - B(C, + A,C;)) mod 2/,
Bo,A, = B,(A) - 1) = By(A, - 1) mod 27, (31)
CEC A - 1) - C(A, - 1) mod 2,
Moreover A = 1. Suppose first that A1 = -1, B1 = C1 = 0 mod 16 and that
A2 = 9 so that 32 + 9C2 Z 8 mod 16. If 82 = 0 mod 16 then we obtain
7 5 - 5

A=Z0med 2, B=ZO0mod 2°, C = 16 mod 27

8 mod 16 we obtain

whereas if B2

A=0Omod2’, Bz 16 mod 2°, C = 0 mod 2

Again take A1 = 1, A2 = § and B1 = B2 = 2, C1 = -2, 02 6 all mod 16;

then we obtain

A=64mod2’, Bz 16 mod 2°, C = 16 mod 2°.

The three elements 0 thus obtained generate Ho/Hi; so G meets each co-

set of H1 in Ho.

We now proceed by induction. There is a natural isomorphism

H /Hn - Hn/H obtained by doubling A,B and C; and for any‘c in Ho_,

n-1 n+1

the map that, sends ¢ to 02 induces this isomorphism. So if G meets
every coset of H in H , it meets every coset of H in H_ . This
n n-1 n+l n

completes the proof of the Theorem.

As was explained in §5, for certain purposes it is useful to know the
commutator subgroups of G and of some of its subgroups. It is easy to
check from (41) and the argument following it that [G,G] = G 7 SL2022).

Indeed this is predicted by the general theory, for the composite map

Gal(Kgb/Q) ~ 6/[6,6] ~Z),
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11
2

which is an isomorphism by class field theory; and since the left hand

of which the components are induced respectively by Py and det, is x
map is onto, the right hand one must be an isomorphism.

Now for v = 3,5 or 7 denote by le the subgroup of G consisting of those
o for which A = 1 or v mod 8, and denote by G1 the subgroup of G for
which A £ 1 mod 8. The argument that proved G 2 Ho only used the com-
mutators of elements of 617; so it certainly proves [817,617] 2 Ho’ and
it now follows easily from (41) that [817,G17] consists of those ele-

ments of [G,B8] for which B and C are divisible by 4.

It is convenient next to consider the commutator subgroup of Gl' It is

easily verified that if oy and o, are in G1 then the congruences (41)
8

hold mod 2°. Now A1 = A2 = 1, 81 = 16, C1 = 0, B2 = -2, 02 = 2 gives

7 8 8 - - s
2°}11a, 2°|B, 2°|C; and Ay = 1, A, = 9, B, =16, B, =8, C; =C, =0

. 8 7 8

gives 27 |A, 2"||B, 2°|C; and A, =9,4,=1,B =0, B, =-2,C, =38,
C2 = 2 gives A = 192, B = 144, C = 16 all mod 28. It follows by an ar-

gument similar to the one used to prove G D Ho that [61’G1] contains
all o with A = 1, 16]C, 27](B-C) and 27|(A-4C). Conversely one shows
that these conditions are implied by (41), so that they specify [61,61]
precisely. In particular [Gl’Gll contains all ¢ with A = 1 and A,B,C

all divisible by 27; so to find [ G 13] and [ G 615] we need only

1326 15°
find which cosets are allowed by (41). On the one hand we find that

A1 = A2 = 5 mod 8 gives all the residue classes with 8|C, B = 5C mod 64,

and A1 =1, A2 = 5 mod 8 gives nothing more; so these congruences speci-

On the other hand A, = A 3 mod 8 gives all the residue

fy [6 3 =

15’615]' 1 -
classes with 4]C, B = 3C mod 32, and 4, =1, 4, = 3 mod 8 gives nothing
more; so these congruences specify [G13,G13]. We sum up these results

as
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THEOREM 7: The commutator subgroup of G is G N SLZGZZ). The commutator

subgroups of Gl’ 613, GlS’ and 617 consist of the o satisfying addition-

al conditions as follows.

e, :2%lc, 27{B-0), 27|ca-s0).
6,5 ¢ 4lc,  2°](B-30).

6, : 2°lc, 2°|(B-s0).

G,, : 4|B .

17
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The UP operator of Atkin on modular functions

of level 2 with growth conditions
B. Dwork

Let p be an odd prime, p £ 3 , and let g be the polynomial

defined by

(p-1)/2 .
@ (DEV/2 ) < T3 (/302 a3
J=0

so that g(A) is the standard formula for the Hasse invarient of the elliptic

curve

(2) Y2 = X(X-1)(X-2) .

We shall follow in general the notation of our article [3]. In terms of
g-expansions, Atkin [1] bas defined the transformation

m m
UP. Zagqg —>Z% ampq

but without the imposition of growth conditions one may construct eigenvectors
with quite arbitrary eigenvelues; indeed formally, for any field element 1y ,

[ s

6,= 3 75

s=0
is trivially eigenvector for eigenvalue y . Thus to obtain an interesting
theory we :'meose the restriction that Up be applied to functions satis-
fying certain growth conditions. To explain these conditions for each pair
of positive real numbers ‘nl,‘n2 s let L(bl’bz) be the space of all functions

holomorphic and bounded on the set Mb b consisting of all A such that
172

b, > ord g(n)

(3) 4
b, > Max{ord A , ord(1-A), ord A7} .
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Let ¢ be the Tate-Deligne lifting of Frobenius. We give two descriptions.
Let FP(X,Y) be the modular equation satisfied by (A (7), A(pT)) . For

ord g(A) =0, o(A) is uniquely characterized by the properties

F (0 0(A) =0
(1)
lo(x) - 3P| < 1.
The function A —> @{A) 1is extended (by p-adic =nalytic continuation) to
an element of L(bl’bz) for b, = p/(p+l) and all b, >0 . A purely
analytic description of ¢ may also be given (independent of the modular
equation). Let F denote the hypergecmetric functions F(%, %, 1, n) , let FP
denote the compesition of F with ¢ . Let f be the function (-1) (p-1)/2 F/F® .
If ¢ is chosen so that q)-)\P is holomorphic and bounded by pe on the Hasse
éwmain  {:[[g(A)] = 1, for some rational e > 1/(p-1),then f has an analytic
continuation to that set. The Deligne-Tate mapping is characterized by the
further condition that f have anslytic continuation in an annulus of et
least one of the (p-)/2 disjoint disks whose images in the residue class
field are zeros of the Hasse invariant, g . For ¢ € L(bl/p, be/p) ,

b, < p/(p+l) , we define VY ¢ , an element of L(bl,bz), by the formula

(5) W)\ =z e(x)/o'(x) ,

the sum being over the p solutions of the equation
(6) olx) =n .

We now fix b, = p/(p+1) and note that Up coincides on L(bl,bz) with
Vo (¢'/p) , the composition of ¥ with the operation of multiplication by
p-l @' . In the following we interpret UP to mean just this mapping, it not

being necessary to specify b The eigenvectors are independent of the

2"

choice of b, since Up maps L(bl,bz) into L(bl, pb2) . We know that
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Up is completely continuous, that the Fredholm determinant, det(I-t Up) is

entire and that the constant function 1 is eigenvector with eigenvalue 1 .

Discarding this root as trivial, we assert:

Lemme 1. The number of non-trivial unit roots of the Fredholm determinant

of Up is at most (p-1)/2 .

Proof. We examine the infinite matrix representing Up relative to an
orthonormsl basis. For 1 <1i< (p—l)/2 let a be an unramified representa-

tive of each of the distinct residue classes satisfying Ig(x)! <1 . For

n >0 let
1 n#0, -1

(n t, = P-l/(P+l) if n=0 mod p+i
o2/ (p41) I

For n>0, 1<i<(p-1)/2 1let

-n
ei,n =0 - a':i.)
nb
- _ 1
(8) ei,n =P €i,n
e(i) =e, t
n i,n n

For reasons indicated above we may disregard basis elements of L(bl’bz)
corresponding to the singularities at 0, 1, » . Since {Ei n} is an ortho-
>

normal basis, a matrix suitable for our computations may be found by writing

(p-1)/2 = _ _

U e, = B . e, .
2 p 1i,n Jil Sil (i,n),(a,s) J,8

Since p U may be viewed as a map of norm not greater than 1 from

nb, /P

L{b./p, b /p) into L{b,,b,) and since {e P } is an orthonormal basis
1 2 1°%2 i,n

_ nbl(l-p-l) nbl/p
of L(bl/p, b2/p), we conclude, using & =P & 0P , that
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- -1 -1
(10) ord By 1y (5,8) 2 b, (1-p7) -1 =n %ﬁ -1.

However UP is defined over Q‘p and hence relative to the basis [ei n} s
>
the matrix coefficients are unramified over Q‘p and hence have ordinals which

lie in Z . It follows that

5 =8-n
(11) ord B(i’n) (3,5) = prL mod % .

We may use the basis {er(ll)} for our computation. An easy argument gives

(1) (P"l)/2 *®

(12) . Up en = jil . l (l’n) (J ’s>
where
(13) B(i’n),(j,s) = E(i’n)’(j,s) tn/ts :

An elementary computation shows that this matrix has integral coefficients
and that its image in the residue class field has rank of at most (p-l)/2 .

Indeed for n > 3 , by equations (10), (13), (7) we have

-1
4 >38L_ 71 +ordt ~ordt
or B(i,n),(j,s)—3p+l 1 ° n ° s
p=l_ 5.2 _2(p-3)
2387 -1-55 Psr >0

For n =2 , we see that n f-= 0, -1 mod p+l1 and hence ord tn =0 . Thus

d B , 221 150,
or (132)’(3 ,S) - P+l

For n =1 , we have by equations {13), (11), (10),

d B .y =ord B .y -ordt
or (i’l)’(J’S) or (i,l),(J,S) ord g

(15) ord B mod %

(1,2),(3,8) ~p1

= 2
d B . > - —
or (i’l)’(J ’s) = pt1 -
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It follows that ord E(i is non-negative unless s =0, -1 mod p+l .

2),(3,8)
It follows that the matrix B has integral coefficients and units can occur
only in the (p-1)/2 rows indexed by (i,1) , 1< i < (p~1)/2 . This com~
pletes the proof of the lemma.

It may be of interest to estimate the Newton polygon of the Fredholm
determinant of Up by this method.

We now compute the nmumber of unit eigenvelues by means of the trace

formulae of Reich and Monsky (cf.[3, equation 16]). Thus

1
(16) Tr Up =3 Y]

3
the sum being over all A # 0, 1, », |g(A)| =1, such that o(A) = A .

Since o'/p = ('vr/w(p)/(f’(k))2 , where w is the wronskian 1/A{1-A)} and

since we are summing over fixed points of ¢ , we see that

@an Tr U_ =3 (p>-£)~F .

P

More generally for s >1 ,

-1, -1
(18) o U‘; -5 @ - f2(141:p ot g 1)) ,

the sum being over all fixed points of <ps and excluding points lying near
0, 1, » and excluding representatives of supersingular moduli.

Thus modulo p , we have, since f =gmod p ,

-1 2
(19) m o = 2 1/ (6D 80P )

[}

the sum being over all A € F g such that
p

Aa-1)g(\) £0 .

We now use en observation of N. Katz; for A e F 4 , g(n) ﬁ 0 , we see that
s-1 * b
gW)g(WP)...g(AP ) 1lies in ]Fp and hence the reciprocal of its square

coincides with its (p-3) power. Thus
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s-1 P-3

(20) Tr U; =z (g(We(WP)...g® ) |,

the sum now being over all elements of I g other than 0, 1 since the
p

supersingular moduli now contribute nothing to the sum. Since g(1) =1, we
have

s-1 P-3
(21) Tr 00 =1 -3 (@Ne(P)...e0F )

*
the sum being over all A ¢ TF
P

s ¢ We now use the symbol ¥ to denote the
endamorphism

m m
(22) LaN —>=I amph

of elements of say Fp[x] . We know [2, §3]

(23) g —> v(ePe)

is an endomorphism of FP[M with trace given by the formula
(24) (p-1)7r voP3 = £ gW)P3

*
the sum being over ]FP . More generally

s-1 P-3

(25) (P DTr(vP3) -5 (60)...a0P ),
the sum now being over ]F*s . Thus

P
(26) Tr U‘; =1 + Tr(uu.gp'3)s .

We now compute the Fredholm determinant of Up but since we need the expo-
nential of terms with denominators, we obtain results only modulo p and tp, i.e.

using det(I~t Up) to denote the reduction med p of the Fredholm determinant of Up N

(1-t)det(I-t yogP 3) mod(p,tP) .

(27 det(I-t Up)

By Lemma 1, the left side is a polynomial of degree not greater than 1 + %’1 .



Dw-8 64

It is well known [2, §3] that in computing the characteristic polynomial of
Wogp -3 we mey restrict the operator to polynomials of degree not greater than
(p-l)"l deg & =32 (p-3)/2 . Thus Yoek -3 operates on a space of dimension
(p-1)/2 and hence both sides of equation (27) have degree bounded by (p+1)/2

and so

(28) (det(1~% UP))/(l-t) = det(I-t wogp"3) mod p .

Theorem. The degree of each side of equation (28) is (p-1)/2 .

Proof. It is enough to show that \yogp -3 is invertible as endomorphism of
the space of polynomisls of degree not greater than (p-3) /2 in JFp[}\.] .
Thus let & be an element ]FPD\] of degree not greater than (p-3)/2 such

that

(29) w3 =0,

We assert that £ =0 . If ¢ were of degree (p-3)/2 then the degree of
£gP™3  would bve P; + (p-3) P'2'—1 = 1’—53 and hence the left hand side of

equation (29) would have degree (p-3)/2 contrary to hypothesis. Thus we

have shown that
(30) deg & < (p-5)/2 .
We may extend Y from ]Fp[x] to JFP(x) and conclude from (29)
since g(A\)F = g(aF) mod p that
(31) we/ed) =0 .

Let a be a zero of g , since the zeros of g are simple, we see that the

principal part of §/g3 at a 1is of the form

(12 (13

(32) !
32 = s —E =2
aThe T ? ()

-3

and since the degree of ¢ is strictly bounded by that of g3 , we conclude

that §/g3 is indeed equal to the sum of (p-1)/2 such partial fractions.
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By an elementary computation for p > c¢ , we have if a #0

D
(33) g SR
(r-a)¢ (-8)¢ (r-aP)
and thus
(34) poy =2, 2 5

rePloa (<2)®  (-a)3

From this computation we deduce the partial fraction decomposition of \y(g/g3)

and thus by (31),

2 -
(35) B0y - &, +0, =0 .

We now compute al’ a2, Ot3 explicitly. Let t = A-a , put

(36) g\ = tg'(2) (1 +tx + t27) + (£
where
l 1"
= 3E9 ()
(37 .
¥ = 2ED) ()
Putting
(38) £0) = £rtg ¢ 2858+ (8,

where ¢, t', t" refer to the value at a , we obtain (as relation between triples)

(39) ('(a))3(@ 0, 2,) = (£,6" = 3Xe, £" 5 - 3Xe' + £(6%° - 3Y)) .
377271 2
Equation (35) now assume the form,
(40) 0=t -aler-3ke) +a2(3 - 3xe* + (6 - 31)) .
2

We now compute X, Y by means of the 2nd order linear differential operator
2
(41) £ =D +pD +g¢

which ennihilates g . (Here ¢ = -1/Ma(1-A), p = (1-22)/A(1-A)). We obtain



Dw-10 66

(k2)

both to be evaluated at a , the zero of g under consideration. We may now

deduce from (4O) that if H denotes the linear differential operator

2 '
(43) H, =% 0% -a(@ -T2+ @ - LR+ (0° + LT NG

then

(,6)(a) =0
for each zero, a , of g . This means that

(44) Hzg =0mod g .

For o and p as indicated , H‘8 assumes the form AH where

(45) H = I (A-1)2D" + L(r-1) (lA=1)D + (9n=5) .

Using egquation (30),

deg H(t) < deg £+1 < (p-3)/2

and hence equation (44) implies (since A does not divide g)
(46) H(¢) =o0.
The indicial polynomial at infinity of H shows that
deg ¢ = - 3/2 mod p
but degree ¢t < p , hence
degree ¢t = (p-3)/2 ,

contradicting equation (30). This completes the proof of the theorem.



67 Dw-11

Note. 1. The relations between £ and H, as given by equation (43) may

£
be restated. Let Wl/x be the wronskien of £ , then

2
A -1
Hy = G WpoleW, ™ .

Thus aside from the factor A2 s H is simply a twisted form of £ .

2. The computation of the number of unit roots of UP in the case

of level 1 is sometimes referred to as "the" Atkin's conjecture.

We apologize to the reader for forgetting to correct an error in
exposition pointed out some time ago by J.-P. Serre. Equations (9) and (10)
are correct as stated but {Ei’n} is not an ortho~normal basis of L(bl, b2)
which is of type b(I) in the notation of Serre, IHES No. 12, §2. However
Up is a completely continuous endomorphism and its Fredholm determinant may

be calculated by means of the matrix (B ) which indeed may be

(i,n), (3,s)
identified with the matrix of the endomorphism, U, of the corresponding c(I)

space chosen such that Up is the dual of U .
Alternately we may avoid dual spaces, replace the striet inequalities
of equation (3) by non-strict inequalities so that L(bl, b2) becomes a c{I)

type space. But with this choice we must take b, strictly less than p/(p+l)

1

and make corresponding changes in the definition of +t (equation (7)) for

n =0, -1 and let b, be sufficiently close to p/(p+l) .

1
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Introduction

This expose represents an gttempt to understand some of the recent work

of Atkin, Swinnerton-Dyer, and Serre on the congruence propertles of the

q-expansion coefficients of modular forms from the point of view of the theory
of moduli of elliptic curves, as developed abstractly by Igusa and recently
reconsidered by Deligne. In this optic, a modular form of weight k and level

n becomes a section of a certain line bundle 2®k on the modular variety Mn
which "classifies" elliptic curves with level n structure (the level n structure
is introduced for purely technical reasons). The modular variety Mn is a
smooth curve over Z[1/n], whose "physical appearance” is the same whether we
view it over € (where it becomes ¢(n) copies of the quotient of the upper half
plane by the principal congruence subgroup I{n) of SL(2,Z)) or over the algebraic
closure of % /pZ , (by "reduction modulo p") for primes p not dividing n.

This very fact rules out the possibility of obtaining p-adic properties of
modular forms simply by studying the geometry of M, ® %/p% and its line bundles
gfbk; we can only cbtein the reductions modulo p of identical relstions which
hold over € .

The key is instead to isolate the finite set of poimus of M ® z/vz
corresponding to supersingular elliptic curves in characteristic p, those whose
Hasse invariant vanishes. One then considers various "rigid-analytic" open
subsets of Mn 8’%5 defined by removing p-sdic discs of various radii around
the supersingular points in characteristic p. This makes sense because the
Heese invariant is the reduction modulo p of a true modular form (namely Ep-l)
over lb, so we can define a rigid analytic open subset of Mn ®Zp by taking
only those p-adic elliptic curves on which Ep-l has p-adic absolute value
greater than some ¢ > 0. We may then define various sorts of truly p-adic
modular forme as functions of elliptic curves on which 'Ep-ll > ¢, or equivalent-

ly as sectlions of the line bundles gfak restricted to the above-constructed
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rigid analytic open sets of M ®zp . [The role of the choice of € is %o
specify the rate of growth of the coefflclents of the Laurent series
development arcund the "missing" supersingular points].

The most Important tool in the study of these p-adic modular forms is
the endomorphism they undergo by a "canonical 1lifting of the Frobenius
endomorphism™ from characteristic p. This endomorphism comes gbout as follows.
Any elliptic curve on which !Ep-l! > € for sultable € carries a "canonical
subgroup"” of order p, whose reduction modulo p is the Kernel of Frobenius.
The "canonical lifting" above is the endomorphism obtained by dividing the
universal elliptic curve by }_’(ﬁ canonical subgroup (over the rigid open set
of M, ®Zp vwhere it exists).

This endomorphism is related closely to Atkin's work. His operator U
is simply (% times) the trace of the canonical 1ifting of Frobenilus, snd
certain of his results on the g-expansion of the function J may be interpreted
as statements about the spectral theory of the operator U.

The relation to the work of Swinnerton-Dyer and Serre is more subtle,
and depends on the fact that the data of the action of the "canonical lifting
of Frobenius" on g-l over the rigid open set lEp_ﬂ > 1 is equivalent to the

knowledge of the representation of the fundamental group of the open set of

Mn ® Z/p% where the Hasse invariant is invertible on the p-adic Tate module

Tp (which. for a non-supersingular curve in characteristic p is a free
Zp—module of rank one). Thanks to Igusa, we know that this representetlon is
ps non-trivial as possible, sand this fact, Interpreted in terms of the action
of the cenonical Frobenius on the 248’1; , leads to certain of the congruences
of Swinnerton-Dyer and Serre.

In the first chapter, we review without proof certaln aspects of the
moduli of elliptic curves, and deduce various forms of the "q-expansion
principle.” This chapter owes much (probebly its very existence) to discussions

with Deligne. Tt is not"p-edic”, and may be reed more or less independently
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of the rest of the paper.

The gecond chapter develops at length various "p-sdic" notions of modular
form, in tke spirit described above. A large part of it (r {:l) was included
with an eye to Dwork-style applications to Atkin's work, and may be omitted by
the resder interested only in Swinnerton-Dyer and Serre style congruences.

The ides of working st such "p-sdic moduler forms" is due entirely to Serre.
who in his 1972 College de France course stressed their importance.

The third chapter develops the theory of the “"canonical subgroup.”

This theory is due entirely to Lubin, who hﬁs unfortunately not published

it except for a tiny hint [33]. The second half of the chapter interprets
certain congruences of Atkin in terms of p-adic Banach spaces, the spectrum
of the operstor U, etc. The bossibility of this interpretation is due to
Dwork, through his realizetion that not only is pU integral, but U itself is
Yessentinlly" integral (cf[1h]).

The fourth chapter explains the relation between the canonical Frobenius
and certain congruences of Swinnerton-Dyer and Serre. It begins by recalling
a "coherent sheaf" description of p-adic representations of the fundamental
group of certain schemes on which p is nilpotent. This description is certainly
well-known, and basically due to Hasse and Witt, but does not seem to be re-
corded elsewhere in the form we require. Using it, we show that the representa-
tion corresponding to w with 1ts canonicel Frobenuis is that afforded by
the (rank-one) p-adic Tate module Tp of non-supersingular elliptic curves.

We then prove the extreme non-triviality of this representation in "egnonical
subgroup” style. This non-triviality is due to Igusa, whose proof is finally
not so different from the one given. We then apply this result of non-

trivislity to deduce certain of the congruences of Swinnerton-Dyer and Serre.

In the first appendix, which is a sort of "chapter zero", we explain the

relation between the classical approach to elliptic curves via their period
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lattices and the "modern” one, the relation of DeRham cohomology of elliptic
curves to modular forms, and the relation between the Gauss-Manin connectioq,
Ramanujan's function P(q), and Serre's d-operator on modular forms. The results
are due to Welerstrass and Deligne. It is concluded by a "table” of formulas.

The second appendix explains the relation between the canonical Frobeniws.
on p-adic modular forms and the Frobenuls endomorphism of the DeRham cohomology
of elliptic curves. It mey also be read as an sppendix to [25].

The third eppendix relates Hecke polynomimls mod p to L-series, coherent
cohomology and the Fredholm determinant of U.

As should by now be obvious, this expose owes 1ts very existence to Lubin,
Serre, Deligne, Atkin, and Dwork. It 1s a pleasure to acknowledge my debt

to them, and to thank M. Rapoport for meny helpful discussions.
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Chapter 1: Moduli schemes and the g-expansion principle

In this chapter, we will recall some of the definitions and main results
of the theory of moduli of elliptic curves, and deduce from them various forms

of the "g-expansion principle" for modular forms.

1.0. By an elliptic curve over a scheme S , we mean a proper smooth morphism
p: E~> S , wvhose geometric fibres are connected curves of genus one, together

with & section e: S —>E .,

S

We denote by [ /s the invertible sheaf p*(‘%‘ /S) on S, whieh is canonically

aual (Serre duality) to the invertible sheaf Kn(0) on S .

1.1 Modular forms of level 1

A modular form of weight k € Z and level one is a rule f which
assigns to any elliptic curve E over any scheme § a section f(E/S) of

(QE /Sjg’k over S such that the following two conditions are satisfied.

1. f(E/S) depends only on the S-isomorphism class of the elliptic

curve E/S .

2. The formation of f(E/S) commutes with arbitrary change of base

g: S' —> 5 (meaning that £(Eg,/S') = g £(E/S)).

We denote by M(Z;1,k) the Z-module of such forms.

Equivalently, a modular form of weight k and level 1 is a rule f which
assigns to every pair (E/R,w) consisting of an elliptic curve over (the spec-
trum of) a ring R together with a basis « of /R (i.e., a nowhere vanish~
ing section of n%: /g On E ), an element f£(E/R,w) € R , such that the follow-

ing three conditions are satisfied.
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1. £(E/R,s) depends only on the R~isomorphism class of the pair
(E/R,w) .~

2. f 1is homogeneous of degree -k in the "second varisble"; for
any A € B° {the multiplicative group of R ),

£(E,\w) = x'kf(E,w) .

3. The formation of f(E/R,w) commtes with arbitrary extension

of scalars g: R —> R!' (meaning f(ER,/R',mR,) = g(£(E/R,w))).
(The correspondence between the two notions is given by the formula
£(E/Spec(R)) = f(E/R,m)'w®k

valid whenever S = Spec(R) and /R is a free R-module, with basis «.)
If, in the preceding definitions we consider only schemes S (or
rings R) lying over a fixed ground-ring Ro , and only changes of base by
Ro-morphisms, we cobtain the notion of a modular form of weight k and level one
defined over R, the R -module of which is noted M(Ro,l,k).
A modular form f of weight k and level one defined over Ro can be

evaluated on the pair (Tate(q), w

) consisting of the Tate curve and its
can’g

canonical differential, viewed as elliptic curve with differential over

%({(q) )&Z R (and not just over Ro((q))).

The g-expansion of a modular form f is by definition the finite-tailed
L
Laurent series

£((Tate(q), mcan)Ro) € Z((a))8 R -

The modular form f is called holomorphic at o« if its q-expansion lies in the
subring Z[ [q]]@gz Ro 3 the module of all such is noted S(Ro;l,k) . Notice
that the q-expension lies in %((q) )®z R C Ro((q)) » i.e., it is finite
Ro-linear combination of elements of 2((q)) . This implies, for example,
that if Ro is the field of fractions of a discrete valuation ring, then the

g-expansion coefficients of any modular form of weight k and level one over Ro
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have bounded denominators.

1.2. Modular forms of level n

For each integer n >1 , we denote by B the kernel of "multiplication
by n" on E/S ; it is a finite flat commtative group-scheme of rank n° over
S , which is étale over S if and only if the integer n is invertible in
P(S,BS) i.e., if and only if 8 dis a scheme over z[:'—l] . A level n struc-

ture on E/S is an isomorphism

. ~ 2
o E-—=> (Z/nZ)s .

It cennot exist unless n is invertible on S , and in that case there always
exists one onsome finite dtale covering S' of S . If a level n structure
on EfS exists, and if S is connected,the set of all such is principal
homogeneous under GL(2, #%/nZ) = Aut( (Z/nz)g) .

A modular form of weight k and level n is rule which assigns to each
pair (E/S, Oln) consisting of an elliptic curve together with a level n
structure a section f(E/S, Otn) of (-(QE /S)®k over S , in a way which depends
only on the isomorphism class of (E/S, an) , and which commutes with arbitrary
base-change g: S* —> S . Equivalently, it is a rule which assigns to all
triples (E/R,m,an) , consisting of an elliptic curve over a ring R together
with a base w of Yp/R and a level n structure a 5, e element
f(E/R,m,Otn) € R which depends only on the isomorphism class of (E/R,w,otn) ,
which cammtes with arbitrary change of base, and which is homogeneous of
degree ~k in the "second varisble", meaning that for any A € R , we have
£{(E/R, Aw, an) = A" f(E/R,m,an) . Exactly as for level one, we define the
notion of a modulsr form of weight k and level n defined over a ring Ro .
The R -module of all such is noted M(Ro,n,k) .

A modular form of weight k and level n defined over a ring Ro which
contains 1/n and a primitive n'th root of unity ;n may be evaluated on

the triples (Tate(q™), w

oan’ an) consisting of the Tate curve Tate(q")

By
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with its canonical differential, viewed as defined over Z((q)) &, R, , together
with any of its level n structures (g_.ll__ points of nE are rational over
Z((q)) Qz R 3 in fact, being the canonical images of the points giqj s
0<i, J<n-1 from "Gm" , they all have coordinates in Z[{q]] 8& Z[%, ;n] ,
and the non-constant g-coefficients of their (x,y) coordinates even lie in
z[gn] (cf.[38]), as one sees using the explicit formulas of Jacobi-Tate.

The g~-expansions of the modular form f are the finitely many

finite~-tailed Laurent series
n
1.2.1 £({Tate(q ), Waan? an)Ro) e Z((q)) & R,

obtained by varying Otn over all the level n structures.

(N=_I§ Though it makes sense to speak of a modular form of weight k and level n
defined over any ring Ro , we can speek of its g-expansions over Ro only
when Ro contains 1/n and a primitive n'th root l;n of 1.)

A modular form defined over any ring Ro is said to be holomorphic
at o if its inverse image on Ro[l/n, Qn] hes all its g-expansions in
Z([q]] &, Ro[l/n, t,) - <If the ring R itself contains i/n and ¢,
this is equivalent to asking that all the g-expansions lie in Z[[ql] @z Ro . >
The module of such is denoted S(Ro;n,k) .

A modular form (resp: holo. at ») of weight k and level n defined over
a ring R, which does not depend on the "last variable" @ is a modulsr
a modular form (resp: holo. at «) of weight k and level one defined over

Ro[l/n] .

1.3. Moduler forms on T4(p)

Analogously, for an integer n >1 and a prime number p Y'n , amodular
form of weight k and level n on I‘o(p) is a rule f which assigns to each triple
(g/s, e, H) consisting of an elliptic curve, a level n structure, and a finite
flat subgroup-scheme HC E of rank p , a section f(E/S, o, H) of (QE /sjgk

over S , which depends only on the isomorphism class of (E/S, @, H) , and
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whose formation commutes with arbitrary change of base S* —> 8 . Equivalently,
it is a rule which assigns to each quadruple (E/R, w, o, H) an element
£(E/R, w, @, H) € R , vhich depends only on the iscmorphism class of the quad-
ruple, whose formation commutes with arbitrary chenge of base, and which is
homogeneous of degree -k in the second variable. As before, we define the
notion of a modular form of weight k and level n on r‘o(p) being defined over
a ring Ro .

A modular form of weight k and level n on I‘o(p) , defined over a ring
Ro which contains l/n and l;n may be evaluated on each of the quadruples

(Tate(q™) s W We will call the values of f on these quad-

can? ana "JP)RO .
ruples the g-expansions of f at the unramified cusps, and say that f is
holomorphic at the unramified cusps if its g-expansions there all lie in
Zl[q]] ®Z Ro . We can also evaluate f on each of guadruples

(Tate(d™), «

can’ n? {¢"}) , where (q")} denotes the flat rank~p subgroup

scheme generated by (the image of) q° . Tts values there are called its
q-expansions at the ramified cusps. We say that f is holomorphic at « if
all of its q-expansions, at the remified and unramified cusps, actually lie in
2([q]] R, -

Remark. The distinction between ramified and unramified cusps on Ty(p) is
quite a natural one - in the work of Atkin, one deals with modular functions
(weight 0) of level one on T,(p) which are holomorphic at the unramified

cusp, but not at the ramified one.

1.k, The modular schemes Mp and My

For each integer n >3 , the functor "iscmorphism classes of elliptic
curves with level n structure" is representsble, by a scheme M, which is an
affine smooth curve over Z[;L—l] , finite and flat of degree:#(GLa(Z/nZ)/ + 1)
over the affine j-line Z[%, j] , and étale over the open set of the affine

j-line where j and Jj-1728 are invertible. The normalization of the projective
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j-line IIP;[:L /n] in M is a proper and smooth curve ﬁn over Z[i/n] ,

the global sections of whose structural sheaf are Z[l/n,(_',n] . The curve

M ®z[l/n]z[l/n,§n] (resp. ﬁn ®z[l/n]z[l/n,§n]) is a disjoint union of o¢(n)
affine (resp. proper) smooth geometrically connected curves over Z[l/n, Cn] s
the partitioning into components given by the q)(n) primitive n'th roots of
one occurring as values of the e.m. pairing on the basis of nE specified by
the level n structure. The scheme l_rln-Mn over Z[1/n] is finite and &tale,
and over Z[l/n,gn] , it is a disjoint union of sections, called the cusps of
ﬁn , which in a natural way are the set of isomorphism classes of level n
structures on the Tate curve Tate(q") viewed over Z((q)) ®z Z[l/n,gn] .

The completion of ﬁn®z[l/n,§n] along sny of the cusps is isomorphic to

. . s ns 1
Z[l/n,gn][[q]] . The completion of the projective j-line IPZ[l/n,gn] along o«

is itself isomorphic to z[l/n,gn][[q]] , via the formula
j(rate(q)) = 1/q + T4l + ... , and the endomorphism of Z[l/n,gn][[q]] arising

1 is just given by q +—> qn . In fact, for

from the projection ﬁn —_—> P
each cusp, the inverse image of the universal elliptic curve with level n
structure (E/Mn, Otn) over (the spectrum of) Z[l/n,gn]((q)) (viewed as a
punctured disc around the cusp) is isomorphic to the inverse image over

Z[l/n,gn]((q)) of the Tate curve Tate(q") with the level n structure corre-

sponding to that cusp.

1.5. The invertible sheaf w on My, and modular forms holomorphic at o

There is a unique invertible sheaf w on ﬁn whose restriction to Mn
is wp /Mn ((E/Mn,an) the universal elliptic curve with level n structure),
and whose sections over the completion z[l/n,gn][[qJ] at each cusp are pre-
cisely the Z[l/n,gn][[q]] multiples of the canonical differential of the

Tate curve. The Kodaira-Spencer style isomorphism (ef. Al.3.17 and [7])

(-@E/Mn)m = "ﬁn/zu/nl
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extends to an isomorphism

(9)@92 o~ ;%n/z[l/nj(log(ﬁn-Mn)) ,

and, in fact, over Z[l/n,gn][ [q]] , the "square" of the canonical differential
n .4
Woon OB Tate(q ) corresponds to n T

It follows tLat a modular form of level n and weight k holomorphic at

)®k

o defined over any ring Ro » 1/n is just a section of (9 on

L ®Z[1 /n]Ro s Or equivalently a section of the quasi-coherent sheaf
Rk =
(Q) %[l/n]RO on Mn .

1.6. The g-expansion principle

For any Z[l/n]-module K , we define a modular form of level n and
weight k, holamorphic at « , with coefficients in K , to be an element of

O/ Kk . s
H (Mn,(g) ®Z[l /n]K)' At each cusp, such a modular form has a g-expansion in

K Gppq/n1Bl1/nst ] G Ellal] .

Theorem 1.6.1. Let n >3, K a Z[l/n]-module, and f a modular form of
level n and weight k, holomorphic at o , with coefficients in X . Suppose

' M
that on each of the @(n) connected components of M ®Z[1 /ng[l/n,;nJ s
there is at least one cusp at which the g-expansion of f vanishes identically.
Then £ =0.

Before proving it, we give the main corollary.

Corollary 1.6.2. (The g-expansion principle). Let n >3, K a Z[1/n]-module,

LCK a Z[1/n]-submodule. Let f be a modular form of weight k, level n,
holomorphic at « , with coefficients in K . Suppose that on each of the ¢{n)
connected components of Mn ®%[1/n]z[1/n’§n] ,» there is at least one cusp at
which all the g-coefficients of f liein L ®Z[l/n]z[l/n’§n] . Then f is

a modular form with coefficients in L .
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Proof of corollary. The exact sequence 0 —> L —> K —> K/L —> 0 of

Z[1/n]-modules gives an exact sequence of sheaves on ﬁn R

e P s (x/1)® (T —> 0,

1.6.2.1 0 —> L®(w) —>K®(uw

hence a cohomology exact segquence

1.6.2.2 0—> H°(ﬁn,1.®9®k) -— Ho(ﬁn,K®(Q)®k) — Ho(ﬁn,(K/L)®(Q)®k) .

Xk
) s

) by the cohomology

The theorem (1.6.1) now applies to the image of f in Ho(l\_dn,(K/L)®Q
showing that image to be zero, whence f € Ho(ﬁn,L® (9)®k
exact sequence. QED

We now turn to the proof of the theorem. By considering the ring of
dual numbers on K , D(XK) = Z[1/n]®K , [multiplication
(a,k) (2" ,k') = (aa',ak’ +a'k)] we are reduced to the case where K is a ring
over Z[l/n] . Because the formation of the cchomology of quasi-coherent

sheaves on quasi-campact schemes commutes with inductive limits, we are first

reduced to the case where K is a finitely generated ring over Z[1/n] ,

then to the case when K is a noetherian local ring. By faithful flatness

of the completion, we further reduce to the case when K is a complete
Noetherian local ring, then by Grothendieck's comparison theorem

to the case when K is an artin local ring. By Krull's intersection theorem,
f induces the zero-section of (9)‘8k over an open neighborhood of at least
one cusp on each connected component of b_dn®K®Z[l/n,§n] , hence on an open
dense set in l\_dn®K . If £ is not zero, there exists a non-void closed
subset Z of ﬁn®K , containing no maximal point of l_lln®K , on which f

is supported. Over the local ring in ﬁn® K of any maximal point z of Z,
f becomes non-canonically a section of Oz,ﬁn®K which is supported at the
closed point, i.e. for any element g € mz (the maximal ideal of 0z,ﬁn®K )
there exists a power gn of g such that gnf =0 . Thus every element of

M, 1is a zero-divisor, i.e. the point z € ﬁn®K has depth zero. As ﬁn®K
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is smooth over an artin local ring K , it is Cohen-Macaulay, and hence only
its maximal points have depth zero. Thus 2z must be a maximal point of

l\_dn®K , a contradiction. Hence f must be zero. QED

1.7. Base-change of modular forms of level n > 3

Theorem 1.7.1. Let n >3 , and suppose either that k >2 or that k=1
and n <11 . Then for any Z[1/n]-module K , the canonical map

Ok Bk
) ) )

K®H°(I\-/fn,(9 y —> Ho(ﬁn,K®(Q

is an isomorphism.

Proof. By standard base-charging theorems, it suffices to show that

Hl(ﬁn,2®k) = 0 . The isomorphism (Q)®2 Lol s%n/z[l/n](log(ﬁn-Mn)) ,

together with the fact that each connected component of ﬁn® Z[1/n, Cn] con-
tains at least one cusp, shows that for k > 2 , the restriction of (9)®k

to each connected component of ﬁn®z[l/n, t_’,n] has degree strictly greater
than 2g-2 , g the (common) genus of any of these components,and hence

wt (Mn,(9)®k) = 0 by Rieman-Roch. For 3 <n <11 , explicit calculation shows
that w restricted to each connected component of ﬁn®z[l/n, ;n] has degree

strictly greater than 2g-2 , and we conclude as before. QED

Remark. When n > 12 , w has degree < 2g-2 on each connected component
kvl ! .

of M ®Z[1/n, ¢ ] , and equality holds only for n =12 . The author does

not know whether or not the formation of modular forms of weight one and

level n > 12 commutes with base change.

1.8. Base change of modular forms of level 1 and 2

Theorem 1.8.1. Let Ro be any ring in which 2 is invertible. For every
integer k > 1 , the canonical map S(Z,2,k) ®Z R —> S(Ro,z,k) is an iso-

morphism.
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Proof. First we should remark that there are no non-zero modular forms of
level two and odd weight k over Ro , because the automorphism "-1" of an
elliptic curve transforms (E,w,%,) into (E,-w,-¥;) , hence

f(E,m,Oﬁz) = f‘(E,-m,-Otz) » but o, =, ,
= (-1) £(B,u,) , hence 2¢(E,u,a,) =0 for k odd .

hence f(E,-m,-az) = f(E,-m,az) =

In any case, modular forms of level two and weight k, holomorphic at
infinity, over any ring R0 3 1/2 , are precisely those modular forms of level
four and weight k holomorphic at « , defined over Ro » which are invariant
under the action of the subgroup of GLE,(Z/LL Z) consisting of the matrices

=Imod 2. As this group has order 16, a power of two, we may simply spply

the projector %6 Z( )g to the base-changing isomorphism (1.7.1) in
g=1 (2

level four to produce the desired isomorphism in level two.

Theorem 1.8.2., Let Ro be any ring in which 2 and 3 are invertible. For every

integer k > 1 , the canonical map

5(2,1,k) ®, R —> S(Ro,l,k)
is an isomorphism..
Proof. The proof is similar to the previous one. We view a modular form of
level one over a ring R > 1/6 as a modular form of level four (reép. three)
inveriant under GL(2,Z/4 Z) (resp. GL(2,%/3 Z) , defined over R . As
GL(2,%/4 Z) has order 96 = 32 x 3 (resp. GL(2,%/3 Z) has order 48 = 16 x 3) ,

the projection technique (1.8.1 ) shows that the canonical map

S(z[1/6],1,k) @z[l/mRo —> S(Ro,l,k)

is an isomorphism. Thus it remains only to handle the passage from Z[1/6] .

But for any ring R, S(R,1,k) is the fibre product of the diagrem:
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1O, ®R, (™)

(1.8.2.1)

KO, O, (™) <— #O(, OF, (o)

(i.e. a modular form of level one over R is a modular from f3 of level three
over R[1/3] together with a modular form f), of level four over R[1/2] ,
such that fy and f) induce the same modular form of level 12 over R[1/12]).
As the formation of the diagrem (1.8.2.1) and of its fibre product cammutes
with any flat extension of scalars R —> R* , taking R =2, R' = Z[1/6]

gives the desired result.

Remark 1.8.2.2. The above theorem becomes false when we do not exclude the

primes 2 and 3. For over the finite field FP

modular form of level one and weight p-1 , holomorphic at « . But over X

» the Hasse invariant A is a

there are no non-zero modular forms over Z of level one, holomorphic at «,
of weight either one or two. Similarly, A-A 1is a cusp form of level one
and weight 13 (resp. 14) over F, (resp. F3) , which cannot be the reduction
mod p of a modular form over Z . See [9] for the full determination of

modular forms over X .

1.9. Moduler forms of level 1 end 2: g-expansion principle

For n =1, 2, and any Z[1/n]-module K , we define a modular form of
level n and weight k , holomorphic at « , with coefficients in X +to be

for n = 1: an element of the fibre-product of the diagram
B0y, (o™ @pp, 13 (K @ 2(1/3D))

(1..9.0.0)

HO(T, 5, (™™ R /127 (K Bppy f107BL/12]) <— K, (™ G147 (KOE[1/41))
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(1.9.0.1) for n=2: an element of H°(ﬁ,4,(9)®k ®z[1/!+]K) invariant by

the subgroup of GLQ(Z/ 4 Z) consisting of matrices

=Imod 2.

The module of all such is noted S(K,n,k) .

(In the case K is a ring, this notion coincides with that already
introduced.) An exact seQuence 0 —> L —> K —> K/L —> 0 gives an exact
sequence (without the final O ) of modules of modular forms, analogous to
(1.6.2.2).

As a corollary of (1.6.1), we have

Corollary 1.9.1. {g-expansion principle} Let n=l or 2, K a Z[1/n]-module,
and LCK a Z[1/n] submodule. Let f be a modular form of weight k ,
level n , holomorphic at « , with coefficients in K . Suppose that at one
of the cusps (for n=1 , there is only one, j=w , while for n=2 there
are three, A = O,l,» ), the g-coefficients of f all liein L . Then f

is a modular form with coefficients in L .

1.10. Modular schemes of level 1 and 2

They don't exist, in the sense that the corresponding functors are

not representable. However, for each n >3 we can form the quotients

. . as 1
Mn/ GL, (Z/n Z) = the affine j-line /Az[ 1/n]

= . . . as 1
Mn/ 6L, (%Z/n Z) = the projective j-line IP Z[1/n]

which fit together for veriable n to form the affine and projective j-lines

. _al s - 1
over Z . We define M1 --IAz , the affine j-line, and Ml = ]Pz .
invertible sheaf w on ﬁn » n >3, does not "descend" to an invertible

sheaf on 171 , but its ]_2ﬂ power 9®12 does descend, to (1) , the inverse

The

of the ideal sheaf of o .
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In particular, moduler forms over any ring R of level one and weight
12k holomorphic at o , are just the elements of HO(IP;L{, 8(k)) , and their
formation does cammute with arbitrary change of base.

Analogously for n=2 , we define

My

Mh/the subgroup of GLQ(Z,/h Z) of matrices = I mod 2

th

Imod 2 .

1712 ﬁu/the subgroup of GLQ(Z/’-L Z) of matrices

The scheme M, is Spec Z[A]J[1/22(1-\)]) , and M, is the projective A-line
1 . . = s

IPZ[l /2] . The invertible sheaf w does not descend to M2 s but its square

does descend, to O (1) = the inverse of the ideal sheaf of the cusp A = .

In particular, modular forms of level two over any ring R 3 1/2 , of (neces-

sarily!) even weight 2k and holamorphic at all three cusps, are just the

elements of H°( IP;, O(k)) ; hence their formation commutes with arbitrary

change of base.

1.11. Hecke operators

Let £ be a prime number, R a ring in which £ is invertible, and
n an integer prime to £ . For any elliptic curve E/R , the group-scheme
zE of points of order £ is finite ¢€tale over R , and on a finite &tale
over-ring R' it becomes non-canonically isomorphic to (Z/ZZ);, . Thus
over R' , the elliptic curve ER,/R' has precisely 4+1 finite flat sub-
groups~-(schemes) of rank £ . For any such subgroup H , we denote by

T B, —> ER,/H the projection onto the quotient and by 1w: ER,/H —> E,

RI
the dual map, which is also finite étale of degree £ . The composition w7
is multiplication by £ on ER'/H , and the composition wew is multipli-

cation by £ on ER' .
If w is a nowhere vanishing differential on E/R , then

£%.3
T {ug,) = trace (wp,) is a nowhere vanishing differential on Ep,/H . If

o E > (Z/n Z)§ is a level n structure on E/R , there is unigque level n
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structure W(an) on ER,/H such that the diagram

(ZY/n ).,

(1.11.0.0) @ 1r(an)

nER' — n(ER'/H)

is commutative. (N.B. There is another "natural" choice of level n struchure

on ER,/H > namely O o = z-'rr(an) , which we will not use.)
Given a modular form over R of level n and weight k, for each triple

(E/R,w,an) we may form the sum over the £+1 subgroups H of order £+1

of ER' R

(1.11.0.1) )Y f(ER,/H,;r*(w) (@)
H

which, while apparently an element of R' , is in fact an element of R , and

does not depend on the auxiliary choice of R' .

factor Ek-l , we define the Hecke operator T

Normalizing this sum by the

g OB modular forms of level n
and weight k by the formula

(1.11.0.2) (Tlf) (E/R,m,an) = zk'lz f(ER,/H,Er'r*(m) ,w(an)) s

the sum extended to the £+1 subgroups of order £ .

We now consider the effect on the g~expansions. The £-division points

+

of the Tate curve Tate(q") over Z({q)) & Z[1/n £] all become rational

over Z( (q]-‘ Z)) &, Z{1/ns,t E] , and the £+1 subgroups of order £ are the
following:

N 2 generated by { 2

i

n
H, , generated by (1) B for 120,1,...,0-1 .

For the subgroup |u, , the quotient Tate(qn)/iuz is Tate(qnz) (the projection

induced by the £'th power map on Gm) and the dual isogeny consists of dividing
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Tate(qnz) by the subgroup generated by qn . For the subgroups H. , the

quotient Tate(qn)/H is Tate((gl /442

i 1/z

) ) , and the dual isogeny consists

of dividing (Tate((g }) vy its subgroup fu, .

. ni

Thus for the subgroup ;1.12 , we have T ( ca.n) = W, on Tate(q ")

. _ _ i 1/22
while for the subgroups H, , T (“’ca.n) = l-(mcan) on Tate((t_;z g’y )
(because in the latier case % is induced by the £'th power mapping on Gm s
on which w = 1is at/t) .

The quotient Tate(q™) /1;11 = Tate(qnz) may be viewed as obtained
from Tate(q") by the extension of scalars @y Z((a)) —> Z((q)) sending
q ~—> ql . We denote by Otz'1 the unique level n structure on Tate(qn)

*
. . 1 — L e - -
such that (pz(an) =7, (an) s Wl(an) denoting the image of O by the pro

jection of Tate(q™) onto Ta,te(qn)/mz 2‘I‘a.te(qn‘e) .

The quotients Tate{q™ )/H = Tate(q n/4 I;l) s i=0,...,2~1 over

Z[l/nz,cnz]((q 1/ )) , may each be viewed as obtained from

Tate(q" )/H o= Tate(q n/4 } by the extension of scalars

1/2

oyt 2/t £ ((@0) — 2l1/ns, ) M

)) which sends q i 1/3.

—> £
Under this identification, we have (noting LFE Tate(q") —> Tate(qn)/Hi s
i=0,...,4=1 the projections) the relation Wi(an) = q>;(7ro(an)) , as an
immediate explicit calculation shows. We denote by Ot" the level n structure
i.:(wo(an)) on Tate(q™) obtained from L (a ) on Tate(q /2) by the exten-
sion of scalars i, Z[l/nﬂ,; 1/2)) == Z[1/n¢, (9 ]((q)) sending

1/2

q to q .

Thus we have

£(Tate(q®) /Ty lu, ), @) = £(Tate(d™) ,u,,_,9,@0)
(1.11.0.3)

cpg(f(Tate(qn) W o)) .
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£(Tate(q") /8 ) (u00) 573 @) = £(tate((th a4 00 _son(m (@ )))

2
= o, (#(Tate(q" )kt (@)

(t.11.0.4)

= 930(1,) (2 (Tate(a") 0 0y, 01)

z-l,q,io(iz)'l(f(crate(qn),wcan’a;)) )

Combining these, we have the following formula for T 0
Formula 1.11.1. Let f Dbe a modular form of level n and weight k over a
ring R , and suppose £ is a prime number not dividing n which is invertible

in R. Let f be a modular form of level n and weight k, with q-expansions

(1.11.1.0) £(Tate(q") 0, ) = Z 2@ )" .
i>

Then

(1.11.1.1) (Tlf)('l'ate(qn),wcan,an) = Z bi(an)qi s

i> =

where the coefficients bi(an) are given by the formula
(1.11.1.2) bo@) = &Y, (@) +a,,@")
itn i/ n i n

(with the convention that 85/ =0 unless £[i).

Coroliary 1.11.2. If £ is holamorphic at o , so is Tz(f) . If f is a

cusp-form (meaning that its g-expansions all start in degree > 1), thert so is
Tl(f) . If all the g-expansions of £ are polynomials in q , the same is

true of Tz(f‘) .

Proof. These follow directly from the explicit formulae - we note that if f
has polynomial g-expansions of deg <n , then Tt(f) has expansions of

degree < nf .

Proposition 1.11.3. Let n>2 and k>2 ,0or 3<n<1l and k>1.

For any prime £ not dividing n , and any Z[l/n]-module K , there is a

necessarily unique endomorphism of the space of modular forms of weight k and
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level n, holomorphic at « , with coefficients in K , whose effect on

g-expansions is that given by the formulas (1.11.1.0-2).

Proof. By the base-changing theorem, we are reduced to the case K = Z[1/n] .
For a modular form f over Z[1/n] , T , exists 3 priori over ZX[1/n¢] , but
its g-expansions all have coefficients in Z[l/n,gn] , so by (1.6.2) and (1.9.1),

Tz(f) is in fact a modular form over Z[1/n] . QED

Corollary 1.11.L. Let k >2 . For any prime £, and any Z-module K, there

is a necessarily unique endomorphism of the space of modular forms of weight k
and level one, holomorphic at o , whose effect on the g-expansion is that

given by the formulas (1.11.1.0-2).

Proof. Choose relatively prime integers n,m > 3 , both prime to £, and view

the module of level one modular forms as the fibre-product of the diagram

H(_,0®*® (k®2[1/n]))
@.11.4.1)

H°(ﬁmn,(9)®k®(1<®z[1/nm])) e H°(ﬁm,(9®k®(x®z[1/ml)) .

The desired T, is the fibre product of the T, constructed above on this

2 £
diagram. QED

1.12. Applications to polynomial g-expansionsj the strong g-expansion principle

In this section we will edmit the following result, a special case
of Swinnerton-Dyer's structure theorem (cf.[41], [43]), which will be proven

later (cf. h.h.1).

Result 1.,12.0. Let n >1 be an integer, K a field of characteristic p * n,
and f a modular form over K of level n and weight k > 1 , holomorphic at

infinity. Suppose p-1 ‘{. k . Then if all the gq-expansions of f at the cusps
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of ﬁn®K(§n) are constants, f =0 .

Using this result, we will now prove

Theorem 1.12.1. Let n, k > 1 be integers, and suppose that f is a modular
form of level n and weight k, holomorphic at « , with coefficients in a
Z[1/n]-module K . Suppose that for every prime p such that p-1]k , the
endomorphism "multiplication by p" is injective on X . Then if all the

g~expansions of £ are polynmomials in q, £ =0.

Proof. We begin by reducing to the case n >3 , using the diagram (1.9.0.0)
to handle the case n=1 , and the interpretation (1.9.1.1) for n=2 . We
then reduce to the case in which n is divisible by a = glkp; by hypothesis
K C K[1/a] , so we may replace K by K[1/a] (using the I<:c—>homologr sequence
(1.6.2.2)), then view f as a modular form of level a-n with coefficients
in K[1/a] . Next we reduce to the case in which K is an artin local ring
over Z[1l/n] , as explained in the proof of (1.6.1). We will proceed by
induction on the least integer b > 1 such that mb =0, m denoting the
maximel ideal. Thus we begin with the case in which X is a field.

Consider the finite-dimensional K~space V of such modular forms, and

choose a basis fl,...,fr of V. Let N be the maximm of the degrees of

the gq-~expansions of the f, at any of the cusps. At each cusp, record the

i
fl
g-expansion of F = :
by
r
N 3; 1(%)
n . i 1 -
F(Tate(@) upg ) =) A, A=
i=o ay (@)
,n' n

Let £ be a prime number such that 2% n, £ >N . Because V is stable

under the Hecke operator T, (cf.l.11), we have a matrix equation (C denoting

£
an r x r matrix with coefficients in K),

Tz(F) =C-F .
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Passing to g-expansions gives the equation
o X-1 WYyl — o i
Z (Azi(an) * 4 A:i./‘z(an))q =¢ Z A:l(o‘n)q
i i
whence, comparing coefficients of qlz , we find the relation

" k-1 1) == (O
A,e?i(an) + 4 Ai(an) = C Au(otn) .

But for i >1, 4 >N and if°

>N , hence Au(cxn) =0 and Algi(a;) =0
(vy definition of N). As £ is invertible, we have Ai(ar'z) = 0 for each
level n structure an . Hence each g-expasnsion of each fi is a constant,
hence by (1.12.0) each fi = 0 . This concludes the proof in case K is a
field, and implies the case in which K is a vector space over a field,
as vector spaces have bases.

Now consider the case of an Artin local ring K whose maximal ideal m

satisfies MP =0 . By induction, f becomes O in K/ mb , hence by

the exact cohomology sequence (1.6.2.2) associated to the exact sequence of Z[i/n}-

modules O mp K K/ mP 0, f comes from a form with
coefficients in MP . But as MP™ =0, MP is a (finite-dimensional?)
vector space over the residue field K/n’b s and the previous case of a field

applies. QED

Corollary 1.12.2. (Strong q-expansion principle) Let n, k >1 , and let

a8 = 1’[' p . Let X be a E[l/an]-module of which L C X is a Z[1/an]-sub-
p-1ik

module, and f a modular form of level n and weight k, holomorphic at o ,
such that at each cusp, all but finitely many of its q-expansion coefficients
liein L ®z[1 /n}ZIl/n, gn] . Then f is a modular form with coefficients

in L.

Proof. Apply the theorem to the image of F as modular form with coefficients

in K/L . QED
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1.13. Review of the modular scheme associated to To(p)

For each integer n >3 prime to p , the functor "isomorphism classes
of elliptic curves with level n structure and a finite flat subgroup (scheme)
of rank p" is representsble, by a scheme Mn,p , which is an affine curve
over Z[1/n] ; it is a regular scheme, but it fails to be smooth over Z[1/n]
precisely at the finitely closed points on Mn,p corresponding to super=-
singular elliptic curves in characteristic p . The projection "forget the
subgroup of rank p" makes Mn,p finite and flat over M~ of degree p+l .

We define M
n,p

to be the normalization of ﬁn in M 3 it is a
b

n,p
regular scheme, proper and flat over Z[1/n] . The difference ﬁn p " Mn P
2. b
is finite and étale over Z[1/n] , and over Z[1/n, gn] it is a disjoint union
of sections, called the cusps of ﬁn p? two of which lie over each cusp of
2

Mn s and exactly one of which is €tale over l_/ln .

The completion of ﬁn,é®z[1/n, Qn] along any of the cusps is iso-
morphic to Z[1/n, ;n][[q]] . The universal elliptic curve with level n
structure end subgroup of order p over Z[l/n, gn]((q)) , viewed as a punc-
tured disc around sn unramified cusp , is the Tate curve Tate(q") with the
level n structure corresponding to the underlying cusp of ﬁn s and the sub-
group "'lp . Over one of the ramified cusps, the inverse image is the Tate
curve (q"F) , with the induced (q +—> q®) 1level n structure from the cusp
of ﬁn below, and with the subgroup generated by qn .

The automorphism of Mn,p given by (E,an,H) — (E/H,'rr(an) ,pE/H)
{(m: E —> E/H denoting the projection, and 1r(otn) the level n structure
explained in (1.11.0.0)) extends to an automorphism of Hn P which inter-

3
changes the two sorts of cusps.
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Chapter 2: p-adic modular forms

This chapter is devoted to the study of various properly p-adic general-
izations of the notion of modular form, as "functions" of p-adic elliptic curves

whose Hasse invariant is not too near zero.

2.0 The Hasse invariant A as a modular form; its g-expansion

let R be any ring in which p =0 (i.e., R is an Fp- algebra) and
consider an elliptic curve E/R . The p'th power mapping Fabs is an additive
p-linear endomorphism of v E? hence induces a p-linear endomorphism of the
R-module Hl(E, OE) . If  is a base of g /g » it determines the dual base
n of HY(E, O ) » and we define A(E,w) € R by setting F:bs(n) = A(E,0)7 -
Replacing w by Aw , AN € R has the effect of replacing n by A-lq , and
F:bs(h' 7) =AP F:bs(n) = A PA(B,w) o = ATPA(E,w) A Yy 5 whence A(E\w) =
xl'P-A(E,w) , which shows that A(E,w) is a modular form of level one and
weight p-1 defined over IFP . More intrinsically, we may interpret F:bs as
an R-linear homomorphism F:bs: F:bS(Hl(E, OE)) = (Hl(E, OE))®p———> HJ'(E, (?E) ,
so as a section of Q‘—’E/R)@p-l . In terms of the base @ of w , this section
is A(E,m)'m%—l . To see that A is holomorphic at & , we simply note that
the Tate curve over ]Fp((q)) is the restriction of a plane curve C over
]Fp[[q]] , and that it canonical differential Wogn is the restriction of a
base over ]F‘P[[q]] of the dualizing sheaf of C . Thus w,,. determines the

)

*
is just the matrix of F_ - on Hl(C, 00) with respect to the base 1 .

dual base n,. .~ of Hl(C, O’C) as IFP[[q]]-module, and A(Tate (q), Yaan

In particular, A(Tate (@), w

oan € JFP[[qJ] .

An alternative method of establishing holomorphy is to use the fact that
for eny elliptic curve E/R over any base ring R , Hl(E, OE) is the tangent
space of E/R at the origin, which is to say the R-module of all translation-
invariant derivations of E/R , and that when R is an ]Fp-algebra, the action

*
of F,. on Hl(E, O ) consists of taking the p'th iterate of an invariant
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derivation. Now we use the fact that there is a local parameter + on the com-
pletion of the Tate curve along its identity section in terms of which Wogn =
dt/l+t . Let D be the invariant derivation dual to Qoon * Then D(%) = 1+t ,

hence D(1+#t) = 1+t , hence D (14) = 1+t for all n >1 . Over F_

is an invariant derivation, and it agrees with D on Woan ? hence DP =D ,
*
hence Fabs(“ca.n) = Nogn > 204 A(Tate (q), Wogn) =1 -

2.1 Deligne's congruence A = Ep_ nmod p

1

For any even integer k > L , the Eisenstein series E‘k is the modular

form over € of level one and weight k whose g-expansion is

2k n ~ k-1
1 - & 2o e, Oppm) =2 a .
k dln
a>1
As its q-expansion coefficients all lie in @, Ek is defined over @ (by
1.9.1). For k =p-1, p >5 , the p-adic ordinal of %(2"—11 is 1, hence
p~1
E has g-expansion coefficients in QN Z . Thus it mekes sense to reduce

p-1 D

Ep-l modulo >p , obtaining a modular form over ]Fp , whose g-expansion is the
constant 1. Hence A = Ep-l mod p , because both are modular forms of the
same weight with the same g-expansions.

For p=2 and 3, it is not possible to 1ift A to a modular form of
level one, holamorphic at ® , over QN Zp . However, for p =2 and,
3<n<1, 2 4[’ n we may lift A +to a modular form of level n and weight 1,
holemorphic at « , over Z[1/n] (by 1.7.1). For p=3 and any n >3 ,

3 ‘f’ n we may 1lift A +to a modular form of level n and weight 2, holomorphic
at = , over Z{l/nl (vy 1.7.1).

For p=2 and 3<n<11, n odd (resp. for p=3 eand n>2,

3* n) s we choose a modular form Ep-l of weight p-1 and level n, holo-

morphic at « , defined over X 1/n] , which lifts A .
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Remark. For p=2 , there exists a 1lifting of A to a modular form of level n
over Z[1/n] for n=3,5, 7, 9, 11, and hence for any n divisible by one
of 3, 5, 7, 11. But the author does not know whether A 1ifts to a form of
level n for other n {even for n=13!). An alternative approach to the

difficulties caused by p=2 and 3 might be based on the observation that

N

the Eisenstein series E) =1+ 240 3 03(n)qn provides a level 1 1ifting to

of A* if p=2 (vesp. of A% if p=3).

2.2 p-adic modular forms with growth conditions

2.2.0 Let R be a p-adically complete ring (i.e. R = 1im Ro/pNRo) , and
choose an element r € Ro . For any integer n >1, prime to p, (resp.
3<n<11 for p=2, and n >2 for p=2) we define the module M(Ro,r,n,k)
of p-adic modular forms over YRO of growth r, level n and weight k: An element
fe M(Ro,r,n,k) is a rule which assigns to any triple (E/S, &, Y) consist-
ing of:
(2.2.1) an elliptic curve E/S , where § is a R -scheme on which p is nil-
potent (i.e. pN=O for N >>0) ;

(2.2.2) a level n structure o
(2.2.3) a section Y of 9®(1'P) satisfying Y-E ,=r;

. Sk .
a section f(E/S, o, Y) of (%/S) over S , which depends only on the
isomorphism class of the triple, and whose formation commutes with arbitrary

change of base of Ro-schenes St —>S .

Equivalently, we may interpret f as a rule which attaches to each

quadruple (E/R, w, o, Y) consisting of:
(2.2.4) an elliptic curve E/R, R an R -algebra in which p is nilpotent;
(2.2.5) abase w of Up/g

(2.2.6) a level n-structure;
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(2.2.7) ean element Y € R satisfying Y-Ep_l(E,m)=r .

an element f£(E/R, w, o, Y) in R , which depends only on iscmorphism class
of the quadruple, whose formation commutes with extension of scalars of

V-algebras, and which satisfies the functional equation:

(2.2.8) £(E/R, Auw, o, }\p-lY) =x'kf(E/R, w @, Y) for A eR°.

By passage to the limit, we can allow R to be a p-adically complete Ro-
algebra in the sbove definition.

(2.2.9) We say that £ is holomorphic at « I1f for each integer N > 1,

its value on (Tate (qn), Wogn?

over Z((q)) ® (RJ&)NRO)[%] lies in Z[[q]] ® (Ro/pNRo)[gn] , for each level n

n -1 .
oy, (€ (Tate (%), wy,))™) , considered

structure Q . We denote by S(Ro,r,n,k) the submodule of M(Ro,r,n,k)

consisting of forms holomorphic at .
As formal consequence of the definitions, we have

. N
2.2.10 M(Ro,r,n,k) = 1im M(Ro/p Ro,r,n,k) .

: , N
2.2.11 S(Ro,r,n,k) Lim S(Ro/p Ro,r,n,k) .

2.3 Determination of M(Ro,r,n,k) when p is nilpotent in R°

2.3.0 We begin by determining the universal triple (E/S, o, Y) suppos-
ing that p 1is nilpotent in Ro , and n >3 . For notational converience,
let's denote 9®1-P by . By the definition of Mn , the functor

JRdr,n: $ w——> S-isomorphism classes of triples (E/S, an,Y) is the functor

5Rdr,n: S —> Ro-morphlsms g: S —> Mn ®Ro , together with a section

* *
Y of g (z) verifying Yeg (Ep-l) =r
which we may view as a sub-functor of the functor
*
}R 0t S — {Ro-morphisms g: 5 —>M_ , plus a section Y of g (:)} .
o

This last functor is representable, by the Mn® Ro-scheme
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Spec, o g (Sym(Z ))
n (o)

M ®R
n o

Indeed, we may cover Mn®R° by affine opens Spec(Bi) over which Z/ admits

an invertible section ,ei , and cover S by affine opens Spec(Ai such that

)
3
g]Spec(Aij) factors through Spec(Bi) . Over Spec(Bi) » Spec (Sym(.£ ))

is Spec(Bi[zi]) . Asection Y of g (L) determines an element Y-g (zi)

of A,. , and then a lifting of the given homomorphism g: Bi —> A to a

ij ij

homomorphism gij: Bi[.ei] —> A by the formula

i3

B8 b (29 = £ s(o (v ()"

These §i piece together to define a morphism from § to Spec (Symm(Z)) .

The subfunctor jR rn is then represented by the closed subscheme
O’ b

1
versal triple (E/S, @, Y) is just the inverse image on Spec (Symm(,C))

of Spec {Symm( L)) defined by the vanishing of EP- -r . Thus the uni-

of the universal elliptic curve with level n structure over Mn®Ro , hence

Proposition 2.3.1. When p is nilpotent in Ro , and n >3 is prime to p,

there is a canonical isomorphism

M(Ro,r,n,k) = H%(Spec M ®R_ (symm( L )(Ep-l- r), Q®k)

0
H (Mn®R°,

]

@ (1t (0-1))
;8 WPEIEV e

2
® (x+j{p~
(M ®FR , ; GZBO (w EHP 1”)))/(Ep_l- r)

(because M is affine)

- ; E_i . M(R , n, k+j(p-l))/(EP_l' r) .
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2.4 Determination of S(Ro,r,n,k) when p is nilpotent in R/

Proposition 2.4.1. Let n >3, p ,{r n . Under the isomorphism (2.3.1), the

submodule S(Ro,r,n,k) C M(Ro,r,n,k) is the submodule

1°(Spec — (s (2 V(E . -1)) m®k) of H°(Spec (Symm(/z)/(E ~r)).
=pec M ®R_ 2y b1 ’ @ =pec M ®R, p-1

Proof. It suffices to treat the case in which Ros gn . Then the ring of

the completion of l_dn® R, along = is a finite number of copies of Ro[[q]] R

hence the ring of the completion of Spec 7 ®R (Symm(z )/(Ep_l- r)) along
n- o

the inverse image of ® is isomorphic to a finite number of copies of
~ . n -
R.[lal] = R [[a]IY]/(Y-E _ (Tate(q"), wyo s @) -7)

. s n . . .
(an isomorphism because Ep_l(’l‘ate(q Ys Woan? an) is invertible in Ro[[q]]).
s o e Rk
Thus the condition that an element f e H" (Spec ﬁn®Ro(SM( yd )/(Ep_l-r)) y @)
have holomorphic g-expansions is precisely the condition that it extend to a

N Rk ) ®k
section of over Spec ﬁn®R°(Sym('C )/(Ep_l-r), w ). QED

Remark 2.4.1.1. Analogously to (2.3.1), we have
Ho(Spee 7 gp (Sym( £)/(5, ;- 1), o)
n [¢]
= B°(_8R_, v®* ® sym( 7 )/(By 5 -1)

= K0 @R , el s VICRIEE

@
J2o

2.5 Determination of S(Ro,r,n,k) in the limit

Theorem 2.5.1. Let n >3, and suppose either that k >2 or that k=1

and n <11 , or that k=0 and p#2 » or that k=0, p=2 ,and n<11.

Let Ro be any p-adically complete ring (Ro 5 1inm Ro/pNRo) s and suppose
-

re Ro is not a gzero divisor in Ro . Then the homomorphism
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; = k+j(p-1) N
Lin (0, w P ® (R /2 R)/(E,_; -¥)

[
i>o

2.5.1.0 j

S(R ,r,n,k) = lim S(Ro/pNRo,r,n,k)
-

is an isomorphism.

Proof. ILet .5 denote the quasicoherent sheaf G>3 2k+;j (e-1) ﬁn .
Proof. i>o0

and put ’81\1 = Af ® Ro/pNRo . The inverse system of exact sequences

p-1 -
2.5.1.1 0 4 - ,zfl\‘/(.rap_1 r) —> 0
gives an inverse system of six-term cohomology sequences

E -
0 —> 10, Ay) —XE > K, b —> B, B/, - 1) —> B, 4,) —
2.5.1.2
E -r _ _
2> gL, b)) —> H, by/ (B -T)) —> 0 .

Suppose first that k > 0 . Under our hypotheses, the base-changing theorem
(1.7.1) spplies, according to which Ho(ﬁn,,JN) = H°(ifn,,8) ® (Ro/pNRo) , and
Hl(ﬁn,,dN) =0 . Thus the H® temms in (2.5.1.2) form a short exact sequence
of inverse systems, the first of which has surjective transition morphisms.
Hence the inverse limits of these inverse systems form the desired short exact
sequence.

Incase k=0 and p#£2 or k=0, p=2 and n <1l , we have
Hl(ﬁn, 98’1‘) =0 for k >1, hence Hl(ﬁn,é ) = Hl(ﬁn,ﬁ) , and by (1.7.1)),

Ho(ﬁn,,dN) = Ho(l-ﬁ_n,,ﬁ) ® Rc)/pNRo . The exact sequence (2.5.1.2) becomes
O/ N O . —
0 —> M ,L) ®R /p R —> H M,,48) ® R /PR, —> H°(Mn,,6N/(Ep_l-r)) -

- H#H,0)® R /o'R E> H(H_,0) ® R /pR —> KO, 0)@R /(p",r) —>0 .
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For varisble N , these form a six-term exact sequence of inverse systems. If
the sequence of their inverse limits were exact, the theorem would follow, be-
cause the mep 1lin M ,4) ® Ro/pNRo —E> 1 1%, 0) ® Ro/pNRo is injec-
tive (this because Ho(ﬁn,ﬁ) is a finite free Z[i/n]-module, and r is not a
zero divisor in R —> 1(:'tm Ro/pNRo) . To prove the exactness we apply a

general lemma.

Lemma 2.5.2. Let O K° - K ... be a (long) exact sequence
in the category of projective systems of abelian groups indexed by the positive
integers. Suppose that for all 1 # io s the projective system K* has sur-~

jective transition morphisms, and that the sequence

i°+l i+2 io+3
1<:i;m K —_—> 1(i__m K° —s 1(5;m K is exact. Then the sequence

O——>li.mK°—>limKlélimK2%...
is exact.

Proof. Consider the 2 spectral sequences of hypercohomology for the functor
1im .
—

20 - Hp(Rq(lgn) (k) ==> mP*q(1<i_m) (x*)

IIEg’q

By hypothesis, we have I]__Eg’q =0 for all values of q , hence IRp(l(i_m) (k") =0

R (14m) (B3(K")) ==> R¥"%(1mm) (k)

for all n . According to ([48]), we have Ri(l(i;m) =0 for 1 >2, hence

£2'd=0 for a>2. By (48]), we have R (im)(k!) =0 for 1 # i
P

hence
IEg’q =0 unless q=0 or q=1 end p=i° .
1,+2,0
As we have also supposed that IE2 =0 , we have degeneration: Eg ’q=EaI:’q

for a11 p,q . As ES’q-—.O for all p,q , we get in particular I14312”0=0 for

ell p , which is the desired conclusion. QED
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2.6 Determination of a "basis" of S(Ro,r,n,k) in the limit

Lemma 2.6.1. Under the numerical hypotheses of theorem (2.5.1), for each j >0

the injective homomorphism

. " E L. .
2.6.1.1 H°(ﬁn®zp L (p-l)) —p-1 H°(ﬁn®zp,2®k+(a +1) (P-l))

edmits a section.

Proof. We must show that the cokernel of (2.6.1.1) is & finite free Zp-
module. By the base-changing theorem (1.7.1), we have for each j >0 an

exact sequence of finite free Zp-modu_les

: E .
2.6.1.1.1 0 —> H°(ﬁn®zp’9®k+a(p-l)) p-1, Ho(ﬁn®xp"£k+(a+l) (p-1),
- Ho(ﬁn® zp ,£®k+(j+1) (p-1) /Ep-19®k+3 (p-—l)) — Hl(ﬁn®xp ’Qk-x-j (p-l)) o

whose formation commutes with arbitrary change of base (for
9®k+(j+l) (P-l)/Ep_lg®k+'j (®-1) | remark that 1t's % -flat by Igusa's theorem
(e£{17]), and modulo p , it becomes a skyscraper sheaf on Mn® ]FP , hence has
vanishing Hl) . Hence the cokernel of the map (2.6.1.1) is the kernel of a
surjective map of finite free Zp-modules, hence is itself a finite free
xp-module. . QED
For each n, k satisfying the hypotheses of (2.5.1), and each J >0
we choose once and for all a section of (2.6.1.1) , and denote its image by

B(n,k,j¥1) . Thus for J >0 , we have a direct sum decamposition

2.6.1.2 oM, BEI-1)y x5 yoqg  FH(P-1)y @ p(nx,541)
n°= p~1l n’=
and

2.6.1.3 H°(ﬁn,9®k) &8 5(n,k,0) .

We define B(Ro,n,k,j) = B(n,k,j) ® R . TIterating the R -analogue of

4
(2.6.1.2) gives a direct sum decomposition ¥
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S(Ro’n:k+-] (P"l) < ae; 0 B(Rc,n,k,a)
2.6.1.3 o g
- - .
z p-lba z ba
rigid N
et B (Ro,r,n,k) denote the Ro-module consisting of all formal sums
(o]
Z b, b, € B(R,n,k,a)
a=0

whose terms tend to zero in the sense that given any N >0, 3M> 0 such that

b, € p"-B(R,n,k,a) for a >M , the M allowed to depend both upon N and

rigid

upon the series L b, . (Notice that B (Ro,r,n,k) does not depend upon r!)

Proposition 2.6.2. Hypotheses as in (2.5.1), the inclusion of Brlgld(Ro,r,n,k)

in the p-adic completion of HO(M , @ 9k+3(p-l)) induces (via (2.6.1.3))
d 2o
an isomorphism

B8R ron,k) —> S(R ,r,n,k)
2.6.2.1
a
5 b >" 5 r by "
& a
a>o (Ep_l)
ra.ba
where " ¥ —=— " has the value £ b_(8/S, a )-¥Y® on (B/S, a_,Y) .
a a n n
axo (B, ;) 820

rlg:"d(R,n ,k) can be

Proof. For injectivity, we must show that if 3 ba €B
a>o
written (E_.,-r)- £ s with s_ e S(R,n,k+a(p-1)) , and s_ tending to
p-1 a>o & a a
zZero as a —>» o , ~ then all ba=0 . It suffices to show that for any N >0,

baEO mod pN . But mod pN , both zba and z‘,sa become finite sums. To fix

M
= N =
=0 mod p , hence bM =

jdeas, suppose ba s, = 0 mod pN ¥a>M. Let's show b, = Sy =0 mode .

As O =Dp =E .s mode, mode,

ML - Pp-1°M S B %M
hence by =0 mod pN by (2.6.1.3). Now start again with M-1 ... .
For surjectivity, we just use the decomposition (2.6.1.3). Given = S,

s, € S(R,n,k+a(p-1)) tending to zero, we may decompose 5, = I (Ep-l)l bj(a) s
i+j=8.

with bj(a) ¢ B(R,n,k,j) , and bj(a) tends to zero a8 & —3w , uniformly in j.
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Then £s,=Z % (E _)b.(a) =z = b (a)+
a it+j=a P J a it+j=a d

Y22V | hence s, and ¥ = rl‘bj(a)

+ (E l-r)}: r b,(a) g (E
a itj=a

p- a i+j=a 9 wiv=i-1 P71
have the same image in S(Ro,r,n,k) . But for each j , rlbj(i+j) converges
i
to an element b;} € B(R,n,k,j) , and b:'i tends to zero as j —>» o« , and

s . QED

b5 has the same image in S(Ro,r,n,k) as a

z
j>o a

v

o
Corollary 2.6.3. Hypotheses as in (2.5.1), the canonical mapping

S(Ro,r,n,k) e S(Ro,l,n,k) defined modularly by composition with the trans-
formation of functers: (E/S, Otn,Y) — (E/S,Ocn,rY), is injective; the corre-

sponding map . s -
Brlgld(Ro9r’n’k) —> Brlgld(Roslsn:k)

is given by

Zba—>zra'ba.

2.7 Banach norm and g-expansion for r=1

Proposition 2.7.1. Hypotheses as in (2.5.1), let x € R be any element which

divides a power pN, N>1, of p. Then the following conditions on an ele-
ment f € S(Ro,l,n,k) are equivalent, for k >0 :

(1) f£ex8(R,1nk) ,

(2) +the g-expansions of £ all lie in x-Ro[gn][[q]] ,

(3) on each of the ¢(n) connected campcnents of M ® Z[l/n,gn] ,

% 2[1/n]

there is at least one cusp where the g-expansion of f 1lies in
xR [t 1[[a]] .
Proof. Clearly (1) ===> (2) ===> (3) . We will prove (3) ===> (1) . Because

r=1 , we have

S(R /xR ,1,0,k) = B8R /xR ,1,n,k) 2 B"1EL9(R ,1,n,K) /x'Brlgld(Ro,l,n,k) ,
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so replacing Ro by Ro/xRo , we are reduced to the case x=0 , and p nil-
potent in R . In that case f ¢ B' 6%
M .

' _ . n -1
a.Eo b, b, € B(Ro,n,k,a) , and it's g-expansion at (Tate(q ),mcan,an,(Ep_l) )

(Ro,l,n,k) is a finite sum

is that of
N
N-a
T b_-(E
N b (B )&= B & ( p-l)
aio a pl” & )N ’
p-1
N N-a
hence by hypothesis, = ba(Ep l) has q-expansion zero at one or more cusps
a=o0 - -

on each geometric comnected component of ﬁn , hence by the g-expansion prin-

N
ciple (1.6.2), = b (E .)¥®-0. By (2.6.1.3), each b_=0 . QED
a=o & p-1 a

Proposition 2.7.2. Let n,k,R satisfy the hypotheses of (2.5.1). Suppose

given for each cusp @ of L_/In a power series fa(q) € Ro[gn][[q]} . The fol-

lowing conditions are equivalent:
1. The f, are the g-expansions of an (necessarily unique) element
fe S(Ro,l,n,k) -

2. For every power pN of p , there exists a positive integer

M =0 mod pN'l , and a "true" modular form gy € ,S(Ro,n,k+M(p-1))

whose g-expansions are congruent mod pN to the given fa .

Proof. (1) ===> (2). Replacing R by Ro/pNRo , We may suppose P nilpotent

in Ro . We must show that the g-expansion of f is the g-~expansions of a true

N-1 (

modular form of level n and weight k' >k, ' =k mod p p-1l) . But as

we saw above [cf(2.7.1)], for M >> 0, and p nilpotent in R, » f has the

same g-expansions as g/ (Ep-l)M , £ truly modular of weight kM(p-1) .

Multiplying top and bottom by a suitable power of E

P
M =0 mod pN-l . Then the g-expansion congruence Ep-l(q) =1 mod(p) at each

1 » We may suppose

cusp gives (Ep_l)PN-l(q) =1 mod (pN) , hence (Ep_l)M(q) =3 mod(pN) , and

hence £ mod pN has the same g-expansion as g .
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(2) ===> (1). Multiplying necessary g by a power of (Ep-l)p ’

we may assume that the weights kﬂdn(p-l) of the gy are increasing with N .

- . N
Let Ay =M, . =M . Then (gN+1 - & (Ep_l) ) 1ies in
N e
P 'S(Ro’n’k+MN+1(p'l)) by the g-expansion principle (1.6.2), hence

% (8N+1 - gy (Ep_l) } "converges" to an element of S(Ro-,l,n,k) , whose

g-expansions are congruent modulo pN to those of 8y * QED

2.8. Bases for levels one and two

Suppose »p ;4 2,3 . Then Ep-l is a modular form of level &é which 1lifts
the Hasse invariant, and hence for any p-adically complebe ring Ro 3 r and
integer n >3 prime to p , the group GLg(Z/nz) acts on the functor
jRo,r’n by g(E/s, @, Y) = (/s, g« , Y) on the set jRo’r,n(s)] s
hence on M(Ro,r,n,k) and on S(Ro,r,n,k) . Clearly M(Ro,r,l,k) is just
the submodule M(Ro,r,n,k) GLo (Z/n¥) of invariants under this action, and
S(Ro,r,l,k) is the submodule S(Ro,r,n,k) GL(%/nX) of S(Ro,r,n,k) . Now
suppose n=3 or n=U4 ., This choice has the advantage that GLz(Z/nZ)
then has order prime to p (because p # 2,3) , and P = m rg is
then a projection onto the invariants. Using P we may also make the chosen
section of (2.6.1.1) invariant by GL2(2/3Z) , and define
B(1,k,3) = Bln,k,5) 2 _ p(an,x,9))

B(R,1,5,3) = B(1,k,3) ® R = B(R_,n,k,j) GLo(2/mZ) | gimilarly, we define
Z[1/n]

Brigid(Ro,r,l,k) = P(Brigid(Ro,r,n,k)) = (Brigid(Ro,r,n,k))GLZ(z/nz) 5 it is

the subspace of Brigid(Ro,r,n,k) consistiné of the elements £ b each of

whose terms b is invariant by GLQ(Z/nx) .

Applying the projector P to (2.6.2) gives:
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Proposition 2.8.1. Let p ;4 2,3, Ro & p-adically complete ring and r € Ro

not a zero-divisor. Then for each k > 0 , the canonical mapping

Brlgld(Ro,r,l,k) ——> 5(R_,r,1,K)
2.8.1.0 ra’ba
113 "
7P *(x )
p=-1

is en isomorphism.

Now suppose p # 2 , and consider level two. Let Ep_le S(Z[%] »2,p-1)
a lifting of the Hasse invariant. Because the subgroup Gl has order prime to p,
G, = Kernel: GL (Z/42) —> GL(2,%/2%) , considerations similar to the above
1
provide a projector P, = £ g, fram level 4 to level 2. We have
15

G . \G
M(Ro,rseak) = M(Ro’r’hsk) 1= Pl(M(Rosr:h’,k)) > S(R°9r’2’k ) = S(Rosr’h"k) 1=

= P (8(R,7,4,k)) , BEYR ,rok) = B8R r,h,100% , the subspace of

BY Jgid(R sTo4,k) of elements £ b_ with each b_ invariant by G, . Applying
o 8 a 1

P, to (2.6.2) we get:

Proposition 2.8.2. Let p ;é 2, Ro a p-adically complete ring and r € Ro

not a zero-divisor. For each k >0 , the canonical mapping

Brigid(Ro,r,Z,k) ——> 5(R_,r,2,k)

2.8.2.0

b 1
" e )
p~1
is an isomorphism.

Applying the projectors P or P. to (2.7.1) gives

1

Proposition 2.8.3. Let Ro be a p-adically complete ring. Suppose either

that p;é2 and n=2 or that p;é2,3 and n=1. Let xeRo be any
element which divides a power pN 5 N>1 of p . The following conditions
on an element £ ¢ S(Ro,l,n,k) are equivalent:

(1) fex- S(Ro,l,n,k) s

(2) the g-expansions of f all lie on xRo[ [q]] .
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2.9, Interpretation via formal schemes

et n>3, p *n s Ro a p-adically complete ring, and r € Ro .
We denote by Mn(Ro,r) (resp. h_dn(Ro,r)) the formal scheme over R given

. . N. 7
the compatible family of Ro/p R -schemes Spec u_®R o/pNRo(SYM( XY/ (Ep-l -r))
{resp. Spec ﬁn®R°/pNR°(Sym< Z )/(Ep-l -r))). We have

®k
M(R_,7,n,k) = HO(M (R ,v)0 )

S(B_,r,n,K) = E( (B ,r),u®%)

Equivalently, we may view Mn(Ro,r) (resp. ﬁn(Ro,r)) as the completion

v
along p=0 of the usual scheme Spec Mn®R°(Symm(L )/(EP -r))
A
(resp. Spec ﬁn®Ro(Sym(¢( )/(Ep_l-r)) . For any r , the first of these
schemes is affine, because Mn is, and when r=1 both schemes are affine.
The p-adic completions of their coordinate rings are just the rings M(R,r,n,o)

and S(Ro,l,n,o) respectively.
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Chapter 3. Existence of the Canonical Subgroup: Applications

In this chapter we study the "canonical subgroup" of an elliptic curve
whose Hasse invariant is "not too near zero." For simplicity, we assume
throughout this chapter that the groundring Ro is a complete discrete valu-
ation ring of residue characteristic p and generic characteristic zero. We

normalize the ordinal function by requiring that ord(p)=1.

Theorem 3.1. (Iubin) I. Let r e R have ord(r) < p/p+l . There is one
and only one way to attach to every r-situation (E/R, e, Y) (R a p-adically
complete R -algebra, p ¥n, n>1 if p#2,3, n>3 it p=2,3,
Y'Ep_l=r) a finite flat rank p subgroup scheme HC E , called the canonical

subgroup of E/R , such that:

H depends only on the isomorphism class of (E/R, an’ Y) ,

and only on that of (E/R, Y) if p #2,3.

The formation of H commutes with arbitrary change of base

R —> R' of p-adically complete Ro-a.lgebras.

If p/r =0 in R, H is the kernel of Frobenius: E —> E(®),

If E/R is the Tate curve Tate(q") over Ro/pNRo((q)) s

then H is the subgroup r, of Tate(q™) .

II. Suppose r € Ro has ord(r) < l/p+1 . Then there is one and only
one way to attach to every r-situation (E/R, &, Y) (R & p-adically complete

Ro-algebra, p*n, n>1 if p;42,3, n>3 if p=2,3, YE =r)

p-1
an rP-situation (E'/R, al, Y') , where

E' = E/H

o 'n'(an) , T: E—~>E' denoting the projection

Y'-Ep_l(E'/R, al) = g
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such that
Y' depends only on the isomorphism class of (E/R, e, Y) ,

and only on that of (E/R, Y) if p # 2,3 .

The formstion of Y' commutes with arbitrary change of
base R —> R' of p-adically complete Ro-a.lgebras.

If p/r=0 in R, Y' is the inverse image @) e

Y on E(P) =E' .,

Before giving the proof, we give some applications.

Theorem 3.2. Suppose n >3, p 4' n. Let f be a modular form of level n
and weight k on I‘o(p) s defined over Ro , and which is holomorphic at the
wnramified eusps of ﬁn,p . There exists a (necessarily unique) element
Fe S(Ro,l,n,k) whose g-expensions at each cusp of ﬁn is that of © at
the overlying unramified cusp of Mn,p . Furthermore, if r € Ro has
ord(r) < p/p+l , then in fact T € S(Ro,r,n,k) .

Proof. Simply define I(E/R,u@ ,¥) = £(E/R,w ,H) .

Theorem 3.3. Suppose n >3, P ,}'n , and that either k > 2 or k=1 and
n<1l, or that k=0, p#2, or that k=0, p=2 and n<1l. Let

r € R have ord(r) < 1/p+l . For any f € S(Ro,rp,n,k) , there is a unique

element off) € S(Ro,l,n,k) whose g-expansions are given by

o(£) (Tate(q™) ,uw

n
can’an) = £(Tate(q P) ’wcan,'ﬂ'(an))

[where T: Tate(q") —> Tate(qd"™®) is the map "dividing by [ ", and ‘rr((xn)

is the induced level n-structure]. Furthermore, cp(f)-(Ep_l)k € S(Ro,r,n,pk) .

v
Proof. Define o(f) (E/R,m,an,Y) = £(E'/R, T (w) ,a;l,Y') , [B'=E/H, 7: E —> E!
is the projection]. This makes sense if Y-EP_1=1 , for then 7 is étale
and so ;r*(w) is a nowhere venishing differential on E' = E/H . To see that

EX _+o(f) actually lies in S(R_,r,n,kp) , notice that its value on
p-1'% °
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(B/R,0,2 5Y), Y'Ep_l:rp , is given formally by
E _1(E/R,m,an) )k-f(E'/R,;r*(w) ’ar'x’Y') . {In fact this expression has no meaning,
because 1r*(m) may well fail to be nowhere-vanishing on E' .] However, ir

we write T (w) = A-w' with A € R and o nowhere-vanishing on E' , then
/R,m,a ) k
((® )k,q)(f))(E/R’w,a ,Y) =<_E___._ 'f(E'/R,m',Ot',Y') .
p-1 n n
But a simple tangent calculation (cf. 3.6.5 ) shows that A and Ep_l are
essentially equal; they differ multiplicatively by a unit of R . By "reduction

to the universal case", in which R is flat over Zp , we can make sense of

the ratio E 1/>\ > and interpret it as a unit in any R ; this permits us to

(E/R,w,a )
define (Ep_l) -<p(f) (E/R,w,an,Y)) =<—P——) £(E* 0! ,a',Y') . QED

3.4 Construction of the canonical subgroup in case r=1

Let us first note that for r=1 the theorem is very simple. Given
(E/Roc) with E (E/Rcz } invertible, the curve E ® R/pR over R/pR has
invertible Hasse 1nva::'1ant, hence Ker(F: E ® R/pR —> (E ® R/pR) (p)) is a
finite flat subgroup-scheme of E ® R/pR of rank p whose Cartier dual, the
kernel of Verschiebung, is _eftﬁe_. Since R is p-adically complete, Hensel's
lemma allows us to uniquely 1lift Ker F to the desired subgroup-~scheme H of
E/R (by taking for H the Cartier dual of the unique lifting of its etale dual).
Since the Tate curve Tate(q") over ]Fp((q)) has ker F = By the above
argument shows that the canonical subgroup of Tate(q®) over Ro/pNRo((q)) is
gup . This concludes the proof of part I of the Theorem. For part II, still
only in the case r=1 , we simply note that E' = E/H reduces mod p to
(E®R/pR)/Ker F ~ (E ® R/pR) (®) , which certainly has invertible Hasse invar-
ient if E ® R/pR does - indeed E,. ,((E ® B/pR) (P) WP )ar(xp)) =
= (EP_l(E ®R/pR,w,Ocn) )P . Hence Ep_l(E’,Otn) is invertible in R . This

concludes the proof of (3.1) in the case r=1.
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3.5.0 The "general case" is unfortunately more difficult, and involves a
samewhat detailed study of the formal group of an elliptic curve. Our method
of constructing the canonical subgroﬁp will be to first comstruct a finite
flat subscheme of the formal group, then to show that it is in fact a subgroup

which has the desired properties. We begin with scme lemmas on the formal group.

3.6  ILemmas on the formal group

Lemme 3.6.1. Let R be an ]Fp-algebra, E/R an elliptic curve, and « a
nowhere vanishing differential. Let X be a parameter for the formel group
of E/R (i.e., the completion of E along the identity section), which is

dual to w in the sense that the expansion of « along the formal group is

w=(1+

z aan)dX .
n>1
Let A(E,w) denote the Hasse invariant. Then we have the identities
pi-l
p-1
2 n, = (A(E,0)) for nw=1,2,...
-

. 1 1 (p) . . 1) "
Proof. Let C: 05 /R _— (nE /R) denote the Cartier operator, "dual" to

the endomorphism D —> D¥ of i, . We have C (w) = A(E,m)‘w(p) , but we

E/R
may calculate C "locally":
0, p)na
C(a xax) = ol

Hence C(w) = = (ax) (p)’ and

m>o

Clw) = A(E,w)’w®p =3 A(E,w)( am)P(deX) (p) , whence

Sp(m+1)-1

= A(E,m)-(am)p . As a_=1, the result follows easily. QED

ap (m+1)-1 o

Lemma 3.6.2. Let R be any Zp-algebra, and let G be = one-parameter formal

group over R . Then

(1) EndR(G) ) zp and zp lies in the center of EndR(G) .
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(2) Given any parameter X » there exists a (non-unique!) parameter
X = Xo + higher terms such that for any p-1'st root of unity

¢ € zp , we have [£](X) =¢X .

Proof. Thanks to Lazard, we're reduced to the universal situation, which has
R flat over Zp . So we may use log, exp, and continuity to get (1). As
for (2), it is proven directly in ([31], lemma 4.12), or we can remark that
any choice of a "p-typical coordinate” X (cf.[5], [6]) which is congruent to

Xo mod degree two terms will do the job.

Lemma 3.6.3. Let R be an ]Fp-a.lgebra, G a one-parameter formal group over R.

In terms of any parameter X , [p](X) is a function of X¥: i.e.

3.6.3.0 pIX) =vxF) = » v XP.
n>1 n
Proof. In End (G), p =VeF, F: G —> G(P), v: ¢® ¢, QED

Lemma 3.6.4. Let R be a Zp-algebra., G a one-parameter formal group over R,
X a parameter on G such that [t](X) = (X for any p-1'st root of unity

t e Zp . Then [pl(X) = X-(a series in Xp-l) .

Proof. [pI{[tI(X)) = [tI1([p](X)) because p+t =t'p in Z:p . Thus
[pl(tX) =t-([p](X)) , so writing [pl(X) == ean , we have e t" = et s
hence (;-gn)en=0 . But for n #1 (p-1), t~t™ is invertible in Zp » hence

e =0 . QED

Lemma, 3.6.2. Let R be a Zp-a.lgebra, G a one-parameter formal group over R,

[
~~
i
+
™M

X a parameter, o = anxn)dx the dual invariant differential. Then

we have

3.6.5.0 (pI(x) = ap_l-xP + higher terms mod(p) .
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Proof. [In the application to elliptic curves, we have a = A(E,w) , and

p-1
[pl(x) = V(xP) = tangent(V)-X® + higher terms, so the assertion is that
A(E ,m)

]

tangent(V) = action of F on Hl(E, 8 ) , which is true?]
By Lazard, we are reduced to the universal case, in which R is flat

over Zp . Over R[1/p] , we have w = dp(X), o¢(X) e R[1/pI[[X1] ,

p=2 X_.n+l P

X . .
o(X) =X + n§2 8 T3+ a1 T + higher terms. Let ¢(X) be the inverse

series to @i ¥(X)= X + ... ¥{o(X)) =X . Then [pI(X) = ¥(p-o(X)) .
Because o(X) mod degree p lies in X+X2R[[X]] , for each n>2 ,
o(X)" mod degree ptl lies in X° + X*"IR[[X]] . If we write

¥(X) =X + s § 5 bixl , we see from this and the requirment y(p(X)) = X that
be,.. . ,bp_1 €

[p1(X) = y(pp(X)) dis given by

~-a
R , while bP = _le modulo R . Now the term of degree p in

P . . p-1 .
% b,p-(coef of XP in (p(x})1) = 2 + b.pi (coef of ¥2 in o(x)*) +1v_-BF ,
=1 Loy P

and as pbp € R, we see that all the terms save a lie in DR . QED

p-1

We may summarize our findings in a proposition.

Proposition 3.6.6. ILet R be a Zp-algebra, G a one-parameter formal group
over R, X a coordinate on G which satisfies [t]{X) = ¢(X for every p-l'st
root of unity ¢ € ZP , and © the "dual® differential. Then

P, o (p-1)+1
3.6.6.0 [pI(X) =pX + a® + = cm'Xm

m=2

where 8,CpsC35e4+5 € R, and ¢, € pR unless m{p-1)+1 = 0(p) , i.e.,
c, € PR unless m =1 (p) . Further, if G is the formal group of an ellip-

tic curve E/R , then a = A(E,w) mod pR .

Proof. By (3.6.4), [pl(X)=X-(a series in Xp-l) , but modulo pR, [p](X) is

also a series in X , by (3.6.3). The congruence for a is by (3.6.1).
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3.7 Construction of the canonical subgroup as a subscheme of the formal group

Suppose we are given (E/R, e, Y) with R a p-adically complete

R -algebra, n>1 if p #2,3, n>3 for p=2,3, Y-Ep_ =r, ord(r) < p/p+l.

1
Because it suffices to treat the case when p is nilpotent in R , we may, by
ordinary localization on R , suppose that the formal group of E/R is given
by a one-parameter formal group law over R , with formal paramter X ;

we denote by w the "dual" differential. By reduction to the universal case,
we may now reduce to the case when R is a ﬂ=a§ Zp-algebra. By (3.6.2), we
may suppose that [{](X) = tX for all p-1'st roots of wnity ¢ ¢ Zp .

By (3.6.6), the endomorphism [p] on the formal group looks like

(3.7.0) [pl(X) =pX + ax + % <:mxm(1"1)+1
m > 2

~
)a =E _l(E/R,w,Ctn) mod pR
with { P

¢, =0 mod pR unless m=1 (p) .

We first give a heuristic for the method to be used.

Naively speaking, the kernel of [p] is an ]Fp-vector space, and the
canonical subgroup is just a nice choice of a line in this Fp-space, i.e.,
it is an orbit of IF; in this vector space. But the action of E‘; on
Ker([p]) is induced by the action of Kooy C ZP on the formal group. Thus
we must write down the equation for the orbits of the action of up a o
Ker([p]) , and somehow solve this equation in a "canonical" way. Because
em_y actson X by [£)(X) =X, it is natural to take T 28 xP~

*
a parameter for the space of orbits of the action of IIFP on Ker([pl) .
The formal identity {obtained from (3.6.6.0) by substituting T = xP-1 )
(3.7.1) [PIX) =X-(p +ar + £ cT9
m
m>2

suggests that in fact the equation for the orbits is

(3.7.2) g(r) Eprar+ 3 ce™=0,
m>2 T
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and that the canonical subgroup is nothing more than a canonical zero of g(T).
We now implement the sbove heuristicelly-motivated procedure. Let

r, € R be the element -p/r ; we have ord(rl) =1 - ord(r) > 1/p+1 , (because

ord(r) < p/p+tl by hypothesis). Let Y = Y(E/R,m,(xn) € R ; we have
Y-Ep_l(E/R,w,Otn) =r ., Because a = Ep_l(E/R,m,an) modulo PR , we may write
Ep_l(E/R,w,an) =atpb, b € R. Thus Y-(a+pb) =r , and an immediate calcu-
lation shows that if we put

rlY
(3.7.4) b = TrrppY

(which makes sense, because r. is topologically nilpotent in R) s then

1
p+at°=0.

Let's define gl(T) = g(toT) 5

(3.7.5) g, (1) =p+at T+ = cm(to)m'lm
n > 2
=p-pT + 5 c (t ).
r 2 2 r. o

= P+l :
Let r, = (rl) /p , en element of R, having ord(rz) >0 . Let r3 € R

be any generator of the ideal (ra,(rl)z) of R, .

Lemma 3.7.6. We may write gl(’l‘) = p-ga(T) , with

(3.7.6.1) g(T) =1-T + mem ,

z
m>2

with 4 er
m

3

R , and dm—>0 as m-—ow,

Proof. We have d = cm(to)m/p . Because cm/p lies in R if mfFlmed p ,

and because (to)P+l/p lies in r,R , we have 4 er.R forall m>2, and

2 3

dm—>0 as m —> o . We next apply Newton's lemma to R, I=r.R and h=g2.

3
Lemma 3.7.7. (Newton) Let R be a ring complete and separated with respect

(-]
to powers of an ideal ICR . Let h(T) =1-T + 3 mem,with 4 €T,
m=2
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and 4 —>0 as m—>w . By "substitution", h gives rise to a continuous
function h: R —> R . There exists a unique element tw € T such that

h(l-tm) =0 .

Proof. Making the substitution T = 18 , we introduce

m s .
hl(S) =h(1-8) = e+ (1+el)S + a § 5 e , with coefficients e, € I.

For s € I, hl(s) = h(1-s) , so our problem is to show that hy

zero S in I. Forany s €I, hi(s) € 1+I , hence is invertible in R ,

has a unique

while hl(s) € I . The Newton process of successive approximations:

8 = 04.044,8

- 1
o Sy hl(sn)/hl(sn) is easily seen to converge to a zero of

¥l
by . 1
0 =n(s+a) =h (s) +hi(s)n + (%) =ni(s)en + (6%) , hence as hi(s) is

If s and s +A are two zeros of h, in I , we have
invertible, we have A € (A2) . Because A € I and R is I-adically sepa-

rated, this implies A =0. QED

Tracing back our steps, we have constructed a zero t . = to(l- tw)
of g(T) . Because tcan lies in rlR , we may expand g in powers of ’1’-teo s
and conclude that g(T) is divisible by Tt n IR R[[T]] . We define the

canonical subscheme to be the finite flat rank p subscheme of Ker([p])

defined by the equation Xp-tcanx . (Tt may be verified that this subscheme
is independent of the choice of coordinate X on the formal group satisfying

[£1(X) =X for all p-l'st roots of unity ¢ € zp 2)

3.8 The canonical subscheme is a subgroup

Let's begin by remarking that if E/R modulo p has invertible Hasse
invariant, then [p](X) = pX + (unit) x° + . By the formal version of
the Weierstrass Preparation Theorem, we see that in R[[X]] , we have
[pI(X) = (xP- *oan X)+(a unit in R[[X]]) . Thus when Hasse is invertible mod p,
the canonical subscheme is all of Ker([p]) in the formal group, hence in

particular it's a subgroup-scheme of the formal group.
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In the general case, the condition that the subscheme of equation
XP - tcanx be a subgroup-scheme of the formal group is that, noting by G(X,Y)

the group law, we have

(3.8.1) 6(xX,Y)P~ toan G(X,Y) =0 in R[[X,Y]]/(Xp-tcan X,YP - tgn ¥) -

Because tca.n lies in rlR , it is topologically nilpotent in R , hence the
R-algebra A = R[[X,Y]]/(xP ~toan X s ®. t,an¥) is finite snd free of rank
p2 with basis X9 s 0<1i, j<p-1. The condition that G(X,Y)p-tmG(X,Y)
vanish in A is simply that the p2 "coefficients" gs; € R defined by the

equation

(3.8.2) (XY’ - ¢ G(X,¥) = Z giniY‘j in A
o<, J <p-1

all vanish in R . Thus it suffices to find a p-adically complete Ro-a.lgebra
R' DR such that, over R' , the canonical subscheme is a subgroup (for then
the gi,j vanish in R' , hence vanish in R). But in the universal situation,
R = M(Ro,r,n,o) CR'= M(Ro,l,n,o) , and over R' , Ep-l

hence Hasse mod p is invertible, and so as noted above the canonical sub-

is invertible,

scheme is a subgroup over R' . This concludes the proof of part I of the

main theorem (3.1).

(3.9) We now turn to proving part II of 3.1, by comstructing Y' . As be-
fore we may suppose R flat over Zp . Let re R0 have ord(r) < l/p+l .

Then 1, = p/r has ord(rl) > p/p+l , and hence r. is divisible by ”°

1
and 1) = rl/rp has ord(rh) >0 . Since t, € r;R, modulo r;R the
canonical subgroup is just the kernel of F: E —> E(p) . Hence E' mod rlR
is E(p) . Let w' be any novhere vanishing one-form on E' which reduces

modulo rlR to w(p) on E(p) . Hence we have the congruence

(3.9.1) E,q(B/Rywt00) = (B, ,(B,00))F modulo xR .
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Because ry = rh-I'P , we may write

(3.9.2) By (B'/Rw' @) = (Ep_l(E/R,w,Otn))p +¥n3, JeR.
Using the equation

(3.9.3) Y(E/R,w,an)-Ep_l(E/R,m,Oln) =7

one immediately checks that if we define

(398 Y(E/Rur ) = (E/Rua )P+ ng (1E5/R60)P

then Y'(E'/R,w' ,a;l)-Ep_l(E'/R,w‘ ’a1'1) = rP . This concludes the proof of

part II. QED

3.10 Finiteness properties of the Frobenius endomorphism of p-adic modular

functions.
Throughout the rest of this chapter, we denote by Ro a complete dis~
crete valuation ring of mixed characteristic with perfect residue field Ro/ n .

The Frobenius endomorphism ¢ of S(Ro,l,n,k) is defined by

-1 v
o{f) (E,u,an,Y = (Ep_l) ) = £(B/H,m*(w) ,w(an) YT = l/Ep_l) , where H denotes
the canonical subgroup of E , 7: E —> E/H denotes the projection. As we
k
)

have seen above, for r € R having ord(r) < 1/p+l , the composite (Ep-l ‘o

"extends" to give a camutative diagram

(B _)*
S(R_,1,0,k) —2> S(R_,1,n,k) —2=E—> §(R_,1,n,1k)

N ]

S(Ro,rp,n,k) :‘/ S(Ro,r,n,pk)
e

For k=0, we find simply that the endomorphism ¢ maps S(Ro ,F ,n,0) to

S(Ro,r,n,o) for any r ¢ R having ord(r) < 1/p+L .
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Theorem 3.10.1., Suppose n >3 and _p* n,and n<li if p=2 . Then

I. For reR with ord(r) < 1/p+l , the Frobenius morphism
o: S(Ro,rp,n,o) e S(Ro,r,n,o) is a finite morphism (but pot in

general flat).
II. If r=1 , then ¢ is a finite flat morphism of degree p .

ITI. For any r with ord(r) < 1/p+l , the homomorphism (X the fraction

field of Ro)
P®K: S(Ro,rp,n,0)®K —> S(R_,7,n,0) ®K
is finite and etale of rank p .

Proof. (I).. Because the ring S(Ro,r,n,O) is complete and separated in the
p-adic topology, to prove finiteness of ¢ it suffices to prove that the

induced homomorphism
3.10.2 ¢®R / m : S(Ro,rp,n,o) ®R /m —> S(R ,r,n,0)®R /u

is finite. Interpreting S(Ro,r,n,o) as H°(ﬁn(R°,r),0) (cf. 2.9), and
noting that I\TIn(Ro,r) is flat over R, we see (by "universal coefficients")
that the canonical homomorphism S(Ro,r,n,0)®Ro/13 — S(Ro/m,r,n,o) is
injective, with cokernel of finite dimension over Ro/x_n_ . Thus S(Ro/m,r,n,o)
is a finite module over S(Ro,r,n,0)®R°/m , and we have a commutative diagram

of ring homomorphisms
S(Ro/x_n,rp,n,o) —e S(Ro/g,r,n,o)

3.10.3
cp®R°/m
S(Ro,rp,n,o) ®R /fm ———> S(R ,7,0,0)®R /u
in which the vertical arrows are finite. Thus the finiteness of the lower
horizontal arrow (which is what we wish to prove) follows from the finiteness

of the upper horizontal arrow.
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Notice that if r=1 , both S(Ro/g,r,n,o) and S(Ro/m,rp,n,o) are
S(Ro/m,l,n,o) , while if O < ord(r) , both S(Ro/m,r,n,o) and S(Ro/m,rp,n,o)
are S(Ro/m,o,n,o) . Because ord(r) < 1/p+l , both p/r and p/r* liein m ,

and hence over Ro/m the canonical subgroup over Mn(Ro/m,r) and over

ﬁn(Ro/m,n,zP) is just the kernel of Frobenius. It follows immediately that in
either case (i.e., r=1 or O <ord(r) < 1/p+l) , the endomorphism ¢ of
S(Ro/xg,r,n,o) is precisely the p'th power mapping (because
o(£) (Byus ,Y) = f(E(P),u(P) ,ar(lp) Y o= Y(E,w,an)P) = (f(E,w,OLn,Y))p) . But
ﬁn(Ro/m,r) is a scheme of finite type over Ro/m , hence S(Ro/x_n_,r,n,o) is
a finitely generated Ro/g-algebra, hence finite over itself by the p'th power
endomorphism, which proves (I).

For (II), we remark that when r=1 , the scheme ﬁn(Ro/m,J.) is simply
the open set of Mn®Ro/n¥ where E__

p-1
curve over Ro/xg . Hence the p'th power endomorphism of its coordinate ring

is invertible, hence is a smooth affine

S(Ro/m,l,n,o) makes that ring finite and flat over itself of rank p. Because
S(Ro,l,n,o)_ is p-adically complete and flat over R, it follows that o
makes S(Ro ,1,n,0) into a finite flat module over itself of degree p.

The proof of (III) is more difficult, and requires Tate's theory of
rigid analytic spaces. The ring S(Ro,r,n,o) is the p~-adic completion of

Ho(ﬁn®Ro,Symm(g_)®p'l)) / (Ep_l- r) , and this last algebra is finitely generated

over R (because w has positive degree, hence is ample). Thus ndting by X
the fra