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Outline

< Preliminaries of Fibonacci and Lucas Numbers

< Work of Dasdemir-Emin: Fibonacci (resp. Lucas) numbers as a
product of two Lucas (resp. Fibonacci) numbers.

< Work of Luca-Odjoumani-Togbé: Tribonacci Number as a product
of two Fibonacci Numbers.

< New work: Tribonacci Numbers as products of two Lucas
Numbers.
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Definitions
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Fibonacci and Lucas Numbers

Definition: Fibonacci Numbers

The Fibonacci numbers are defined via the following recurrence
relation
0 when n = 0
F,=<(1 whenn =1
F,_1+F,, whenn>2
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Fibonacci and Lucas Numbers

Definition: Fibonacci Numbers

The Fibonacci numbers are defined via the following recurrence
relation

0 whenn =0
F,=<(1 whenn =1
F, \+F,, whenn>2

The first ten Fibonacci numbers are

0,1,1,2,3,5,8,13,21,34, ...
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The Lucas numbers are defined as
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Definitions

[e] le]e]

Fibonacci and Lucas Numbers

Definition: Lucas Numbers

The Lucas numbers are defined as

2 whenn =0
L,=<1 whenn =1
L, 1+L,» whenn>2.

The first ten Lucas numbers are

2,1,3,4,7,11,18,29,47,76, ...
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Preliminaries

Characteristic Equation

Fibonacci and Lucas numbers are both second-order integer
sequences satisfying

X—x—1=0.

This equation is called the characteristic equation of the Fibonacci
(resp. Lucas) sequence.
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Definitions
[e]e] o]

Preliminaries

Characteristic Equation
Fibonacci and Lucas numbers are both second-order integer
sequences satisfying

X—x—1=0.
This equation is called the characteristic equation of the Fibonacci
(resp. Lucas) sequence. lts roots are a = # and g = #
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Preliminaries

Binet’'s Formula

Binet’s formula is an explicit formula used to find the n-th term of the
Fibonacci (or Lucas) sequence.
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Binet’'s Formula
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Fibonacci (or Lucas) sequence. For the Fibonacci numbers, the
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Definitions

[e]e]e] ]

Preliminaries

Binet’'s Formula

Binet’s formula is an explicit formula used to find the n-th term of the
Fibonacci (or Lucas) sequence. For the Fibonacci numbers, the
Binet’s formula is

o' — Bn

F, =
n Oé*ﬂ’

and

L, ="+ 8" for the Lucas numbers.
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Dasdemir-Emin
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The Work of Dasdemir and Emin

Goal: To find all possible k, m, and n satisfying

Fi=L,L, or Ly=F,F,.
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Dasdemir-Emin
00000000000

The Work of Dasdemir and Emin

Goal: To find all possible k, m, and n satisfying
Fy=L,L, or L;=F,F,.

Theorem (Dasdemir-Emin, 2024)

Let k,m and n be positive integers. Then, the triples satisfying
F.=L,L, are

Lk [m nll Fi|Ln]|Ln]
T[T [T 1] 17
2T [T 1717
Z{7(2 3713
1242137
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Dasdemir-Emin
O@000000000

Theorem (Dasdemir-Emin, 2024)

Let k,m and n be positive integers. The triples satisfying L, = F,,F, are
Lklm[n][L]Fn|F]
171111 1 1 1
11112 1| 1 1
171212 1 1 1
2114 3| 1] 3
21214 3| 1] 3
3133 4| 2|2
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Sketch of the proof

There are two main steps for proving the theorem(s).
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Sketch of the proof

There are two main steps for proving the theorem(s).

< Use a deep result of Matveev (involving linear form in three
logarithms) to get bounds on k,m and n.
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There are two main steps for proving the theorem(s).

< Use a deep result of Matveev (involving linear form in three
logarithms) to get bounds on k,m and n.

< Refining bounds using a technical analytic lemma of
Dujella-Pethé.

Today we will only see the sketch for F, = L,,L,.
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Dasdemir-Emin
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Sketch of the proof

There are two main steps for proving the theorem(s).

< Use a deep result of Matveev (involving linear form in three
logarithms) to get bounds on k,m and n.

< Refining bounds using a technical analytic lemma of
Dujella-Pethé.

Today we will only see the sketch for F, = L,,L,. The other proof is
similar.
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Step 1: Upper bound for k in terms of n

< Using an induction argument we give upper and lower bounds of
F; in terms of o and 8.

C¥k472 f; ITk — lqnl;n f; |K?“*(n‘¥ln‘F2).
< Taking log on both sides

(k—2)loga < (—n—m —2)log|B|
(n+m+2)log|s]

log o
=2+ m+m+2)=4+n+m<4n.

k<2—
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Step 2: Setting the stage to bound m

< Suppose that F; can be written as a product of two Lucas
numbers. Then

Fo=L,L,
ak_ﬁk_ m m n n

k
\[Sam—i-n—k + \fsam—kﬁn + \/gﬂman—k _ % — |a—kﬁn+m\/§ _ 1‘
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Step 2: Setting the stage to bound m

< Suppose that F; can be written as a product of two Lucas
numbers. Then

Fo=L,L,
ak_ﬁk_ m m n n

k
\[Sam—i-n—k + \fsam—kﬁn + \/gﬂman—k _ % — |a—kﬁn+m\/§ _ 1‘

< Define
Ay = a7k g5 — 1.
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Step 2: Setting the stage to bound m

< Suppose that F; can be written as a product of two Lucas
numbers. Then

Fo=L,L,
ak_ﬁk m m n n

k
\[Sam—i-n—k + \fsam—kﬁn + \/gﬂman—k _ % — |a—kﬁn+m\/§ _ 1‘

< Define
Ay = a7k g5 — 1.

< Check that g
0< A < —
(8%
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Step 3: Bounding m and Matveev’s Theorem

< Applying a theorem by Matveev to A, we have
log A; > —1.4 x 30°3 x 3*3 x 22 x (1 +log2) x (1 + log4n)
x log o X log av x 210g\/§
> —3.62 x 10" x (1 4 log4n).
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< Applying a theorem by Matveev to A, we have
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a~k|Btmys — 1) < 2n
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Step 3: Bounding m and Matveev’s Theorem

< Applying a theorem by Matveev to A, we have
log A; > —1.4 x 30°3 x 3*3 x 22 x (1 +log2) x (1 + log4n)
x log o X log av x 210g\/§
> —3.62 x 10" x (1 + log4n).

< Recall that g
7k‘ﬁ|n+m\[ < W

Taking log on both sides
log A < log8 — 2mlog a.
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Step 3: Bounding m and Matveev’s Theorem

< Applying a theorem by Matveev to A, we have
log A; > —1.4 x 30°3 x 3*3 x 22 x (1 +log2) x (1 + log4n)
x log o X log av x 210g\/§
> —3.62 x 10" x (1 4 log4n).

< Recall that g
7k‘ﬁ|n+m\[ < W

Taking log on both sides
log A < log8 — 2mlog a.

< Combining the two, we get
m < 3.77 x 10" (1 + log 4n).
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Step 4: An upper bound for n

< We perform manipulations as before:

Fi = L,L,
k k
ot —
o g = L,(a" + ")

‘f = |a*|8"(v/5Ln) — 1]
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Step 4: An upper bound for n

< We perform manipulations as before:

F,=L,L,

ak—ﬂk _ ; .,

a—3 = Lyu(a" + ")
‘f = |a*|8"(v/5Ln) — 1]

< Define

Ay = |a7¥|B"(V/5L,) — 1.
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Step 4: An upper bound for n

< We perform manipulations as before:

F,=L,L,

ak—ﬂk _ ; .,

a—3 = Lyu(a" + ")
‘f = |a*|8"(v/5Ln) — 1]

< Define

Ay = |a7¥|B"(V/5L,) — 1.

< Repeating the same calculations as before, we have

33
0<A2<*
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Step 4: An upper bound for n

< We perform manipulations as before:

F,=L,L,

ak—ﬂk _ ; .,

a—3 = Lyu(a" + ")
‘f = |a*|8"(v/5Ln) — 1]

< Define

Ay = |a7¥|B"(V/5L,) — 1.

< Repeating the same calculations as before, we have

33
0<Ay< = andn<2.18 x 107,
(67
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Step 5: Refining the bounds

Goal: Obtain better bounds using the Dujella-Pethé Lemma.
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Step 5: Refining the bounds

Goal: Obtain better bounds using the Dujella-Pethé Lemma.
< Define I'; such that

8
Ay = o H|BIVS — 1] = [exp(Ty) — 1] < P
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Step 5: Refining the bounds

Goal: Obtain better bounds using the Dujella-Pethé Lemma.
< Define I'; such that

8
Av = [aHBI""V5 — 1| = |exp(Ty) — 1] < o
In particular, define

) := —kloga + (n +m)log|B| 4 log(V5).
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Step 5: Refining the bounds

Goal: Obtain better bounds using the Dujella-Pethé Lemma.
< Define I'; such that

8
Ay = o H|BIVS — 1] = [exp(Ty) — 1] < P

In particular, define

) := —kloga + (n +m)log|B| 4 log(V5).

< Moreover

og ()| a4

Ty klog
—_ | < .
log |3| o

log|3]| ~ |togla] ~ T

0<

14/33



Dasdemir-Emin

00000000800

Lemma of Dujella-Petho

Technical Lemma (1998)

Let M be a positive integer, § be a convergent of the continued fraction
of the irrational = such that ¢ > 6M, and let A, B, i be positive rational
numbers with A > 0 and B > 1. Let € = ||ug|| — M||7q||, where || - || is
the distance from the nearest integer. If ¢ > 0, then there is no integer
solution (x,y, z) of inequality

log(Ag/€)

0<xT—y+pu<AB *wherex <M and z >
log B
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How we apply the lemma

< We apply the lemma to

k <i)‘;g$|> —(n+m)+ o8 (75) < 34(a?)™™,
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How we apply the lemma

< We apply the lemma to

log o os ()|
k<log|5|>(n+m)+ oz | < 34(a”)™™.

< By comparison: A =34, B =o?, z =m, and j,, = Sl/g‘ﬁﬁ

< Set M =9.1 x 10*" (chosen so that k < 4n < M)

> 0.
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How we apply the lemma

< We apply the lemma to

log o log (ﬁ) e
k<1og|ﬁ|>(”+”’)*w < 34(a”)™"

< By comparison: A =34, B=a?, z=m, and y,, = gl)/g\‘/g‘) > 0.

< Set M =9.1 x 10”7 (chosen so that k < 4n < M) and 7 = lf)ogg“g‘_
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How we apply the lemma

< We apply the lemma to

loga 08 (J5) | _1yiay

< By comparison: A = 34, B = o2, z = m, and j,, = gl)/g“/g‘) > 0.

< Set M = 9.1 x 107 (chosen so that k < 4n < M) and 7 = {255
The continued fraction expansions of 7 yields
pa7 13949911361108065346183311454

gy 92134223612043233793615516979
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How we apply the lemma

< We apply the lemma to

loga 08 (J5) | _1yiay

< By comparison: A = 34, B = o2, z = m, and j,, = gl)/g“/g‘) > 0.

< Set M = 9.1 x 107 (chosen so that k < 4n < M) and 7 = {255
The continued fraction expansions of 7 yields
pa7 13949911361108065346183311454

gy 92134223612043233793615516979

< Check that 6M < ¢g4; and define
€ = ||tmgar|| — M|[7qa7]| > 0.486.
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How we apply the lemma

< We apply the lemma to

loga 08 (J5) | _1yiay

By comparison: A = 34, B = a?, z = m, and i, = gl)/g“/g‘) > 0.

Set M = 9.1 x 1077 (chosen so that k < 4n < M) and 7 = {255,
The continued fraction expansions of 7 yields
pa7 13949911361108065346183311454

gy 92134223612043233793615516979

A

A

A

Check that 6M < ¢47 and define
€ = ||tmgar|| — M|[7qa7]| > 0.486.

A

The lemma of Dujella-Pethd forces that m < 73.
16/33
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Better bounds for n and completing the proof

< A similar manipulation can now be repeated with A, instead of A;.
Once again, using the lemma of Dujella-Pethd, the bounds on n
can be improved to n < 160.
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Better bounds for n and completing the proof

< A similar manipulation can now be repeated with A, instead of A;.
Once again, using the lemma of Dujella-Pethd, the bounds on n
can be improved to n < 160.

< At this point, it is a (small) finite check, which can be done on (say)
Mathematica over the range m < 75 and n < 160 to determine all
possible solutions for F, = L,,L,,.
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The work of Luca, Odjoumani and Togbé

Definition: Tribonacci Numbers

The Tribonacci numbers are defined via the following recurrence
relation
0 when n = 0
T,=<1 whenn =1,2
T,.1+T, >+ T, 35 whenn> 3.
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[ Jelelele}

The work of Luca, Odjoumani and Togbé

Definition: Tribonacci Numbers

The Tribonacci numbers are defined via the following recurrence
relation
0 when n = 0

T,=<1 whenn = 1,2
T,.1+T, >+ T, 35 whenn> 3.

The first ten Tribonacci numbers are

0,1,1,2,4,7,13,24,44,81, ...
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Preliminaries

Characteristic equation

lts characteristic equation is X3 — X> — X — 1
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Luca-Odjoumani-Togbé
[¢] lele]e}

Preliminaries

Characteristic equation

Its characteristic equation is X> — X> — X — 1 with roots

5.5 — 2—(r1+r2):|:i\/§(r1—r2)
b - 6 b

14+r+n
:f’

r=119+3v33 and r, =1/19 —3V33.

where
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Preliminaries

Binet’'s Formula

For the Tribonacci numbers, the Binet’s formula is

T, = ay" + bd" + bd"

where 5 5 5
594 -3y —4 50 —36 — 4
a=2T"27"" gnd p=220"20"7

22 22
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The work of Luca, Odjoumani, and Togbé

Goal: To find all possible k, m, and n satisfying

Ty = FyF,.
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Luca-Odjoumani-Togbé
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The work of Luca, Odjoumani, and Togbé

Goal: To find all possible k, m, and n satisfying
Ty = FuF,.
The idea of the proof is similar to the previous work but we discuss

some of the differences as the new work (to be discussed at the end)
uses some of these ideas.
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The work of Luca, Odjoumani, and Togbé

Theorem (Luca-Odjoumani-Togbé, 2024 (Fibonacci Quarterly))

For positive integers k,m and n, the triples satisfying T, = F,,F, are

|

O | | W W] W| N[N =[N N || =

[Fu [P

N OO AW WIN NN = = | =

Q= =[N | = ===
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My contribution: work in progress

Goal: To find all possible k, m, and n satisfying
Ty = L,L,
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My contribution: work in progress

Goal: To find all possible k, m, and n satisfying
Ty = L,L,

Theorem (Q.)

Letk,m and n be positive integers. Then, the triples satisfying
Ty =L,L, are

Lk [m [ n ][ T [Ln] Lo |
T[T 1] 7]7
T 71 2] 71
Z1 13| 4|14
5114 717
8135|4411
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My contribution: work in progress

Goal: To find all possible k, m, and n satisfying
Ty = L,L,

Theorem (Q.)

Letk,m and n be positive integers. Then, the triples satisfying
Ty =L,L, are

Lk [m [ n ][ T [Ln] Lo |
T[T 1] 7]7
T 71 2] 71
Z1 13| 4|14
5114 717
8135|4411

The idea of the proof parallels the previous results.
23/33



My work or contribution
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Step 1: Upper bound for k in terms of n

< Using an induction argument we give upper and lower bounds of
T, in terms of v and S.

,yk—2 <Ty=L,L, < |B|—(n+m+2) and ‘5| (m+n—2) < ’)’k_l
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Step 1: Upper bound for k in terms of n

< Using an induction argument we give upper and lower bounds of
T, in terms of v and S.

,yk—2 <Ty=L,L, < |B|—(n+m+2) and ‘5| (m+n—2) < ’)’k_l

< Taking logs on both sides yield upper and lower bounds of &

log |3] lo g|ﬁ|

02 <k
logv( 02 <k< 1og’y

—n)+3.8.
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Step 2: Setting the stage to bound m

< Suppose that 7} can be written as a product of two Fibonacci
numbers.

Ty = LnLy
a,yk + b(;k +I;5k — (am + /Bm)(an +ﬁn)

<« Let’s define
Ay = |ayf g — 1)
‘a"}/kﬁ_(m-Hl) _ ]| _ | _ (bék + B(S’k)/@—(m-!—n) + Oém-knﬁ—(m-ﬁ-n) + amﬁnﬁ—(m-{—n)
+ anﬁm ﬁm+)1|
£0
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Step 3: Bounding m and Matveev’s Theorem

< Applying a theorem by Matveev to A, yields

log A; > —7.28 x 10" x log(m + n).
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Step 3: Bounding m and Matveev’s Theorem

< Applying a theorem by Matveev to A, yields

log A; > —7.28 x 10" x log(m + n).

< Further an easy computation shows that

5.62

Avi= Jay 87 — 1) <
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Step 3: Bounding m and Matveev’s Theorem

< Applying a theorem by Matveev to A, yields

log A; > —7.28 x 10" x log(m + n).

< Further an easy computation shows that

5.62

Avi= Jay 87 — 1) <

Now, taking log on both sides

log Ay < log5.62 — 2mlog|f|.
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Step 3: Bounding m and Matveev’s Theorem

< Applying a theorem by Matveev to A, yields

log A; > —7.28 x 10" x log(m + n).

< Further an easy computation shows that

i 5.62
A1 = |a7k|ﬁ| ( +)_1| < |B‘2m'

Now, taking log on both sides

log Ay < log5.62 — 2mlog|f|.

< Combining the two, we get
mlog|B| < 3.85 x 10™(logm + n).
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Step 4: An upper bound for n

< We perform manipulations as before

T, = L,L,
a* + b&* + bok = L,,(a" + ")

- ! ]
L.IAT 1| <5+ )
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Step 4: An upper bound for n

< We perform manipulations as before

T, = L,L,
a* + b&* + bok = L,,(a" + ")

- ! ]
L.IAT 1| <5+ )

a
Ay = ‘<Lm>’Yk/3|_n - 1‘-

< Define
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An upper bound for n

< Repeating the same calculations as before, we have

0 < Ay < 15|37 and 2n < 11.6 x 10% (log(2n))>.
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An upper bound for n

< Repeating the same calculations as before, we have
0 < Ay < 15|37 and 2n < 11.6 x 10% (log(2n))>.
In other words,
11.6 x 10% > (2n)/(log(2n))>.

< We need the following lemma

Ift >1,H > (4%)', and H > L/(log L)' then

L <2H(logH)'.

28/33



My work or contribution
00000@00000

An upper bound for n

< Repeating the same calculations as before, we have
0 < Ay < 15|37 and 2n < 11.6 x 10% (log(2n))>.
In other words,
11.6 x 10% > (2n)/(log(2n))>.

< We need the following lemma

Ift >1,H > (4%)', and H > L/(log L)' then

L <2H(logH)'.

Applying this lemma with = 2, L = 2n and H = 11.6 x 10*° yields

28/33



My work or contribution
00000@00000

An upper bound for n

< Repeating the same calculations as before, we have
0 < Ay < 15|37 and 2n < 11.6 x 10% (log(2n))>.
In other words,
11.6 x 10% > (2n)/(log(2n))>.

< We need the following lemma

Ift >1,H > (4%)', and H > L/(log L)' then

L <2H(logH)'.

Applying this lemma with = 2, L = 2n and H = 11.6 x 10*° yields

n <224 x 10%.
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Step 5: Refining the bounds

Goal: Obtain better bounds using the Dujella-Pethé Lemma.
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Step 5: Refining the bounds

Goal: Obtain better bounds using the Dujella-Pethé Lemma.
<« Define I'| such that

omin 5.62
A= Jar B0 1] = exp(T) — 1] <
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Step 5: Refining the bounds

Goal: Obtain better bounds using the Dujella-Pethé Lemma.
<« Define I'| such that

omin 5.62
A= Jar B0 1] = exp(T) — 1] <

< Then

ry |

klog~y _
log | 5|

log(a) .
m+n)+ < 16.684 m.
ogp] ~ " T g3 d

0<
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Step 5: Refining the bounds

Goal: Obtain better bounds using the Dujella-Pethé Lemma.
<« Define I'| such that

omin 5.62
Ay = Jar B0 1] = fesp(T) — 1 < e
< Then
I klog~y log(a) s
0< = —(m+n)+ < 16.684|8|~™".
g 13| ~ lioglal ~ " T T iog 18] d

< | will now apply the Dujello-Pethd theorem which will force a
bound on m and n (and hence on k). | expect this bound to be a
three-digit number but the calculations needs to be verified.
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Step 5: Refining the bounds

Goal: Obtain better bounds using the Dujella-Pethé Lemma.
<« Define I'| such that

5.62
Ay = Jar B0 1] = fesp(T) — 1 < e
< Then
I klog~y log(a) s
0< = —(m+n)+ < 16.684|8|~™".
g 13| ~ lioglal ~ " T T iog 18] d

< | will now apply the Dujello-Pethd theorem which will force a
bound on m and n (and hence on k). | expect this bound to be a
three-digit number but the calculations needs to be verified.

< | have checked till k = 5000 and that gives me good reason to
believe that the table present in my result is in fact complete.
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Matveev’s Theorem

Theorem (Matveev)
The following inequality holds for any non-zero A in the real field F

log |A| > —1.4x30°73 x5*5xD*x (1+log D) x (1-+log B) x Ay XAy X - - - X Aj.
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An example of continued fraction expansion

< NB: Every irrational number can be expressed as in infinite
continued fraction known as convergents. The n-th convergent is
given by

32/33



My work or contribution
00000000080

An example of continued fraction expansion

< NB: Every irrational number can be expressed as in infinite
continued fraction known as convergents. The n-th convergent is
given by

Pl _ anPn—1 +pn—2

qn angn—1 + qn—1 + Gn—2

Cp =
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How we apply the lemma

where p_; =1,po =ap, g-1 =0,q0 =1
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How we apply the lemma

where p_; =1,po =ap, g-1 =0,q0 =1

Cl0:|_7'J:0, a1:LT1J: :l7

a; = |_7'2J = = 2,613 = |_T3J =

Computing the first few convergents, we have

o = PL_ @Po tp1_aatl

q1 aopqo + q-1 ap
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How we apply the lemma

where p_; =1,po =ap, g-1 =0,q0 =1

Cl0:|_7'J:0, a1:LT1J: :l7

az = LTQJ = = 27‘13 = LTEJ =
Computing the first few convergents, we have

o = P10 tp1_aatl

q1  aogo + g—1i a

P2 @pitpo _ alapar +1) 2 2

Cy =

@ aqi+qo aray + 1 :2+1:3
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How we apply the lemma

where p_; =1,po =ap, g-1 =0,q0 =1

Cl0:|_7'J:0, a1:LT1J: :l7

az = LTQJ = = 27‘13 = LTEJ =
Computing the first few convergents, we have

o = P10 tp1_aatl

q1  aogo + g—1i a

P2 @pitpo _ alapar +1) 2 2

Cy =

@ @q+qo wmay +1 T2+1 3
ps _aprtp T

Cy = =
T woptaq 10
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