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Abstract. Let p and q be two distinct odd primes. Let K be an imaginary quadratic field
over which p and q are both split. Let Ψ be a Hecke character over K of infinity type (k, j)

with 0 ≤ −j < k. Under certain technical hypotheses, we show that for a Zariski dense set of
finite-order characters κ over K which factor through the Z2

q-extension of K, the p-adic valuation
of the algebraic part of the L-value L(κΨ, k + j) is a constant independent of κ. In addition,
when j = 0, this constant is zero.

1. Introduction

Let p and q be two distinct odd primes. It is a classical problem to study the divisibility of
the algebraic part of (Hecke) L-values by a given prime p as one varies the (Hecke) characters
of q-power conductor. For Dirichlet L-values, such questions were studied by L. Washington in
[Was75, Was78]. He showed that for almost all Dirichlet characters of q-power conductor, the
algebraic parts of their L-values are coprime to p. As an application, he proved that the p-part
of the class number stabilizes in cyclotomic Zq-extensions of abelian number fields. Washington’s
results have been extended to the case of (finite) product of cyclotomic Zqi-extensions of abelian
number fields (for distinct primes qi with qi ̸= p) by E. Friedman in [Fri82].

In [Sin87], W. Sinnott introduced the idea of relating non-vanishing of such L-values modulo p to
Zariski density (modulo p) of special points of the algebraic variety underlying the L-values. Using
this machinery, J. Lamplugh generalized Washington’s theorem to split prime Zq-extensions of
imaginary quadratic fields in [Lam15]. Let K be an imaginary quadratic field such that qOK = qq∗

with q ̸= q∗, then the split prime Zq-extension of K is one where only one of q or q∗ is ramified.
In [Hid04, Hid07], H. Hida studied analogous questions for anticyclotomic characters. He proved

that when p is split in K and the tame conductor of characters is a product of split primes (which
excludes the self-dual characters), the algebraic parts of the L-values of "almost all" anticyclotomic
characters of q-power conductor over a CM field are non-zero mod p. Here, "almost all" means
"Zariski dense" after identifying the characters with a product of the multiplicative group (see
Remark 5.2). This has been generalized by M.-L. Hsieh to include self-dual characters assuming
that p is split in K in [Hsi12] and that the inert part of the conductor is square-free. The hypothesis
on the inert part of the conductor was removed in [Hsi14, Remark 6.4]. In the case where the CM
field is an imaginary quadratic field, T. Finis has proved similar results for self-dual characters
allowing p to be either inert or ramified in K, and has determined precisely the p-adic valuations
of the algebraic parts of anticyclotomic Hecke characters of q-power conductor; see [Fin06]. More
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recently, A. Burungale showed in [Bur16] that these results may be extended to Hida families of
anticyclotomic characters under the same hypotheses as those in the works of Hsieh.

We study a generalization of the aforementioned results on anticyclotomic characters to Hecke
characters (not necessarily anticyclotomic) of q-power conductor over an imaginary quadratic field.
It can be regarded as a 2-variable version of [Lam15, Theorem 6.9].

Theorem A. Let K be an imaginary quadratic field over which p and q are both split. Suppose
that both the prime ideals above q are principal in K. Let Ψ be a Hecke character over K of infinity
type (k, j) and conductor f, where 0 ≤ −j < k and f is coprime to pq. Assume that q ∤ [R(f) : K],
where R(f) denotes the ray class field of K of conductor f. Let F∞ be the Z2

q-extension of K. There
exists a constant CΨ such that for a Zariski dense set of finite-order characters κ of Gal(K∞/K),

ordp

(
L(alg)

(
κΨ
))

= CΨ.

Under additional hypotheses, we prove:

Theorem B. With notation as in the statement of Theorem A, if j = 0 and the character of
Gal(R(f)/K) induced by Ψ satisfies a technical hypothesis (7.1), then CΨ = 0.

Remark 1.1. If p ∤ [R(f) : K], then it is easy to show (see Remark 7.1) that one may multiply Ψ
by a character ρ of Gal(R(f)/K) such that the technical hypothesis is satisfied.

Outline of proofs. The proofs of Theorems A and B follow closely the line of argument of [Lam15,
Theorem 6.9]. It consists of the following ingredients:

(1) Establish a theory of Gamma transform of "elliptic function measures" on Z2
q, which are

measures that arise from a rational function on an elliptic curve.
(2) Show that the π-adic valuations of the aforementioned Gamma transforms have the same

p-adic valuation for almost all finite characters on Z2
q.

(3) Show that by defining an elliptic function measure (see Definition 3.8) arising from a rational
function on the CM elliptic curve E attached to Ψ, the Gamma transforms of this measure
is related to the special values of L-series that we are interested in. This proves Theorem A.

(4) To prove Theorem B, we show that the π-adic valuation discussed in (2) is zero under our
additional hypotheses.

Step (1) is carried out in Section 3. We follow the strategy of Lamplugh in [Lam15, Section 3],
where the theory for elliptic function measures on Zq was developed. To execute (2), we use a
lemma of Hida on the Zariski density of characters on Zd

q from [Hid04] to prove a result on the
algebraic independence of functions on elliptic curves with positive characteristic. In particular,
we prove Theorem 4.6, which is a two-variable version of [Lam15, Theorem 4.9]. Next, we prove
Theorem 5.1, which completes step (2) outlined above. The corresponding 1-variable version of this
theorem was proved in [Lam15, Section 5]. The construction of the elliptic function measure of step
(3) is discussed in Section 6.3; this is a generalization of the rational function on the CM elliptic
curve E utilized in [Lam15, Section 6.3] and crucially uses the work of E. de Shalit [dS87]. The
link between the Gamma transforms of this elliptic function measure and the L-values of interest is
given by Lemma 6.9. In step (2), we see that the π-adic valuation mentioned above is in fact given
by the valuation of the rational function (see Definition 3.6). Using ideas of the proof of [Lam15,
Lemma 6.7] in the one-variable case, we show in Lemma 7.2 that this valuation is zero; this allows
us to conclude step (4).
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Remark 1.2. While Theorems A and B are deduced using Lamplugh’s techniques developed in
[Lam15], our results are strictly stronger than the one-variable analogue [Lam15, Theorem 6.9].
Indeed, after identifying the characters of Gal(F∞/F ) with a subset of G2

m/Qq
, the Zariski closure

of the set of characters given by loc. cit. is one copy of Gm/Qq
. In particular, it is not Zariski

dense in G2
m/Qq

.
Furthermore, we consider Hecke characters of much more general infinity type than the ones

considered in [Lam15]. In addition, the class number of K is assumed to be 1 in [Lam15], whereas
Theorem A assumes that q does not divide [R(f) : K] instead.

Remark 1.3. Using an argument similar to the one presented in [Lam15, Section 7], we expect
that Theorem B combined with the Iwasawa main conjecture (proved by K. Rubin) should show that
the p-part of the class groups over a Z2

q-tower is "generically zero". However, it does not seem to be
enough to give a generalization of [Lam15, Theorem 7.10] in our setting, unless we replace "almost
all" by "all but finitely many".

We conclude by discussing some follow-up questions.
• In [KL23], we study the growth of the p-part of the class groups in the anticyclotomic
Zq-extension making use of the aforementioned result of Hida. Note that unlike [Lam15,
Theorem 1.3], we do not expect the p-part of the class groups to always stabilize since the
corresponding Hecke L-values are not always generically zero modulo π.

• Similar to how we build on Lamplugh’s results to obtain our results, it may be possible
to prove a similar result for Hecke characters of q-power conductor over general CM fields,
relying on results of Hida and Hsieh on anticyclotomic characters.

• It may also be interesting to generalize our results to the setting of Hida families, utilizing
ideas of Burungale developed in [Bur16].
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2. Basic Notions

Let K be a fixed imaginary quadratic field of discriminant dK and H denote its Hilbert class
field. Throughout, we assume that q is coprime to the class number of K and we fix a Hecke
character Ψ given as in the statement of Theorem A. The character Ψ ◦N−j (where N is the norm
map on K) is of infinity-type (0, k− j). There exists a character χ0 of Gal(R(f)/K) and an elliptic
curve E defined over R(f) with complex multiplication by OK , i.e., OK ≃ End(E), such that

ΨN−j = φk−jχ0,

where φ is a Hecke character of infinity type (1, 0) satisfying

ψ = φ ◦NR(f)/K
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with ψ being the Hecke character over R(f) attached to E. Furthermore, R(f)(Etor) is an abelian
extension of K. (See [dS87, Chapter II, proofs of Theorems 4.12 and 4.14] where the existence of
E and χ0 is discussed.) Let q ≥ 5 be a prime number that splits in K, i.e.,

qOK = qq∗ with q ̸= q∗.

For any integral ideal a in OK , we write Ea to denote

ker (a : E → E) .

We write µK to denote the set of roots of unity in K and wK to denote the size of this set.
We fix a different prime p such that pOK = pp∗ in K with p ̸= p∗ and gcd(p, 6fq) = 1. Note in

particular that E has good reduction at all primes above pq.

3. Distributions and measures on Z2
q

The goal of this section is to generalize the notion of Gamma transform from [Sin87] and elliptic
function measures studied in [Lam15, Section 3.2] to the two-variable setting.

Let E be the elliptic curve given in §2 and k/Qp be a finite unramified extension containing
Qp(Efq). Set J = k(µq∞). This is the unramified Zq-extension of k (since µq ⊂ k by assumption).
Let O denote the ring of integers of J . Fix a uniformizer π of k and let ordπ denote the normalized
valuation map

ordπ : J → Z ∪ {∞}.

Definition 3.1. Let α be a J-valued distribution on Z2
q, i.e., α is a finitely additive function on

the set of compact open subsets of Z2
q with values in J .

(i) Given any c = (c1, c2) ∈ (Z×
q )

2, define α◦c to be the distribution given by α◦c(X) = α(cX)

for all open compact subsets X of Z2
q.

(ii) The Fourier transform of α is defined to be

α̂ : µ2
q∞ → J

(ζ1, ζ2) 7→
∫
(x,y)∈Z2

q

ζx1 ζ
y
2dα(x, y).

(iii) Given a finite character χ on (Z×
q )

2 with values in J , we define Leopoldt’s Γ-transform as

Γα(χ) =

∫
Z2
q

χdα,

where we extend χ to Z2
q by sending all elements not inside (Z×

q )
2 to zero.

(iv) We call α a measure on Z2
q if the image of α has bounded values with respect to ordπ.

Lemma 3.2. Suppose that χ is a finite-order character on (Z×
q )

2 factoring through (Z/qm)× ×
(Z/qn)×, then

Γα(χ) = τ(χ)
∑

x∈Z/qm×Z/qn
χ−1(x)α̂(ζx),

where ζ = (ζm, ζn) with ζm and ζn being primitive pm-th and pn-th roots of unity respectively, and
τ(χ) is the Gauss sum of χ defined by

τ(χ) =
1

qm+n

∑
(x1,x2)∈Z/qm×Z/qn

χ(x1, x2)ζ
−x1
m ζ−x2

n .
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Proof. See [Sin87, proof of Proposition 2.2, equation (2.6)] (or [Lam14, proof of Lemma 2.2.3]). □

Lemma 3.3. A distribution α on Z2
q is uniquely determined by its Fourier transform α̂.

Proof. The characteristic function on the open subset Ua,b := (a+qmZq)× (b+qnZq) of Z2
q satisfies

1|Ua,b
=

1

qm+n

∑
(ζ1,ζ2)∈µqm×µqn

ζ−a
1 ζ−b

2 χ(ζ1,ζ2),

where χ(ζ1,ζ2) : Z2
q 7→ J is the character sending (x, y) to ζx1 ζ

y
2 . In particular, we see that α

(
Ua,b

)
is a linear combination of α̂(ζ1, ζ2). Since the subsets Ua,b form a basis of open compact sets of Z2

q,
α is uniquely determined by α̂. □

For the rest of the article, we fix an isomorphism of groups δ : (µq∞)2
∼−→ Eq∞ .

Definition 3.4. A J-valued distribution α on Z2
q is an elliptic function measure for our fixed

elliptic curve E (with respect to δ) if there exists a rational function R ∈ J(E) such that for almost
all ζ ∈ (µq∞)2, we have

α̂(ζ) = R(δ(ζ)).

Lemma 3.5. Let f ∈ O[x, y] such that the image of f in J(E) is non-zero. Then, there exists a
unique integer n ≥ 0 such that

ordπ(f(Q)) ≥ n ∀Q ∈ Eq∞ \ {0}

with equality holding for almost all Q ∈ Eq∞ .

Proof. The proof of [Lam15, Lemma 3.2] goes through in verbatim on replacing Eq∞ by Eq∞ . □

This lemma allows us to define a valuation on J(E).

Definition 3.6. Given an R ∈ J(E). If R ̸= 0, we define ordπ(R) to be the integer n such that
ordπ(R(Q)) = n for almost all Q ∈ Eq∞ . If R = 0, we set ordπ(R) = ∞.

By Lemma 3.5, if α is an elliptic function measure, then it is in fact a measure (not just a
distribution) since the values of α are linear combinations of α̂ = R ◦ δ as we have seen in the proof
of Lemma 3.3 and 1

qm+n ∈ O× (as p ̸= q).
Note that for any given rational function R ∈ J(E), we can define a J-valued measure attached

to R as given by the following lemma:

Lemma 3.7. Let R ∈ J(E) be a rational function. There exists a unique measure α on Z2
q such

that the Fourier transform α̂ coincides with R ◦ δ. In other words, α is an elliptic function measure
associated to R in the sense of Definition 3.4.

Proof. By the proof of Lemma 3.3, we may define a measure α satisfying

α
(
(a+ qmZq)× (b+ qnZq)

)
=

1

qm+n

∑
(ζ1,ζ2)∈µqm×µqn

ζ−a
1 ζ−b

2 R ◦ δ(ζ1, ζ2).

It follows from direct calculations that α is additive and that α̂ = R ◦ δ. □
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We now show how Gamma transforms behave under Galois actions. This will be utilized in
subsequent sections. Let us define the following homomorphisms of groups

χµ : Gal(J/k) ↪→ Aut(µq∞)2 ≃ (Z×
q )

2,

χE : Gal(J/k) ↪→ Aut(Eq∞)×Aut(Eq∞) ≃ (Z×
q )

2.

Note that χµ = χcyc × χcyc, where χcyc is the cyclotomic character.

Definition 3.8. An elliptic function measure α for E is said to be defined over k, if α̂ = R ◦ δ
for a rational function R ∈ k(E).

Lemma 3.9. Suppose that α is an elliptic function measure defined over k. Then, for almost all
finite-order characters κ of (Z×

q )
2 and for all σ ∈ Gal(J/k), we have

Γα(κ)
σ =

κσ(χE(σ))

κσ(χµ(σ))
Γα(κ

σ).

Proof. It follows from Lemma 3.2 that

Γα(κ)
σ = τ(κ)σ

∑
x∈Z/qm×Z/qn

κ−1(x)σα̂(ζx)σ.

We have

τ(κ)σ =
1

qm+n

∑
(x1,x2)∈Z/qm×Z/qn

κ(x1, x2)
σ(ζ−x1

m ζ−x2
n )σ

=
1

qm+n

∑
(x1,x2)∈Z/qm×Z/qn

κ(x1, x2)
σζ−χcyc(σ)x1

m ζ−χcyc(σ)x2
n

=
κσ(χcyc(σ), χcyc(σ))

−1

qm+n

∑
(x1,x2)∈Z/qm×Z/qn

κ(x1, x2)
σζ−x1

m ζ−x2
n

= κσ(χµ(σ))
−1τ(κσ).

Since α is an elliptic function measure, we have

α̂(ζx)σ = R(δ(ζx)σ) = R(δ(ζχE(σ)x)) = α̂(ζχE(σ)x)

for some R ∈ k(E). Therefore, combining these equations gives

Γα(κ)
σ = κσ(χµ(σ))

−1τ(κσ)
∑

x∈Z/qm×Z/qn
κ−1(x)σα̂(ζχE(σ)x)

=
κσ(χE(σ))

κσ(χµ(σ))
τ(κσ)

∑
x∈Z/qm×Z/qn

κ−1(x)σα̂(ζx)

=
κσ(χE(σ))

κσ(χµ(σ))
Γα(κ

σ)

where the last equality follows from Lemma 3.2 applied to κσ. □
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4. Algebraic Independence Results

The main result of this section is Theorem 4.6, where we prove an algebraic independence result of
functions on Eq∞ taking values in a finite field whose characteristic is distinct from q. The first step
is Theorem 4.2, which is an analogue of [Sin87, Proposition 3.1] (and also [Lam15, Theorem 4.5]).
This step involves proving an algebraic independence result of functions on Eq∞ taking values in
a general field, F . Let E be an elliptic curve as fixed in Section 2. We suppose that E can be
considered as a curve over the field F (for example, the residue field of H modulo a prime ideal).
Suppose that q > 3 is a rational prime that splits in OK and char(F) ̸= q. This result essentially
says that endomorphisms in End(Eq∞) × End(Eq∗∞) which are independent over EndF (E), are
algebraically independent.

The following lemma is required for the proof of Theorem 4.2.

Lemma 4.1. Let Φ1, . . . ,Φs be non-trivial morphisms from En to E of the form

Φj : (Pi)
n
i=1 7→

n∑
i=1

αij(Pi)

where αij ∈ EndF (E) for all 1 ≤ i ≤ n and 1 ≤ j ≤ s. Suppose that the only relation of the
kind αΦk = βΦℓ for α, β ∈ EndF (E) and k ̸= ℓ, is when α = β = 0. If r1, . . . , rs ∈ F(E) with∑s

j=1 rj ◦ Φj = 0, then each rj is a constant function.

Proof. See [Lam15, Proposition 4.4]. □

Theorem 4.2. Let F be any field as above, and E an elliptic curve defined over F such that
EndF (E) ≃ OK . Suppose that η

1
, . . . , η

s
∈ End(Eq∞) × End(Eq∗∞) are such that αη

k
= βη

ℓ
for

k ̸= ℓ and some α, β ∈ EndF (E) only when α = β = 0. Consider the function

R =

s∑
j=1

rj ◦ ηj : Eq∞ × Eq∗∞ → F

where rj ∈ F(E) and F denotes an algebraic closure of F . If R(Q) = 0 for all Q ∈ Eq∞ × Eq∗∞ ,
then all rj’s are constant functions.

Proof. We recall that End(Eq∞) ≃ Oq, End(Eq∗∞) ≃ Oq∗ and EndF (E) ≃ OK . Consider a free
OK submodule A of Oq×Oq∗ of rank n that contains η

j
for 1 ≤ j ≤ s. Let {εi}ni=1 be an OK-basis

of A. Then, there exist unique αij ∈ OK such that

η
j
=

n∑
i=1

αijεi.

Define the map
ι : Eq∞ × Eq∗∞ = Eq∞ → En given by Q 7→ (εiQ)

n
i=1 .

For each 1 ≤ j ≤ s, denote the morphism

Φj : E
n → E; (Pi)

n
i=1 7→

n∑
i=1

αijPi.

We have assumed that
s∑

j=1

rj ◦ Φj(Q) = 0 for all Q ∈ ι(Eq∞ × Eq∗∞) ⊆ En.
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Hence, the above equality must hold for all Q in the Zariski closure of ι(Eq∞ × Eq∗∞). It follows
from basic facts about Zariski closed subgroups of En (see [Sch87, Lemmas 1 and 3]) that either
the Zariski closure of ι(Eq∞) is En or there exist αi ∈ OK (not all zero) such that

n∑
i=1

αiεi(Q) = 0 for all Q ∈ Eq∞ .

If the latter holds, it means that
∑n

i=1 αiεi = 0. However, this contradicts the fact that ε1, . . . , εn
is a basis for A. Thus, the Zariski closure of ι(Eq∞) is En. Lemma 4.1 implies that each ri is a
constant function. □

To prove the main result in this section, we need a strengthened version of Theorem 4.2. This is
achieved by combining the following Diophantine approximation result (Lemma 4.3) with a special
case of a lemma due to Hida (Lemma 4.4), which we record below.

Lemma 4.3. Given β
1
, . . . , β

d
∈ Oq × Oq∗ for any integer d ≥ 1, and a positive constant c ≤ 1,

there exists an integer N such that for all n ≥ N , there exist algebraic integers b1, . . . , bd ∈ OK and
a unit u ∈ O×

q ×O×
q∗ satisfying

vp(uβi
− bi) ≥ n for p ∈ {q, q∗} and

NK/Q(bi) < c · q2n.

Proof. See [Lam14, Lemma 2.3.9]. □

Lemma 4.4. Let r be a positive integer. Let X =
⋃k

i=1Xi be a proper subset of G2
m/Qq

such that

(i) X is Zariski closed.
(ii) For each i, there exists a closed subscheme Yi that is stable under t 7→ tp

rn

for all n ∈ Z,
such that Xi = ζYi for certain ζ ∈ µ2

q∞ ;
There exists P , which is a pr-power, and an infinite sequence of integers 0 < n1 < n2 < · · · such
that for all j ≥ 1,

Ξj ∩X = ∅,
where Ξj is defined by {(

P x

qnj
,
P y

qnj

)
mod Z2

q : x, y ∈ Z

}
⊂ (Qq/Zq)

2

after identifying µ2
q∞ with (Qq/Zq)

2 under an appropriate choice of basis.

Proof. See [Hid04, Lemma 3.4]. □

Remark 4.5. On studying he proof of the above lemma, we see that P ≡ 1 mod q. If we write
P = 1 + qvu, where q ∤ u, then

∣∣Ξj

∣∣ = q2(nj−v).

Theorem 4.6. Let F be a finite field. Suppose that η
1
, . . . , η

s
∈ End(Eq∞)× End(Eq∗∞) are such

that the only relation of the kind αη
k
= βη

ℓ
for k ̸= ℓ and α, β ∈ EndF(E) is when α = β = 0.

Consider the function

R =

s∑
i=1

ri ◦ ηi : Eq∞ × Eq∗∞ → F
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where ri ∈ F(E). We identify Eq∞ with µ2
q∞ ⊂ G2

m/Qq
. Then either {Q ∈ Eq∞ : R(Q) ̸= 0} is

Zariski dense in G2
m/Qq

or R is identically zero. In the latter case, all ri’s are constant functions.

Proof. Suppose that {Q ∈ Eq∞ : R(Q) ̸= 0} is not Zariski dense and that R is not identically zero.
We take P to be a large enough p-power so that R is defined over FP (the finite field of cardinality
P ). Let X be the Zariski closure of {Q ∈ Eq∞ : R(Q) ̸= 0} in G2

m/Qq
. Then, X is a proper subset

of G2
m/Qq

and XP ⊆ X.

Let logq : Ĝ2
m/Qq

→ Ĝ2
a/Qq

be the q-adic logarithm map. We decompose logq(X) into a finite
union of closed subsets, each of which is stable under the multiplication by P . This allows us to
write X as a finite union of closed subschemes Xi of the form ζYi, where ζ ∈ µ2

q∞ and Yi is stable
under t 7→ tP . Therefore, Lemma 4.4 applies. In particular, there exists a sequence of integers
0 < n1 < n2 < · · · and a collection of subsets Ξj of qnj -torsion points in Eq∞ on which R vanishes,
with

∣∣Ξj

∣∣ = q2(nj−v) for some fixed integer v.
Define

δ := max
1≤i≤s

deg(ri).

We apply Lemma 4.3 to η
1
, . . . , η

s
and c =

1

q2v · s · δ
. There exists an integer N such that for all

nj ≥ N , there are algebraic integers b1, . . . , bs ∈ OK and u ∈ O×
q ×O×

q∗ (depending on nj) satisfying

vp(uηi − bi) ≥ nj for p ∈ {q, q∗} and∣∣∣NK/Q(bi)
∣∣∣ < c · q2nj .

In particular, the rational function

Rnj
:=

s∑
i=1

ri ◦ bi ∈ F(E)

agrees with R ◦ u on Eqnj . Thus, it vanishes on Ξj . Moreover,

deg(Rnj
) ≤

s∑
i=1

δ ·NK/Q(bi) < sδ · c · q2nj = q2nj−2v =
∣∣Ξj

∣∣ .
Therefore, Rnj = 0 and thus R is zero on Eqnj . But nj can be arbitrarily large. This implies that
R is identically zero, which is a contradiction. This concludes the first assertion of the theorem.
The last assertion follows immediately from Theorem 4.2. □

5. A theorem on two-variable Gamma transforms

The purpose of this section is to prove a two-variable version of [Lam15, Theorem 5.1] (which in
turn generalizes a result of Sinnott [Sin87, Theorem 3.1]). Our proof utilizes crucially Theorem 4.6
from the previous section. Throughout, we use the same notation introduced in Sections 2 and 3.

Theorem 5.1. Let α be an elliptic function measure for E defined over k on Z2
q that is supported

on (Z×
q )

2, and satisfies α ◦ω = α for all ω ∈ µ2
K . Let R denote the corresponding rational function

(so that α̂ = R ◦ δ as in Definition 3.4), and let n = ordπ(R) (as in Definition 3.6). Then for a
Zariski dense set of finite-order characters κ of (1 + qZq)

2, we have

ordπ
(
Γα(κ)

)
= n.
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Remark 5.2. We view Hom(Z2
q, µq∞) as a subset of G2

m/Qq
by sending κ to (κ(1, 0), κ(0, 1)). A

set of finite-order characters is called Zariski dense if its image in G2
m/Qq

is a dense subset under
the Zariski topology.

The following lemma is a key technical ingredient of the proof of Theorem 5.1.

Lemma 5.3. Let α be an elliptic function measure as in the statement of Theorem 5.1. Define

β =
∑
η

(α ◦ η) |(1+qZq)2 ,

where η runs over a set of representatives for (µq−1/µK)2 and α◦η is defined as in Definition 3.1(i).
For each y = (y1, y2)∈ µ2

q−1, we write

βy = β|y1(1+qMZq)×y2(1+qMZq),

where M ≥ 1 is the integer such that µq∞ ∩ k = µqM . Let κ = (κ1, κ2) be a finite-order character
of (1 + qZq)

2. Suppose that there exist integers m,n ≥M satisfying

ker(κ1) = 1 + qm+MZq, ker(κ2) = 1 + qn+MZq.

Let ζ = (ζ1, ζ2) ∈ µq∞ such that

ζq
m

1 = κ1(1 + qm), ζq
n

2 = κ2(1 + qn).

Then Γβ(κ) ∈ πO if and only if β̂y(ζy
−1

) ∈ πO for all y ∈ µ2
q−1.

Proof. Suppose that Γβ(κ) ∈ πO. Let σ ∈ Gal(J/k) and ξ ∈ µ2
q∞ . Recall from the proof of

Lemma 3.9 that
α̂(ξ)σ = α̂(ξχE(σ)).

Since Fourier transform is additive, we have equivalently

β̂(ξ)σ = β̂(ξχE(σ)).

Furthermore, Lemma 3.9 asserts that

Γβ(κ)
σ =

κσ(χE(σ))

κσ(χµ(σ))
Γβ(κ

σ).

Thus, ordπ
(
Γβ(κ

σ)
)

is independent of σ ∈ Gal(J/k) because Γβ(κ) ∈ πO by assumption and κ
takes values in the group of roots of unity. In particular, Γβ(κ

σ) ∈ πO for all σ ∈ Gal(J/k) under
our hypothesis that Γβ(κ) ∈ πO.

Let N = max(m,n). Write kN−1 to denote the (N − 1)-th layer of the Zq-extension J/k, and
set H = Gal(kN−1/k). Let y ∈ (1 + qZq)

2. We have∑
σ∈H

κσ(y)−1Γβ(κ
σ) =

∑
σ∈H

κσ(y)−1

∫
(1+qZq)2

κσ(x)dβ(x)

=
∑
σ∈H

∫
(1+qZq)2

κσ(x/y)dβ(x)

=

∫
(1+qZq)2

TrkN−1/k ◦κ(x/y)dβ(x)

= qN−1

∫
y1(1+qmZq)×y2(1+qnZq)

κ(x/y)dβ(x).
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Note that qN−1 is a unit in O (since q ̸= p). Therefore, Γβ(κ) ∈ πO implies that∫
y1(1+qmZq)×y2(1+qnZq)

κ(x/y)dβ(x) ∈ πO.

Let x = (x1, x2) = y(1 + qmz1, 1 + qnz2) = (y1(1 + qmz1), y2(1 + qnz2)), where z1, z2 ∈ Zq. Then

κ(x/y) = κ(1 + qmz1, 1 + qnz2) = κ((1 + qm)z1 , (1 + qn)z2) = ζ
x1/y1−1
1 ζ

x2/y2−1
2 .

Thus, we deduce that ∫
y1(1+qmZq)×y2(1+qnZq)

ζ
x1/y1

1 ζ
x2/y2

2 dβ(x) ∈ πO.

If we replace y by yt = (y1t1, y2t2) and (ζ1, ζ2) by (ζt11 , ζ
t2
2 ) for any t = (t1, t2) ∈ (1 + qMZq)

2, the
same containment holds. Hence, summing over t ∈ (1+qMZq)

2/(1+qmZq)× (1+qnZq), we deduce
that

β̂y(ζ
y−1

) =

∫
y(1+qZq)2

ζ
x1/y1

1 ζ
x2/y2

2 dβ(x) ∈ πO.

The converse follows from Lemma 3.2 and the fact that the Gauss sum τ(κ) is a π-adic unit
(which is a consequence of the fact that its conductor is coprime to p). □

Proof of Theorem 5.1. Without loss of generality, we assume that n = ordπ(R) = 0. Let β be as
defined in the statement of Lemma 5.3, and wK denote the number of elements in µK (which is
coprime to p > 3). We have

1

w2
K

Γα(κ) = Γβ(κ).

Let us write
αηy = α|η1y1(1+qMZq)×η2y2(1+qMZq)

for η = (η1, η2) ∈ µ2
q−1 and y = (y1, y2) ∈ (1 + qZq)

2. Note that αηy is an elliptic function measure
since it is a restriction of α. Furthermore, we write Rηy for the rational function on E attached to
αηy (meaning that α̂ηy = Rηy ◦ δ as functions on µ2

q∞). As can be seen in the proof of Lemma 3.7,
Rηy takes values in O. Let R̃ηy denote the function Rηy modulo π.

Suppose that the set of characters κ with ordπ(Γα(κ)) = 0 is not Zariski dense. Note that for all
κ, we have ordπ(Γα(κ)) = ordπ(Γβ(κ)) by Lemma 3.5 and the fact that p ∤ wK . Equivalently, the
set of characters κ such that Γβ(κ) ̸∈ πO is not Zariski dense. By Lemma 5.3, the set of elements
Q ∈ Eq∞ such that ∑

η∈(µq−1/µK)2

R̃ηy([η
−1] ◦Q) ̸= 0

is not Zariski dense.
Applying Theorem 4.6, it follows that R̃ηy is a constant function. Let cηy denote a constant of

O lifting R̃ηy and let δ0 denote the Dirac measure of Z2
q concentrated at (0, 0). By definition, the

Fourier transform δ̂0 sends all ζ ∈ µq∞ to 1. Therefore, the Fourier transform of αηy − cηyδ0 takes
values in πO. In particular,

ordπ(αηy − cηyδ0) > 0.

However, if we restrict the measure αηy − cηy to (Z×
q )

2, it agrees with αηy. Thus,

ordπ(αηy) = ordπ(αηy − cηyδ0) > 0.

This contradicts our hypothesis that ordπ(R) = 0. □
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6. Proof of Theorem A

In this section we apply Theorem 5.1 to study π-adic valuations of special values of L-functions
and prove Theorem A stated in the introduction.

6.1. Notation on ray class fields and CM elliptic curves. We keep the notation introduced
in Section 2. Recall that K is a fixed imaginary quadratic field, and H is its Hilbert class field.

Definition 6.1. Let a be an integral ideal of K.
• We write R(a) for the ray class field of K with conductor a.
• Given another ideal b of K which is coprime to a, we write (b,R(a)) ∈ Gal(R(a)/K) for

the Artin symbol of b.
• Given a character ρ on Gal(R(a)/K), we shall write ρ(b) and ρ

(
(b,R(a))

)
interchangeably.

Recall from §2 that E is an elliptic curve with complex multiplication by OK with good reduction
at the primes above p and q. Let ωE denote the Néron differential for E/R(f) and L = Ω∞OK be
its period lattice. Note that Ω∞ is uniquely determined up to a root of unity in K.

Given an ideal b of K coprime to f, there exists Λ(b) ∈ R(f)× such that

(6.1) Lb = Λ(b)b−1L

is the lattice associated with E(b,R(f)), as given by [dS87, (16) on p. 42] (see also [GS81, Définition,
p. 198]). For simplicity, we shall write E(b) for the CM elliptic curve E(b,R(f)) and denote by

λ(b) : E → E(b)

the unique isogeny given by [dS87, (15) on p. 42].
Consider the complex analytic isomorphism of complex Lie groups

(6.2) ξb : C/Lb
∼−→ E(b)(C) given by ξb(z) =

(
℘(z,Lb), ℘

′(z,Lb)
)
,

where ℘ is the Weierstrass ℘-function and ℘′ is the corresponding derivative. We have the Weier-
strass equation

(6.3) y2 = 4x3 − g2(Lb)x− g3(Lb)

describing E(b).
When b = OK , we shall write ξ1 in place of ξOK

. We recall the following relation:

(6.4) ξb
(
Λ(b)z

)
= λ(b)(ξ1(z))

as discussed in [dS87, commutative diagram (21) on p. 43] and [GS81, Proposition 4.10].

6.2. Review on L-functions.

Definition 6.2. Let h be any integral ideal of K. Let ϵ be any Hecke character of K with conductor
dividing some power of h. The imprimitive L-function of ϵ modulo h is defined as follows

Lh(ϵ, s) =
∑

gcd(a,h)=1

ϵ(a)

(Na)s
.

Let ϵ be a Hecke character over K of infinity type (a, b). Denote by L(ϵ, s) the primitive Hecke
L-function of ϵ. Recall that the imprimitive (or partial) L-function differs from the primitive
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(or classical) L-function by a finite number of Euler factors. We can further define the primitive
algebraic Hecke L-function,

L(alg)(ϵ) :=
L (ϵ, a+ b)

(2π)bΩb−a
∞

.

If Ψ and κ are as in the statement of Theorem A, then

L(alg)
(
Ψκ
)
= L(alg)

(
φk−jκχ0N

j
)
=
L
(
φk−jκχ0N

j , k + j
)

(2π)jΩk−j
∞

=
L
(
φk−jκχ0, k

)
(2π)jΩk−j

∞
,

where φ and χ0 are given as in §2.
Henceforth, we assume that κ is of conductor qm+1q∗n+1 and set Fm,n = R(h) with h =

gqm+1q∗n+1. Let g be an auxiliary principal ideal that is divisible f and is relatively prime to
pq. Then υ = κχ0 is a character of Gal

(
R(h)/K

)
. The imprimitive L-function of υφk−j modulo h

can be written as

Lh

(
υφk−j , s

)
=

∑
τ∈Gal(R(h)/K)

υ(τ)
∑

(b,R(h))=τ

φk−j(b)

(Nb)s
,

where the second sum runs over integral ideals b of OK such that gcd(b, h) = 1. We define the
following partial imprimitive L-functions:

Definition 6.3. Let h and φ be as above. For τ ∈ Gal(R(h)/K), we define

Lh

(
φk−j , s, (b,R(h))

)
=

∑
b⊴OK

(b,R(h))=τ
gcd(b,h)=1

φk−j(b)

(Nb)s
.

In particular, we have

Lh

(
υφk−j , s

)
=

∑
τ∈Gal(R(h)/K)

υ(τ)Lh(φk−j , s, τ).

Remark 6.4. The (primitive and imprimitive) L-functions we have discussed so far only converge
on some right half-plane. However, they admit analytic continuations to the entire complex plane.
In order to prove Theorem A, we shall relate L(alg)

(
υφk−j

)
to Gamma transforms of certain elliptic

function measure that we construct in the following subsection.

Let F = R(gq) and write ∆ = Gal(F/K). Since f | g, we have

F = R(gq) = K
(
j(E), h(Egq)

)
= H

(
x(Egq)

)
.

Here h denotes a Weber function and we may choose this to be the x-coordinates on a Weierstrass
model for the elliptic curve. Set F∞ =

⋃
n≥1 R(gqn); this is a Z2

q-extension of F . Recall that K∞
is the Z2

q-extension of K, we fix an isomorphism

Gal(F∞/K) ≃ Gal(F/K)×Gal(F∞/F ) ≃ Gal(F/K)×Gal(K∞/K) ≃ ∆× Z2
q.

By definition, υ = κχ0 is a character of Gal(R(f) ·K∞/K), which is a quotient of Gal(F∞/K). Our
hypothesis that q ∤ [R(f) : K] allows us to regard κ (resp. χ0) as a character of Z2

q (resp. ∆). Then
κ (resp. υ) may be regarded as a character of Gal(Fm,n/F ) (resp. ∆×Gal(Fm,n/F )).

Definition 6.5. Given an ideal c of OK that is coprime to h, let τc denote (c, Fm,n) = (c,R(h)).
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We conclude this subsection with the following lemma on the Galois action on partial imprimitive
L-values.

Lemma 6.6. Let b be an ideal of OK coprime to h such that (b,R(f)) = 1. For any ρ ∈ h−1L/L
and any integral ideal c of OK that is coprime to h, we have

τb ·
Lh

(
φk−j , k, τc

)
(2π)jρk−j

=
Lh

(
φk−j , k, τbc

)
(2π)jρk−j

.

Proof. Equation (A.4) in the appendix tells us that

(6.5)
Lh

(
φk−j , k, τc

)
(2π)jρk−j

=
(Nh

√
dK)−jΛ(c)k−j

(k − 1)!φ(c)k−j
Ej,k (ρ,L)τc .

Since τb acts trivially on R(f), we deduce that

τb ·
Lh

(
φk−j , k, τc

)
(2π)jρk−j

=
(Nh

√
dK)−jΛ(c)k−j

(k − 1)!φ(c)k−j
Ej,k (ρ,L)τbc .

On replacing c by bc in (6.5), we have

Lh

(
φk−j , k, τbc

)
(2π)jρk−j

=
(Nh

√
dK)−jΛ(bc)k−j

(k − 1)!φ(bc)k−j
Ej,k (ρ,L) .

The hypothesis that (b,R(f)) = 1 implies that φ(b) = Λ(b) by [dS87, (18) on p. 42]. Thus,
equation (17) in op. cit. tells us that

Λ(bc)

φ(bc)
=

Λ(c)τbΛ(b)

φ(c)φ(b)
=

Λ(c)

φ(c)
.

Hence the result follows. □

6.3. A rational function with a canonical divisor. The goal of this section is to generalize
the construction of a rational function on a CM elliptic curve from [Lam15, Section 6.3]. In order
to consider Hecke characters of more general infinity-type, we introduce a new derivative operator,
which did not make an appearance in loc. cit. This allows us to carry out step (3) outlined in the
introduction. The notation introduced in the previous section will continue to be utilized.

Let b be an integral ideal of K that is coprime to f. We fix an auxiliary ideal a of OK that is
coprime to 6h and that (a,R(f)) = 1. Define the rational function ζb,a on E(b) by

(6.6) ζb,a(P ) =
∏
Q

(
x(P )− x(Q)

)−1
,

where Q runs over a set of representatives of E(b)
a \ {0} (mod ± 1). There exists a constant

c(b, a) ∈ H× such that the function

γb,a(P ) := c(b, a)ζb,a(P )

has the property that for all β ∈ End
(
E(b)

)
with gcd(β, a) = 1,

γb,a(β(P )) =
∏

R∈ker(β)

γb,a(P ⊕R)

(see [Coa91, Appendix]).
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We can write
Lb = Zω1,b + Zω2,b

such that ω1,b

ω2,b
lies in the upper half plane. We define the constant (see [dS87, (4) on p.48])

A(Lb) :=
1

2πi

(
ω1,bω2,b − ω1,bω2,b

)
.

As in [dS87, p.57, (4)], let

∂ = − ∂

∂z
, Db = −A(Lb)

−1

(
z
∂

∂z
+ ω1,b

∂

∂ω1,b
+ ω2,b

∂

∂ω2,b

)
.

For integers 0 ≤ −j < k, define the derivative operator Dj,k on C(E(b)) by

Dj,k(f) = D−j
b ∂k+j log f(z),

where z is a complex variable after identifying E(b) with C/Lb via ξb as given by (6.4).

Lemma 6.7. Let Q be a primitive h-division point on E and ρ ∈ h−1L \ L. Then there exist
σ ∈ Gal(Fm,n/H) and ζ ∈ µK (which we identify with Aut(E)) such that

Q = ζ
(
ξ1(ρ)

σ
)
.

Fix c0 to be an ideal of OK coprime to h such that τc0 = σ. Suppose that (c0,R(f)) = 1. Let b and
c be ideals of OK coprime to h with (c,R(f)) = 1. Then

(6.7) Dj,k(γb,a) ◦ λ(b)(Qτc) = −(k − 1)!
(
(Na)− Λ(a)k−jτa

)(φ(b)
Λ(b)

)k−j

×(
Nh

√
dK

2π

)j Lh

(
φk−j , k, τbcc0

)
(ζρ)k−j

.

Proof. By Class Field Theory, we have

(OK/h)
×/µK ≃ Gal(Fm,n/H) ↪→ Aut(E[h])

(see [Sil94, Chapter 2, proof of Theorem 2.3]). It follows that Aut(E[h]) is generated by the image of
Gal(Fm,n/H) and µK . The first assertion now follows just as in the proof of [Lam14, Lemma 3.1.4]
or [Lam15, Lemma 6.4].

In the appendix, we prove in (A.5) that with P = ξb(Λ(b)ρ)

Dj,k(γb,a)(P ) = −(k − 1)!
(
(Na)− Λ(a)k−jτa

)(φ(b)
Λ(b)

)k−j
(
Nh

√
dK

2π

)j Lh

(
φk−j , k, τb

)
ρk−j

.

On replacing P (resp. ρ) by ζP (resp. ζρ), we deduce that

Dj,k(γb,a)(ζP ) = −(k − 1)!
(
(Na)− Λ(a)k−jτa

)(φ(c)
Λ(c)

)k−j
(
Nh

√
dK

2π

)j Lh

(
φk−j , k, τb

)
(ζρ)k−j

.

If we let τcc0 act on both sides of this equation, Lemma 6.6 tells us that

Dj,k(γb,a)(ζP
τcc0 ) = −(k − 1)!

(
(Na)− Λ(a)k−jτa

)(φ(c)
Λ(c)

)k−j
(
Nh

√
dK

2π

)j Lh

(
φk−j , k, τbcc0

)
(ζρ)k−j

.
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The result now follows from (6.4). □

Define

ρm,n =
Ω∞

gνm+1ν∗n+1 ∈ C×,

where g, ν, ν∗ are fixed generators of g, q and q∗ respectively (such generators exist since these
ideals are assumed to be principal). Then ξ1(ρm,n) is a primitive h-division point of E (since
h = gqm+1q∗n+1).

Let V (respectively Qm,n) be a fixed primitive g-division (respectively qm+1q∗n+1-division) point
on E. By Lemma 6.7, there exist ζ ∈ µK and σ0 = τc0 , where c0 is an ideal of K, coprime to h,
depending on V and Qm,n, such that

V ⊕Qm,n = ζ(ξ1(ρm,n)
σ0).

Since (g, q) = 1, there is an isomorphism of groups

Aut
(
E[gqm+1(q∗)n+1]

)
≃ Aut

(
E[g]

)
×Aut

(
E[qm+1(q∗)n+1]

)
,

which in turn induces the decomposition

Gal(Fm,n/H) ≃ Gal(Fm,n/R(g))×Gal(R(g)/H).

Therefore, we may choose V so that (c0,R(f)) = 1 for all m and n.
By Lemma 6.7, given any ideals b and c of OK coprime to h such that (c,R(f)) = 1, we have

Dj,k(γb,a) ◦ λ(b)
(
(V ⊕Qm,n)

τc
)

= − (k − 1)!
(
N(a)− Λ(a)k−jτa

)φ(b)k−j

Λ(b)k−j

(
Nh

√
dK

2π

)j

·
Lh

(
φk−j , k, τbcc0

)
(ζρm,n)k−j


=

−(k − 1)!φ(b)k−j

Λ(b)k−j

(
Nh

√
dK

2π

)j

·
N(a)Lh

(
φk−j , k, τbcc0

)
− φ(a)k−jLh

(
φk−j , k, τabcc0

)
(ζρm,n)k−j

.(6.8)

We fix {bi : i ∈ I} to be a set of representatives of integral ideals in K such that Gal(R(f)/K) =
{(bi,R(f)) : i ∈ I}. Recall that Gal(Fm,n/K) ≃ ∆×Gal(Fm,n/F ), where ∆ = Gal(F/K). Then,

[R(qg) : R(f)]
∑

σ∈Gal(Fm,n/R(g))

κ−1(σ)
∑
i∈I

χ0(bi) =
∑

η∈Gal(Fm,n/K)

υ−1(η).
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Let us regard κ as a character of Gal(Fm,n/R(g)) ≃ Gal(Fm,n/F ) × Gal(F/R(g)) sending the
elements of Gal(F/R(g)) to 1. We deduce from (6.8) that

∑
σ∈Gal(Fm,n/R(g))

κ−1(σ)
∑

δ∈Gal(R(g)/R(f)),i∈I

χ0(bi)Λ(bi)
k−j

φ(bi)k−j
Dj,k(γbi,a) ◦ λ(bi)(V δ ⊕Qσ

m,n)

= − (k − 1)!

(
Nh

√
dK

2π

)j ∑
η∈Gal(Fm,n/K)

υ−1(η)
N(a)Lh

(
φk−j , k, ητc0

)
− φ(a)k−jLh

(
φk−j , k, ητac0

)
(ζρm,n)k−j

= − (k − 1)!

(
Nh

√
dK

2π

)j N(a)υ(σ0)Lh

(
φk−jυ, k

)
− φ(a)k−jυ(σ0τa)Lh

(
φk−jυ, k

)
(ζρm,n)k−j

= − (k − 1)!

(
Nh

√
dK

2π

)j (
N(a)− φ(a)k−jυ(τa)

)
υ(σ0)

Lh

(
φk−jυ, k

)
(ζρm,n)k−j

.

(6.9)

The above calculations lead us to define the following rational function on E.

Definition 6.8. Let a be an ideal of OK chosen as above. Let V be a primitive g-division point of
E, we define a rational function on E sending P ∈ E to

ϑΨa,V (P ) =
∑

δ∈Gal(R(g)/R(f)),i∈I

χ0(bi)Λ(bi)
k−j

φ(bi)k−j
Dj,k(γbi,a) ◦ λ(bi)(V δ ⊕ P ).

6.4. Gamma transforms and L-values. We can associate with ϑΨa,V an elliptic function measure,
α on Z2

q via Lemma 3.7. The measure α depends on Ψ and our choice of a and V . We further
define α∗ = α|(Z×

q )2 .
We now relate the Gamma transform of α∗ to special values of imprimitive algebraic L-functions.

Recall that p is a rational prime satisfying (p) = pp∗ in OK with p ̸= p∗ and gcd(p, 6q) = 1. As
before, set π to be the uniformizer of the local field k, which is a finite unramified extension of Qp

containing Qp(Eqg).

Lemma 6.9. Let κ be as before. Then

ordπ
(
Γα∗(κ)

)
= ordπ

(
(k − 1)!

(
N(a)− φ(a)k−jυ(τa)

)
L
(alg)
h (υφk−j)

)
,

where υ = κχ0.

Proof. Let ζ = (ζ1, ζ2) ∈ µ2
q∞ and set Qm,n = δ(ζ) in our construction above. Using Lemma 3.2 in

conjunction with (6.9), yields

Γα∗(κ) = τ(κ)
∑

σ∈Gal(Fm,n/R(g))

χ−1(σ)ϑΨa,V (Q
σ
m,n)

= −(k − 1)!τ(κ)

(
Nh

√
dK

2π

)j (
N(a)− φ(a)k−jυ(τa)

)
υ(σ0)

Lh

(
φk−jυ, k

)
(ζρm,n)k−j

.

Standard facts about Gauss sums tell us that ordπ(τ(κ)) = 0 since the conductor of κ is coprime
to p. Finally, as υ is a finite character, υ(σ0) is a root of unity. By our choice of h, we also know
that Nh is coprime to p. This completes the proof of the lemma. □



18 D. KUNDU AND A. LEI

We now study the factor N(a)−φ(a)k−jυ(τa). Recall that τa denotes (a, Fm,n), and thus depends
on m and n, a priori. However, we may regard it as an element of Gal(F∞/K) since the Artin
symbols τa are compatible under restriction as h varies over ideals dividing gq∞.

Lemma 6.10. For a Zariski dense set of κ, we have

ordπ

(
N(a)− φk−j(a)υ(τa)

)
= 0.

Proof. Suppose the contrary. Let (ζ1, ζ2) = (κ(τa,q), κ(τa,q∗)) ∈ µ2
q∞ , where τa,l denotes the restric-

tion of τa to Gal(R(gl∞)/R(g)). Then,

ordπ

(
N(a)− φk−j(a)υ(τa)

)
= 0

if and only if
N(a)φ(a)j−k ̸≡ ζ1ζ2 mod πO

since (a,R(f)) = 1, which implies that χ0(τa) = 1. Note that the left-hand side is independent of
κ. In particular, this condition is invariant under the map (ζ1, ζ2) 7→ (ζ1, ζ2)

pr

, where pr is the
cardinality of the residue field of O.

Our assumption that the set of κ satisfying the stated property above is not Zariski dense allows
us to apply Lemma 4.4. Let P be the power of pr given by the said lemma. In particular, under
the isomorphism µ2

q∞ ≃ (Qq/Zq)
2, there exists an arbitrary large n such that

(6.10) N(a)φ(a)j−k ≡ ζ1ζ2 mod πO

for all (ζ1, ζ2) which can be identified with
(
P x

qn
,
P y

qn

)
, where x, y ∈ Z. In particular, Remark 4.5

tells us that there are q2(n−v) such elements, where v = ordq(P − 1).
Note that q-power roots of unity modulo πO are distinct since p ̸= q. Suppose that the left-hand

side of (6.10) modulo π is a qm-th root of unity, where m < n. Then, for each qn-th root of unity
ζ1, there are exactly qm choices of qn-th roots of unity ζ2 such that (6.10) holds. This gives us at
most qn+m choices of (ζ1, ζ2) ∈ µ2

qn . But this is a contradiction as soon as n+m < 2(n− v). □

Remark 6.11. For a given ideal a, denote the Zariski dense set of characters described in Lemma 6.10
by Za. This set is defined by the equation

f(a) := N(a)− φk−j(a)υ(τa) ̸≡ 0 mod πO.

But note that Za =
⋃

m∈πO Zm,a where each Zm,a is defined by equation

fm(a) := f(a)−m ̸= 0,

as m varies over elements of πO. Since each Zm,a is Zariski open, we have that Za is Zariski open.

Once we combine Lemmas 6.9 and 6.10 with Theorem 5.1, Theorem A follows.

7. Proof of Theorem B

We continue employing the notation introduced in §6. Throughout this section, we assume that
j = 0. In addition, we assume that the character χ0 of Gal(R(f)/K) from §2 satisfies

(7.1) ordπ

∑
i∈I

χ0(bi)

φ(bi)k

 = 0.



NON-VANISHING MOD p OF HECKE L-VALUES 19

Remark 7.1. Note that the π-adic valuation in (7.1) is always non-negative since bi are coprime
to p. Suppose that p ∤ [R(f) : K], then there exists at least a character ρ of Gal(R(f)/K) such that
ρχ0 satisfies (7.1). Indeed, ∑

ρ∈ ̂Gal(R(f)/K)

∑
i∈I

ρχ0(bi)

φ(bi)k
= [R(f) : K].

Therefore, if ordπ([R(f) : K]) = 0, at least one of the summands should have zero π-adic valuation.

The following lemma generalizes [Lam15, Lemma 6.7] and is crucial in our proof of Theorem B.

Lemma 7.2. Suppose that our auxiliary ideal a is chosen so that gcd
(
a, 6qpg

∏
i∈I bi

)
= 1,

(a,R(f)) = 1, and a ≡ 1 mod f. Then,

ordπ

(
ϑΨa,V

)
= ordπ

(
(k − 1)!

)
.

Proof. Let us first recall the following facts proved in [Lam15, proof of Lemma 6.7].

(a) The rational function D0,k(γb,a) on E(b) has poles of order k at all the elements of P ∈
E

(b)
a \ {0}, with leading coefficient with respect to z − zP equal to (k − 1)!.

(b) Furthermore, D0,k(γb,a) has a pole of order k at P = 0, with leading coefficient with respect
to z equal to N(a)− 1.

(c) The poles described above are the only poles of D0,k(γb,a).
(d) Let xb and yb be the functions sending a point P ∈ E(b) to its x- and y-coordinates given

by the Weierstrass equation (6.3). The only zeros of the function xb(P )−xb(R) are P = R
and P = ⊖R. If xb(R) ̸= 0, these are simple zeros and the leading coefficient with respect
to z − zP is given by yb(P ).

Let i ∈ I. Since a is coprime to bi, the isogeny λ(bi) induces an isomorphism Ea ≃ E
(bi)
a .

Therefore, by (c), the poles of D0,k(γbi,a) ◦ λ(bi) are precisely the elements in Ea. Recall from
Definition 6.8 that

ϑΨa,V (P ) =
∑
i∈I

χ0(bi)Λ(bi)
k

φ(bi)k

∑
δ∈Gal(R(g)/R(f))

D0,k(γbi,a) ◦ λ(bi)(V δ ⊕ P ).

In particular, the poles of ϑΨa,V (P ) are given by U ⊖ V δ, where U ∈ Ea and δ ∈ Gal(R(g)/R(f)).
Let P be a pole of D0,k(γbi,a) ◦ λ(bi). By (6.4), the leading coefficient of D0,k(γbi,a) ◦ λ(bi)

with respect to z − zP is that of D0,k(γ1,a) multiplied by Λ(bi)
−k, where γ1,a denotes the rational

function on E (so corresponding to the choice of i gives E(bi) = E). Consequently, by (a) the
leading coefficient of ϑΨa,V with respect to z − zP , when P is the pole U ⊖ V σ where U ∈ Ea \ {0},
is given by

(k − 1)!
∑
i∈I

χ0(bi)

φ(bi)k
,

which has π-adic valuation equal to ordπ
(
(k − 1)!

)
by assumption (7.1).

Let i ∈ I, δ ∈ Gal(R(g)/R(f)) and Q ∈ Ea \ {0}. By (d), the rational functions (on E) given
by xbi

◦ λ(bi)(P ⊕ V δ)− xbi
◦ λ(bi)(Q) and x(P ⊕ V δ)− x(Q) (where x denotes the x-coordinate

function on E) have the same zeros. Furthermore, by (6.4), the leading terms of these two rational
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functions differ by the constant Λ(bi). Consequently, these two functions differ by a unit in O.
Therefore, as in [Lam15, proof of Lemma 6.7], we can write

ϑΨa,V (P ) = g(P )
∏

δ∈Gal(R(g)/R(f))

Q∈(Ea\{0})/±1

(
(x(P ⊕ V δ)− x(Q)

)−k

,

where g is a rational function on E belonging to

O
[
x
(
λ(bi)(P ⊕ V δ)

)
, y
(
λ(bi)(P ⊕ V δ)

)
: i ∈ I, δ ∈ Gal(R(g)/R(f))

]
.

In particular ordπ(g) ≥ 0.
As has been established in [Lam15, proof of Lemma 6.7], the functions x(P ⊕ V δ) − x(Q) take

values in O× for almost all P . Furthermore, by comparing leading terms at P = U⊖V δ, we deduce
that g takes values in O× at these points. Thus, ordπ(g) = 0, which concludes the proof. □

We can now prove Theorem B. Let υ = κχ0 as before. By an argument similar to Lemma 6.10 it
suffices to prove the theorem for imprimitive values L(alg)

h

(
Ψκ
)

because for almost all finite-order
characters κ of Gal(K∞/K), we have

ordπ

(
L(alg)

(
Ψκ
))

= ordπ

(
L
(alg)
h

(
Ψκ
))

.

Indeed, for any prime ideal r of K and for almost all characters κ,

ordπ

(
1− Ψκ(r)

N(r)k

)
= 0

as the q-power roots of unity modulo πO are distinct since p ̸= q.
Lemma 7.2 asserts that ordπ ϑ

Ψ
a,V = ordπ

(
(k − 1)!

)
. In particular, the associated elliptic func-

tion measure α∗ satisfies ordπ α
∗ = ordπ

(
(k − 1)!

)
. Therefore, on combining Lemma 6.9 with

Theorem 5.1, we deduce that for a Zariski dense set of κ, we have

ordπ

((
N(a)− φ(a)kυ(τa)

)
L
(alg)
h

(
Ψκ
))

= 0.

The same argument as in Remark 6.11 shows that this Zariski dense set is also open. Since the
intersection of two open dense sets is open dense, there exists a dense set of characters κ with

ordπ

(
L(alg)

(
Ψκ
))

= 0.

Appendix A. appendix

In this appendix we carry out a technical calculation required in the proof of Lemma 6.7. For
this calculation, we rely heavily on the work of de Shalit in [dS87]. In particular, we express special
L-values in terms of logarithmic derivatives of rational functions. We do so by relating both of
these quantities to values of Eisenstein series.
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A.1. Relating rational functions to Eisenstein series. As in the main text, let K be an
imaginary quadratic field and H/K be the Hilbert class field of K. Let E/H be a CM elliptic curve
with CM by OK and L be the associated lattice. Let a and b be ideals of K such that b is coprime
to 6f. With respect to Lb, we can define an elliptic function, denoted by Θ(z;Lb, a), as in [dS87,
Chapter II, Section 2.3, (10) on p. 49]. Let ξb be the isomorphism of complex Lie groups defined
in (6.2). It follows from [dS87, (16) on p. 54] that for any z ∈ C with P = ξb(z) ∈ E(b),

(A.1) Θ(z;Lb, a) = Cb,a · ζb,a(P )12,

where ζb,a(P ) is the rational function introduced in (6.6) and Cb,a is some constant that is inde-
pendent of P and z (the power of 12 appears because the product in (6.6) is taken over a-torsions
modulo ±1, whereas the product in [dS87, (16) on p. 54] is taken over all non-trivial a-torsions,
without modulo ±1).

For integers k ≥ 1 and 0 ≤ −j < k, let Ej,k(z,Lb) be the (j, k)-th Eisenstein series associated
to the lattice Lb given as in [dS87, (5) on p.57]. Notice that when k + j ≥ 3, we have explicitly

Ej,k(z,Lb) = (k − 1)!A(Lb)
j
∑

w∈Lb

′ (z + w)k−j

|z + w|2k
= (k − 1)!A(Lb)

j
∑

w∈Lb

′ (z + w)k(z + w)j

|z + w|2(k+j)
.

Here, the sum runs over all w ∈ Lb except possibly w = −z if z ∈ Lb. Further, for each integral
ideal a, we can define (see [dS87, (5) on p. 57])

Ej,k(z;Lb, a) = (Na)Ej,k(z,Lb)− Ej,k(z, a
−1Lb).

From (A.1), we deduce that, for k ≥ 1,

12Dj,k(γb,a)(P ) = D−j
b ∂k+j logΘ(z;Lb, a)

= −12Ej,k(z,Lb, a) by [dS87, Chapter II, Section 3.1, (7) on p.58].
(A.2)

A.2. Relating Eisenstein series to rational L-values. Recall that f is an ideal of OK that is
divisible by the conductor of the Hecke character φ. Let m be a principal ideal of OK such that
f | m. Let c be another ideal which is coprime to m. Then for any Ω ∈ C× [dS87, Chapter II,
Proposition 3.5, p. 62] asserts that

(A.3) (Nm−j)Ej,k

(
Ω, c−1mΩ

)
= (k − 1)!

(√
dK
2π

)j

Ωj−kφ(c)k−jLm(φk−j , k, (c,R(m))).

Let α ∈ OK be a generator of our chosen principal ideal m. We choose Ω ∈ C× in (A.3) to be the
period Ω∞ so that

L = Ω∞OK .

Let ρ be the primitive m-division point on C/L given by ρ = Ω∞
α . Then,

Ej,k

(
Ω∞, c

−1mΩ∞

)
= Ej,k

(
ρα, c−1mΩ∞

)
= Ej,k

(
ρα, c−1mL

)
= αj−kEj,k

(
ρ, c−1L

)
by [dS87, Proposition 3.3(i), p.58]

= αj−kΛ(c)k−jEj,k (ρ,L)(c,R(m)) by [dS87, Proposition 3.3(iii), p.58],

where Λ(c) ∈ H× is defined as in (6.1).
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Combined with (A.3), the above calculation shows that

(k − 1)!Lm

(
φk−j , k, (c,R(m))

)
=

(
Λ(c)Ω∞

αφ(c)

)k−j (
2π

Nm
√
dK

)j

Ej,k (ρ,L)(c,R(m))

=

(
Λ(c)ρ

φ(c)

)k−j (
2π

Nm
√
dK

)j

Ej,k

(
Λ(c)ρ,Lc

)
by [dS87, (8), p.58].(A.4)

Remark A.1. In the special case when H = K and E is defined over K, (i.e., K has class number
1) we know from [dS87, (18) on p. 42] that Λ(c) = φ(c). Moreover, it is also clear in this case that
ψ = φ. Therefore, on taking j = 0, we obtain

Lm

(
ψk, k, (c,R(m))

)
=

ρk

(k − 1)!
Ek

(
ψ(c)ρ,Lc

)
(c.f. [Lam15, Theorem 6.2]).

A.3. Relating rational functions to L-values. Our final step is to combine the calculations in
the previous two sections to relate the image of the operator Dj,k applied to our chosen rational
function to the (j, k)-th Eisenstein series. Let P be an m-torsion on E. We know from (A.2) that

Dj,k(γc,a)(P ) = −Ej,k(z;Lc, a)

= −
(
(Na)Ej,k(z,Lc)− Ej,k(z, a

−1Lc)
)

= −
(
(Na)Ej,k(z,Lc)− Λ(a)k−jEj,k(z,Lc)

(a,R(m))
)

by [dS87, Prop. 3.3(iii), p.58]

= −
(
(Na)− Λ(a)k−j(a,R(m))

)
Ej,k(z,Lc).

Now, choosing P = ξc
(
Λ(c)ρ

)
, we deduce that

Dj,k(γc,a)(P ) = −(k − 1)!
(
(Na)− Λ(a)k−j(a,R(m))

)( φ(c)

ρΛ(c)

)k−j

×(
Nm

√
dK

2π

)j

Lm

(
φk−j , k, (c,R(m))

)
,(A.5)

which is the formula that is utilized in the proof of Lemma 6.7.
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