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Control Theorems for Fine Selmer Groups

par Debanjana Kundu et Meng Fai Lim

Résumé. Nous étudions la croissance du groupe de Selmer fin p-primaire, R(E/F ′),
d’une courbe elliptique sur une sous-extension intermédiaire F ′ d’une extension
de Lie p-adique, L/F . Nous estimons le Zp-corank du noyau et du conoyau de

l’application de restriction rL/F ′ : R(E/F ′)→ R(E/L)Gal(L/F ′) avec F ′ une exten-
sion finie de F contenue dans L. Nous montrons également que la croissance des
groupes de Selmer fins dans ces sous-extensions intermédiaires est liée à la structure
du groupe de Selmer fin sur le niveau infini. En nous spécialisant dans les extensions
de Lie p-adiques classiques (éventuellement non commutatives), nous prouvons la
finitude du noyau et du conoyau et fournissons des estimations de croissance sur
leurs ordres.

Abstract. We study the growth of the p-primary fine Selmer group, R(E/F ′), of
an elliptic curve over an intermediate sub-extension F ′ of a p-adic Lie extension,
L/F . We estimate the Zp-corank of the kernel and cokernel of the restriction map

rL/F ′ : R(E/F ′) → R(E/L)Gal(L/F ′) with F ′ a finite extension of F contained
in L. We show that the growth of the fine Selmer groups in these intermediate
sub-extension is related to the structure of the fine Selmer group over the infinite
level. On specializing to certain (possibly non-commutative) p-adic Lie extensions,
we prove finiteness of the kernel and cokernel and provide growth estimates on their
orders.

1. Introduction

Iwasawa theory began as the study of ideal class groups over infinite towers of number
fields [16]. In his fundamental paper [32], Mazur developed an analogous theory to study
the growth of Selmer groups of Abelian varieties in Zp-extensions. He proved what is
nowadays called a “control theorem”, which we describe briefly here. Let A be an Abelian
variety defined over a number field, F , with potential good ordinary reduction at all primes
above p, and let L be a Zp-extension of F . For every intermediate sub-extension F ′ of L/F ,
we have natural maps

sL/F ′ : Sel(A/F ′) −→ Sel(A/L)Gal(L/F ′)

on the Selmer groups induced by the restriction maps on cohomology. Mazur’s Control
Theorem asserts that the kernel and cokernel of sL/F ′ are finite and bounded independent
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of F ′. The Control Theorem has subsequently been generalized to general p-adic Lie ex-
tensions by Greenberg [11]. Such a Control Theorem has great importance in Iwasawa
theory. In [32], Mazur conjectured that the Selmer group Sel(A/F cyc) is cotorsion over
ZpJΓK, where Γ = Gal(F cyc/F ) and F cyc is the cyclotomic Zp-extension of F . The first
theoretical evidence towards this conjecture was provided by Mazur himself; using the Con-
trol Theorem, he verified the conjecture when Sel(A/F ) is finite. Till date, this conjecture
is known only when E is an elliptic curve over Q and F is an Abelian extension of Q; see
[18, 38]. The Selmer group Sel(A/F cyc) is known to be related to a p-adic L-function via
the main conjecture. Therefore, Mazur’s Control Theorem opens up a channel to extract
information on Sel(A/F ) from the said main conjecture which provides an invaluable ap-
proach towards the study of the Birch and Swinnerton-Dyer Conjecture (for instance, see
[18, 38, 45]). The Control Theorem connects the Selmer groups at the finite layers with
the Selmer group over the infinite tower, thereby allowing one to deduce properties of this
arithmetic object over the infinite tower from those at the finite layers, and vice versa.

Recently, there has been an interest in the study the fine Selmer group (see [6, 17, 23,
25, 27, 30, 36, 49, 51]). This is a subgroup of the classical Selmer group obtained by
imposing stronger vanishing conditions at primes above p (see §5 for its definition). In [6],
Coates and Sujatha initiated a systematic study of the fine Selmer group and postulated
conjectures on its structure over a p-adic Lie extension. In this paper, we prove Control
Theorems for fine Selmer groups of elliptic curves in general p-adic Lie extensions. This
allows us to deduce properties of the fine Selmer group over the infinite tower from those
at the finite layers, and vice versa. We remark that the (classical) Control Theorem can
be proven only when the Abelian variety has potential good ordinary reduction at primes
above p (see [10, p. 51]); however, our results do not require this hypothesis.

First, we establish estimates on the Zp-coranks of the kernel and cokernel of the restric-
tion maps

rL/F ′ : R(E/F ′) −→ R(E/L)Gal(L/F ′)

for a p-adic Lie extension L/F . Using these, we show how the module theoretic structure of
R(E/L) determines the growth of Zp-coranks of R(E/F ′) in intermediate sub-fields F ′. To

obtain sharper results, we specialize to three cases of p-adic Lie extensions: Zdp-extensions,
multi-false-Tate extensions, and the trivializing extension obtained by adjoining to F all
the p-power division points of the elliptic curve, E. In each of these cases, we show (under
appropriate assumptions) that the kernel and cokernel of the restriction map are finite,
and establish growth estimates for their orders.

For a Zdp-extension, Control Theorems have been studied in [39, 49, 51, 27], often with
additional hypotheses. Our results however, are more general and can provide precise
growth estimates for the kernel and cokernel of rL/F ′ . Further, we prove that if R(E/F ) is

finite, then R(E/F∞) is cotorsion over ZpJGK, where G = Gal(F∞/F ) ∼= Zdp. This provides
the impetus to conjecture the following.

Conjecture (Conjecture Yd). Let F∞ be a p-adic extension of F with G = Gal(F∞/F ) ∼=
Zdp. Then R(E/F∞)∨ is a torsion ZpJGK-module.



3

When d = 1, this is conjectured by the second named author in [27]. Currently, we
refrain from formulating a more general conjecture, such as over a non-commutative p-
adic extension not containing the cyclotomic Zp-extension, as we feel there is insufficient
evidence towards the same.

Control Theorems for fine Selmer groups over non-commutative extensions (e.g. (multi)
false-Tate extensions and trivializing extensions) have not been recorded in the literature.
The key step of controlling the growth of the cokernel requires careful analysis of the local
restriction maps at primes above p. We emphasize that the method of proof differs from
that of Greenberg in [11], where he developed a Lie algebraic approach to attack such
problems. The main reason for requiring a different approach is that we want to estimate
the growth of cohomology groups of open subgroups of a p-adic Lie group. However, open
subgroups share the same Lie algebra, therefore the cohomology of the Lie algebra cannot
distinguish the cohomology groups of the subgroups. Our analysis is therefore significantly
different, intricate, and in fact, more effective than the case of the (classical) Selmer group.
Our results show that the (conjectured) structure of the fine Selmer group at the infinite
level has bearing on the growth of the size of R(E/Fn)[pn]. Finally, we remark that
our argument uses an improvement of Tate’s Lemma (see Lemma 2.3) which should be
interesting in its own right, and should potentially have further applications.

It would seem that some of our results may be extended to fine Selmer groups attached
to Abelian varieties, modular forms or even broader classes of Galois representations of
interest. Our case of representations arising from elliptic curves can therefore be seen as a
first step in this line of study.

We now give an outline of the paper. In §2, 3, we record algebraic facts required
throughout this article. In §4, we estimate the growth of cohomology groups of the p-
division points of an elliptic curve in a p-adic Lie extension of a local field. In §5, we prove
a Control Theorem which studies the growth of the Zp-coranks of the kernel and cokernel
of the restrictions maps in a general p-adic Lie extension. We also study an analogue where
we vary the cyclotomic Zp-extensions of the intermediate sub-extensions. In §6, we prove
more precise versions of the Control Theorem in special cases and establish (with growth
estimates) the finiteness of the kernel and cokernel of the restriction map. In §7, we provide
numerical examples to illustrate our otherwise abstract results.

2. Some Basic Estimates on Cohomology

In this section, we record estimates on the cohomology groups which are required
throughout the article. For an Abelian group, M , let M [pj ] denote the subgroup of M
consisting of elements of M annihilated by pj . Write M [p∞] for ∪j≥1M [pj ]. If M is a dis-
crete p-primary Abelian group or a compact pro-p Abelian group, we define its Pontryagin
dual, M∨ = Homcont(M, Qp/Zp). For a profinite group, G, and a G-module, M , let MG

be the subgroup of M consisting of elements fixed by G and MG be the largest quotient
of M on which G acts trivially. If M is a discrete G-module, we write H i (G, M) for the
i-th Galois cohomology group of G with coefficients in M .
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Lemma 2.1. Let G be a pro-p group and M be a discrete G-module which is cofinitely

generated over Zp. If h1(G) = dimZ/pZ

(
H1
(
G, Z/pZ

))
is finite, then

dimZ/pZ

(
H1 (G, M) [p]

)
≤ h1(G)

(
corankZp(M) + ordp

∣∣M/Mdiv

∣∣) .
If h2(G) = dimZ/pZ

(
H2
(
G, Z/pZ

))
is finite, then

dimZ/pZ

(
H2 (G, M) [p]

)
≤ h2(G)

(
corankZp(M) + ordp

∣∣M/Mdiv

∣∣) .
Proof. The first inequality is proven in [29, Lemma 3.2]. The second inequality is proven
similarly. �

When M is a finite G-module, we have the following sharper conclusion.

Lemma 2.2. Let G be a pro-p group and M be a (finite) discrete G-module which is a

finite p-group. If h1(G) = dimZ/pZ

(
H1
(
G, Z/pZ

))
is finite, then H1 (G, M) is finite

with

ordp

∣∣∣H1 (G, M)
∣∣∣ ≤ h1(G) ordp|M | .

If h2(G) = dimZ/pZ

(
H2
(
G, Z/pZ

))
is finite, then H2 (G, M) is finite with

ordp

∣∣∣H2 (G, M)
∣∣∣ ≤ h2(G) ordp|M | .

Proof. This follows from a standard dévissage argument and noting that the only simple
discrete G-module is Z/pZ with trivial G-action (cf. [34, Corollary 1.6.13]). �

If F is a finite extension of Q or Qp which contains a primitive root of unity, and
Γ = Gal(F (µp∞)/F ), then Tate’s Lemma (see [46, p. 526]) asserts thatH1(Γ,Qp/Zp(i)) = 0
for i 6= 0. Observe that H0(Γ,Qp/Zp(i)) is finite by virtue of i 6= 0. Motivated by this
observation, we prove the following lemma which can be thought of as a generalization of
Tate’s Lemma. We note that our argument is different from the classical proof.

Lemma 2.3. Let G ∼= Zp and M be a discrete, p-divisible G-module, which is cofinitely
generated over Zp. If MG is finite, then H1(G,M) = 0.

Proof. Set U = M∨. This is a compact ZpJGK-module which is finitely generated over Zp.
Thus, it is torsion over ZpJGK, and

0 = rankZpJGnK(U) = rankZp UG − rankZp U
G.

This combined with the hypothesis that UG = (MG)∨ is finite, yields that UG is finite.
Since M is p-divisible, U is Zp-torsion free. Since UG is finite, it follows that UG = 0. But,

H1(G, M)∨ ∼= (MG)∨ ∼= UG = 0,

where the first isomorphism follows from [34, Proposition 1.7.7(i)]. �
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3. Modules over the Iwasawa Algebra

Throughout, p denotes a fixed prime. We record algebraic facts required in this article.

3.1. Uniform pro-p groups. In this subsection, we lay out some facts regarding a uni-
form pro-p group. For further background on these groups, we refer the reader to [8].

For a finitely generated pro-p group, G, we write Gp
n

= 〈gpn | g ∈ G〉, i.e., the group

generated by the pn-th-powers of elements in G. We also write G{p
n} = {gpn | g ∈ G}, i.e.,

the set consisting of the pn-th-powers of elements in G. The pro-p group G is said to be
powerful if G/Gp (resp. G/G4) is Abelian for odd p (resp. p = 2). Here (·) denotes the
closure with respect to the topology of the pro-p group. The lower p-series of G is defined
by P1(G) = G, and

Pn+1(G) = Pn(G)p[Pn(G), G], for i ≥ 1.

By [8, Theorem 3.6], if G is powerful, then Gp
n

= G{p
n} = Pn+1(G). Further, the p-power

map

Pn(G)/Pn+1(G)
·p−→ Pn+1(G)/Pn+2(G)

is surjective for each n ≥ 1. If the p-power maps are isomorphisms for all n ≥ 1, we say
G is uniformly powerful (abbrv. uniform). Then, [G : P2(G)] = [Pi(G) : Pn+1(G)] for
every n ≥ 1. Consequently, [G : Pn+1(G)] = pnd, where d = dimG (see [8, Definition 4.1]).
A well-known result of Lazard (cf. [8, Corollary 8.34]) asserts that a compact p-adic Lie
group always contains an open normal uniform subgroup. Therefore, one can always reduce
consideration for a general compact p-adic Lie group to the case of a uniform group, which
we will do throughout the paper. In particular, for a uniform group, we have Gp

n
= G{p

n},
which will be utilized without further mention.

We record the following lemma which will also be applied frequently without mention.

Lemma 3.1. Let G be a uniform group and N be a closed normal subgroup of G such
that R := G/N is uniform. Then N is also uniform. Furthermore, writing Nn = Npn,
Gn = Gp

n
, and Rn = Rp

n
, we have Nn = Gn ∩N and Gn/Nn

∼= Rn.

Proof. Using [8, Proposition 4.31], N is a uniform group. Clearly, one has Nn ⊆ Gn ∩N .
Conversely, let x ∈ Gn ∩ N . Then x = yp

n
for some y ∈ G; hence, the coset yN is a

torsion element in R = G/N . Since R is assumed to be uniform, it has no p-torsion (cf. [8,
Theorem 4.5]); so yN = N or y ∈ N . Hence, x = yp

n ∈ Nn. This proves the first equality.
The second follows from the observation that

Gn/Nn = Gn/(Gn ∩N) ∼= GnN/N = Gp
n
N/N = (G/N)p

n
= Rn.

�

3.2. Torsion modules and pseudo-null modules. For a compact p-adic Lie group, G,
its Iwasawa algebra is the completed group algebra of G over Zp. It is given by

ZpJGK = lim←−
U

Zp[G/U ],

where U runs over the open normal subgroups of G and the inverse limit is taken with
respect to the canonical projection maps.
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When G is pro-p and has no p-torsion, it is well-known that ZpJGK is an Auslander
regular ring (cf. [47, Theorem 3.26]; for the definition of Auslander regular rings, see [47,
Definition 3.3]). Furthermore, the ring ZpJGK has no zero divisors (cf. [35]), and therefore,
admits a skew field, Q(G), which is flat over ZpJGK (see [9, Chapters 6 and 10] or [20,
Chapter 4, §9 and §10]). If M is a finitely generated ZpJGK-module, define the ZpJGK-rank
of M as

rankZpJGKM = dimQ(G)Q(G)⊗ZpJGK M.

A ZpJGK-module, M , is torsion if rankZpJGKM = 0. Equivalently, M is torsion if and
only if HomZpJGK(M, ZpJGK) = 0 (cf. [24, Lemma 2.2.1]). A torsion ZpJGK-module, M , is

pseudo-null if Ext1
ZpJGK(M, ZpJGK) = 0. Finally, we record a result which will be frequently

used in our discussion.

Proposition 3.2 (Harris [13]). Let G be a d-dimensional uniform group. Let M be a
finitely generated ZpJGK-module. Then,

rankZp(MGn) = rankZpJGK(M)pdn +O
(
p(d−1)n

)
.

3.3. µG-invariant. In this subsection, G will denote a uniform group. Therefore, both
ZpJGK and FpJGK are Auslander regular rings with no zero divisors. For a finitely generated
ZpJGK-module, M , it follows from [15, Proposition 1.11] (or [47, Theorem 3.40]) that there
is a ZpJGK-homomorphism

ϕ : M [p∞] −→
s⊕
i=1

ZpJGK/παi ,

whose kernel and cokernel are pseudo-null ZpJGK-modules. Furthermore, the integers s

and αi are uniquely determined. We define the µG-invariant, µG(M) =
s∑
i=1

αi.

Lemma 3.3. Let M be a finitely generated ZpJGK-module. Suppose there is a ZpJGK-
homomorphism

ϕ : M [p∞] −→
s⊕
i=1

ZpJGK/pαi ,

whose kernel and cokernel are pseudo-null ZpJGK-modules. Then,

µG(M/pn) = n rankZpJGK(M) +
s∑
i=1

min{n, αi} for n ≥ 1.

In particular, M is ZpJGK-torsion with trivial µG-invariant if and only if µG(M/p) = 0.

Proof. The first equality is [24, Lemma 2.4.1]; the last assertion follows immediately. �

Proposition 3.4. For G a d-dimensional uniform group, and M a finitely generated
FpJGK-module,

ordp|MGn | = µG(M)pdn +O
(
p(d−1)n

)
.
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Proof. See [37, Théorème 2.1] or [24, Proposition 2.5.1]. �

4. Local Considerations

We now estimate the growth of the first cohomology group of the p-division points of an
elliptic curve in a p-adic Lie extension of a local field. For an extension L of a local field, and

a Gal(L/L)-module, M , we write H i(L, M) for the cohomology group H i
(

Gal(L/L), M
)

.

Throughout, K is a local field and K∞ is a uniform p- adic Lie extension, i.e., it is a pro-p
extension of K with Galois group G = Gal

(
K∞/K

)
which is assumed to be uniform. We

write Gn = Gp
n
.

4.1. Local field over Q` with ` 6= p. Let K be a finite extension of Q`, where ` 6= p.
By a classical result of Iwasawa (cf. [34, Theorem 7.5.3]), if K∞/K is a uniform p-adic
Lie extension, we know that Gal(K∞/K) ∼= Zp or Zp o Zp. Further, Iwasawa’s result
shows that the Zp oZp-extension of K is unique. We now estimate the growth of the first
cohomology group in both cases.

Proposition 4.1. Let E be an elliptic curve defined over K, and K∞/K be a uniform
extension of K. Then, the group H1

(
Gn, E(K∞)[p∞]

)
is finite for every n. Furthermore,

the following assertions are true.

(a) If Gal(K∞/K) ∼= Zp, then
∣∣∣H1

(
Gn, E(K∞)[p∞]

)∣∣∣ = O(1).

(b) If Gal(K∞/K) ∼= Zp o Zp, then dimZ/pZ

(
H1
(
Gn, E(K∞)[p∞]

)
[p]
)

= O(1) and

ordp

∣∣∣H1
(
Gn, E(K∞)[p∞]

)∣∣∣ = O(n).

Proof. (a) This is proven in [27, Lemma 3.4].
(b) The first estimate follows from Lemma 2.1. For the second estimate, note that by

Iwasawa’s result (cf. [34, Theorem 7.5.3]), K∞ has no non-trivial p-extension, so
H1(K∞, E[p∞]) = 0. By the inflation-restriction sequence, we obtain that

H1
(
Gn, E(K∞)[p∞]

) ∼= H1(Kn, E[p∞]).

Here Kn refers to the field fixed by Gn. Since ` 6= p, the latter is isomorphic

to H1(Kn, E)[p∞]; this in turn is isomorphic to
(
E(Kn)[p∞]

)∨
by Tate-duality

(cf. [33, Chap. I, Corollary 3.4]). It is now easy to see that this is finite and

ordp

∣∣∣(E(Kn)[p∞]
)∨∣∣∣ = O(n).

�

4.2. Local field over Qp. We now consider the situation when K is a finite extension of
Qp, and E is an elliptic curve defined over K. We begin with the following easy observation.

Proposition 4.2. Let K∞ be a uniform p-adic Lie extension extension of K of dimension
d. Suppose E(K∞)[p∞] is finite. Then, the group H1(Gn, E(K∞)[p∞]) is finite and

ordp

∣∣∣H1
(
Gn, E (K∞) [p∞]

)∣∣∣ = O(1).
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Proof. This follows from Lemma 2.2. �

Proposition 4.3. Let K∞ be a Zdp-extension of K. Then H1
(
Gn, E(K∞)[p∞]

)
is finite

and

ordp

∣∣∣H1
(
Gn, E(K∞)[p∞]

)∣∣∣ = O(n).

Proof. Observe that H0
(
Gn, E (K∞) [p∞]

)
= E(Kn)[p∞] is finite because for any elliptic

curve over a local field the torsion subgroup is finite, see [44, Proposition VII.6.3]. The
finiteness of H1

(
Gn, E (K∞) [p∞]

)
is then essentially a consequence of this and [42, Chap.

IV, Theorem 1]. (One may also consult p. 106 in op. cit., where they obtain a result
for k[G], where k is a field. But the same discussion carries over if k is replaced by
Zp.) In view of this finiteness observation, we may apply Lemma 2.1 to conclude that
dimZ/pZH

1
(
Gn, E(K∞)[p∞]

)
[p] is bounded independent of n. On the other hand, by [7,

Theorem 2.8] (or [22, Lemma 2.1.1]) there exists a constant c independent of n such that
pdn+c annihilates H1

(
Gn, E(K∞)[p∞]

)
. The assertion follows from these observations. �

Remark 4.4. If Gal(K∞/K) = Zp, it is possible to prove the following better estimate
(see [27, Lemma 3.4])

ordp

∣∣∣H1
(
Gn, E (K∞) [p∞]

)∣∣∣ = O(1).

Let K∞ = K
(
µp∞ , p∞

√
α1, . . . , p

∞√αd−1

)
, where α1, . . . , αd−1 ∈ K× whose image in

K×/(K×)p are linearly independent over Fp. This is a multi-false-Tate extension of a local
field, K.

Proposition 4.5. Let K∞ be a multi-false-Tate extension of a local field of dimension
≥ 2. Suppose E is an elliptic curve defined over K with potential good reduction. Then,
the group H1

(
Gn, E(K∞)[p∞]

)
is finite with

ordp

∣∣∣H1
(
Gn, E(K∞)[p∞]

)∣∣∣ = O(1).

Proof. Since E has potential good reduction at K, we see that E(K∞)[p∞] is finite by a
result of Kubo-Taguchi [19, Theorem 1.1]. The claim follows from this observation and
Proposition 4.2. �

If E has split multiplicative reduction, then H1
(
Gn, E(K∞)[p∞]

)
can be infinite. This

is a well-known fact. However, for a lack of proper reference, we supply an argument here.

Proposition 4.6. Let E be an elliptic curve defined over K with split multiplicative reduc-
tion. Suppose that K contains a primitive p-th root of unity. Let K∞ = K

(
µp∞ , p∞

√
α
)

such that E[p∞] is not realized over K∞. Then the group H1
(
G, E[p∞]

)
is infinite, where

G = Gal(K∞/K).

Proof. From the theory of Tate curves, we have a short exact sequence

0 −→ µp∞ −→ E[p∞] −→ Qp/Zp −→ 0
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of Gal(K/K)-modules. Taking Gal(K/K∞)-invariance, we obtain the exact sequence,

0 −→ µp∞ −→ E(K∞)[p∞]
f−→ Qp/Zp.

Since E[p∞] is not realized over K∞, the Zp-corank of E(K∞)[p∞] is at most one. The
above sequence implies that the image of f , B (say), is finite. Thus, we have a short exact
sequence,

0 −→ µp∞ −→ E(K∞)[p∞]
f−→ B −→ 0

of G-modules. Taking G-cohomology, we obtain the following exact sequence

BG −→ H1(G, µp∞) −→ H1(G, E(K∞)[p∞]).

Since B is finite, the proposition will follow once we show that H1(G, µp∞) is infinite. For
this, we appeal to the inflation-restriction sequence; there exists a short exact sequence

0 −→ H1(Γ, µp∞) −→ H1(G, µp∞) −→ H1(H, µp∞)Γ −→ 0,

where Γ = Gal(Kcyc/K). By Kummer theory, H ∼= Tpµp∞ as Γ-modules. Thus,

H1(H, µp∞)Γ ∼= Hom(Tpµp∞ , µp∞)Γ ∼= (Qp/Zp)Γ = Qp/Zp,
which is an infinite group. We have therefore established the proposition. �

In Proposition 4.8, we will see that one can still say something on the growth of the Zp-
corank. Now consider the case of K∞ = K(E[p∞]), i.e., the extension obtained by adjoining
all the p-power division points of the elliptic curve, E. Here, we have no assumption on
the reduction type of E.

Proposition 4.7. Let E/K be an elliptic curve such that K/Qp is finite, and let K∞ =
K(E[p∞]). Suppose G = Gal(K∞/K) is uniform. Writing Gn = Gp

n
, the cohomology

group H1
(
Gn, E[p∞]

)
is finite with p-power order O(n).

Proof. By base changing, we assume that E[p] is rational over K and has semi-stable
reduction at K. If E has complex multiplication, then G ∼= Z2

p and the conclusion follows
from Proposition 4.3.

We will now consider the case of elliptic curves without complex multiplication. Suppose
that E has split multiplicative reduction. By the theory of Tate curves, there exists q ∈ K
such that E(K) ∼= K

×
/qZ as Gal(K/K)-modules. Since K is assumed to contain E[p], it

also contains µp. Therefore, K(µp∞) is a Zp-extension of K. Write H = Gal(K∞/K(µp∞))
and Υ = Gal(K(µp∞)/K). The theory of Tate curves tells us that K∞ is obtained from
K(µp∞) by adjoining all the p-power roots of q. Thus, K∞ is a false-Tate extension of K.
Furthermore, there is a short exact sequence

0 −→ µp∞ −→ E[p∞] −→ Qp/Zp −→ 0

of Gal(K/K)-modules. Taking H-cohomology, we obtain the following exact sequence

0→ µp∞ → H0(H, E[p∞])→ Qp/Zp
δ−→ H1(H, µp∞)→ H1(H, E[p∞])→ H1(H,Qp/Zp)→ 0,

where the final zero comes from the fact that H ∼= Zp has p-cohomological dimension
1. By Kummer theory, the connecting homomorphism, denoted by δ, is an isomorphism.
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Thus, we obtain H0(H, E[p∞]) ∼= µp∞ and H1(H, E[p∞]) ∼= H1(H, Qp/Zp). Write
Hn = Hpn and Υn = Υpn ; then a similar argument also yields H0(Hn, E[p∞]) ∼= µp∞ and
H1(Hn, E[p∞]) ∼= H1(Hn, Qp/Zp) as Υn-modules. By the inflation-restriction sequence,
we obtain

0 −→ H1(Υn, E[p∞]Hn) −→ H1(Gn, E[p∞]) −→ H1(Hn, E[p∞])Γn −→ 0.

Now H1(Υn, E[p∞]Hn) ∼= H1(Υn, µp∞) which vanishes by Lemma 2.3. By Kummer
theory, we know that H ∼= Tpµp∞ as Υ-modules. Therefore,

H1(Hn, E[p∞])Υn ∼= H1(Hn, Qp/Zp)Υn ∼= Hom(Tpµp∞ , Qp/Zp)Υn ;

the last of which is easily seen to be finite with p-power order O(n). This proves the
proposition when E has multiplicative reduction.

When E does not have complex multiplication and has good ordinary reduction, the
dimension of G is 3 (cf. [4, Proposition 2.8]). We have a short exact sequence of G-modules

(4.1) 0 −→ Ê[p∞] −→ E[p∞] −→ Ẽ[p∞] −→ 0,

where Ê (resp. Ẽ) denotes the formal group (resp. reduced curve) of E. Taking Gn-
invariance,

H1
(
Gn, Ê[p∞]

)
−→ H1

(
Gn, E[p∞]

)
−→ H1

(
Gn, Ẽ[p∞]

)
.

The discussion in [11, p. 274] implies that H1(Gn, Ẽ[p∞]) is finite with p-power order

O(n). It remains to estimate H1(Gn, Ê[p∞]). For this, we further analyse the structure

of G. The Gal(K̄/K)-action on Ẽ[p∞] induces a group homomorphism ρ : Gal(K̄/K) −→
Aut(Ẽ[p∞]). We denote L∞ := K̄ker ρ which is a Zp-extension of K contained in K∞
(recall that we are assuming that E[p] is realized over K). By definition, Gal(K/Kur)

acts trivially on Ẽ[p∞], where Kur is the maximal unramified extension of K. Hence, the
extension L∞ is an unramified Zp-extension of K contained in K∞. Set M∞ = L∞(µp∞);

this is a Zp-extension of L∞. We claim that Ê[p∞] is not rational over M∞. Indeed,

since Ẽ[p∞] is realized over L∞, it is also realized over M∞. If Ê[p∞] is also rational
over K∞, then E[p∞] must be rational over M∞ which in turn implies that K∞ = M∞.
This contradicts the fact that G = Gal(K∞/K) has dimension 3. By dimension counting,
Gal(K∞/M∞) is a one-dimensional p-adic Lie group. By enlarging K, we may assume that
Gal(K∞/M∞) ∼= Zp. For n� 0, there exists a constant c independent of n such that

Gal
(
K∞/M∞

)pn
= Gal

(
K∞

/
M∞

(
Ê[pn+c]

))
.

Now, write Un = Gal(K∞/M∞)p
n

and Vn = Gal(M∞/K)p
n
. For large enough n, the

inflation-restriction sequence gives us the following exact sequence

0 −→ H1
(
Vn, Ê[pn+c]

)
−→ H1

(
Gn, Ê[p∞]

)
−→ H1

(
Un, Ê[p∞]

)Vn
.
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Since H0(Un, Ê[p∞]) = Ê[pn+c] is finite, it follows from an application of Lemma 2.3 that

H1(Un, Ê[p∞]) = 0. Now, by appealing to Lemma 2.2, we obtain the required equality,

ordp

∣∣∣∣H1
(
Gn, Ê[p∞]

)∣∣∣∣ = ordp

∣∣∣∣H1
(
Vn, Ê[pn+c]

)∣∣∣∣ ≤ 2(n+ c) = O(n).

We now come to the situation when E does not have complex multiplication and has
good supersingular reduction. Under this assumption, the dimension of G is 4 (cf. [41, IV
A.2.2]). In particular, it is an open subgroup of GL2(Zp). By the discussion in [47, p. 302],
and upon enlarging K if necessary, we may assume that G = Z ×H, where Z ∼= Zp and
H = Gal(K∞/K

cyc). We claim that E[p∞]Zn is finite, where Zn = Zp
n
. Suppose for now

that the claim holds. Then, by Lemma 2.3, we have H1(Zn, E[p∞]) = 0. Therefore, the
spectral sequence

H i(Hn, H
j(Zn, E[p∞])) =⇒ H i+j(Gn, E[p∞])

degenerates to yield

H i
(
Hn, E[p∞]Zn

)
∼= H i

(
Gn, E[p∞]

)
.

Writing L∞ = KZ
∞, we see that for sufficiently large n, Zp

n
= Gal

(
K∞/L∞

(
E[pn+c]

))
where c is a constant independent of n. By Lemma 2.1, we see that

ordp

∣∣∣H1
(
Gn, E[p∞]

)∣∣∣ = ordp

∣∣∣∣H1
(
Hn, E[p∞]Zn

)∣∣∣∣ ≤ 3 ordp

∣∣∣E[p∞]Zn
∣∣∣ = O(n).

It therefore remains to verify that E[p∞]Zn is finite. Without loss of generality, it suffices
to show that E[p∞]Z is finite. Let T be the Tate module of E[p∞]Z . Then T ⊗ Qp

is a Gal(K/K)-submodule of TpE ⊗ Qp. Since E is an elliptic curve without complex

multiplication, the latter is an irreducible Gal(K/K)-module by [41, IV 2.1]. So, T ⊗Qp is
either zero or the whole of TpE⊗Qp. As E[p∞] is not realized over L∞, we have T⊗Qp = 0;
equivalently, E[p∞]Z is finite. �

Finally, we record an estimate on the Zp-coranks of the first cohomology groups in
intermediate extensions of a general p-adic Lie extension. This result is independent of the
reduction type of E.

Proposition 4.8. Let K∞ be a d-dimensional uniform p-adic Lie extension of K. Then,

dimZ/pZ

(
H1
(
Gn, E (K∞) [p∞]

)
[p]
)

= O(1).

In particular,

corankZp

(
H1
(
Gn, E (K∞) [p∞]

))
= O(1).

Proof. This follows from Lemma 2.1 and noting that h1(Gn) = d for all n. �
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5. A General Control Theorem

We fix an algebraic closure Q of Q. Any algebraic (possibly infinite) extension of Q is
then a subfield of this fixed algebraic closure, Q. When the subfield is a finite extension
of Q, we call it a number field. Let E be an elliptic curve defined over a number field,
F , and let S be a finite set of primes containing the primes above p, the primes of bad
reduction of E, and the Archimedean primes. Let FS be the maximal algebraic extension
of F unramified outside S. For every (possibly infinite) extension L of F contained in FS ,
write GS(L) = Gal(FS/L). Let S(L) be the set of primes of L above S. If L is a finite
extension of F and w is a place of L, we write Lw for its completion at w; when L/F is
infinite, it is the union of completions of all finite sub-extensions of L.

Over each L, the p-primary Selmer group and p-primary fine Selmer group are defined
as follows

0 −→ Sel
(
E/L

)
−→ H1

(
GS(L), E[p∞]

)
−→

⊕
w∈S(L)

H1 (Lw, E) [p∞],

0 −→ R
(
E/L

)
−→ H1

(
GS (L) , E[p∞]

)
−→

⊕
w∈S(L)

H1
(
Lw, E[p∞]

)
.

Using the definition, it is a simple observation that R(E/L) is independent of the choice
of S (see [30, Lemma 4.1]). Indeed, this is because we have the following exact sequence

0 −→ R
(
E/L

)
−→ Sel

(
E/L

)
−→

⊕
w|p

E(Lw)⊗Qp/Zp.

A uniform p-adic Lie extension F∞ of F is one where Gal(F∞/F ) is a uniform group. For a
given uniform p-adic Lie extension F∞ contained in FS , define R(E/F∞) = lim−→L

R(E/L),

where L runs through the finite sub-extensions of F∞/F . In other words, we have

R
(
E/F∞

) ∼= ker

H1
(
GS (F∞) , E[p∞]

)
−→

⊕
v∈S

K1
v

(
E/F∞

) ,

where K1
v

(
E/F∞

)
= lim−→L

⊕
w∈S(L)H

1
(
Lw, E[p∞]

)
. For a finite extension, L/F , we shall

sometimes write K1
v (E/L) =

⊕
w|vH

1
(
Lw, E[p∞]

)
.

For a finite extension L of F contained in F∞, we have the following commutative
diagram

0 −→ R(E/L) −→ H1
(
GS (L) , E[p∞]

)
−→

⊕
v∈S

K1
v(E/L)yrL yhL ygL

0 −→ R
(
E/F∞

)Gal(F∞/L) −→ H1
(
GS (F∞) , E[p∞]

)Gal(F∞/L) −→
⊕
v∈S

K1
v

(
E/F∞

)Gal(F∞/L)

with exact rows, where the maps hL and gL are the restriction maps on cohomology, and rL
is the map induced by these. The above diagram will be the main tool for our discussion.
We first prove a general result independent of any hypothesis on the reduction type.
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For the remainder of the section, the elliptic curve E will be defined over the number
field, F , and F∞ will be a uniform p-adic Lie extension over F contained in FS with Galois
group, G = Gal(F∞/F ). We will write Gn = Gp

n
and denote by Fn the fixed field of Gn.

Theorem 5.1. Let E be an elliptic curve defined over F , and let F∞ be a d-dimensional
uniform p-adic Lie extension of F . Then the kernel and cokernel of the restriction map

rn : R
(
E/Fn

)
→ R

(
E/F∞

)Gn
are cofinitely generated over Zp. Furthermore,

corankZp (ker rn) = O(1) and corankZp (coker rn) = O
(
p(d−1)n

)
.

Proof. Consider the following diagram

0 −→ R(E/Fn) −→ H1
(
GS (Fn) , E[p∞]

)
−→

⊕
vn∈S(Fn)H

1
(
Fn,vn , E[p∞]

)yrn yhn ygn
0 −→ R

(
E/F∞

)Gn −→ H1
(
GS (F∞) , E[p∞]

)Gn −→
⊕

v∈S K
1
v

(
E/F∞

)Gn

with exact rows. By the Hochschild-Serre spectral sequence, we have

kerhn = H1
(
Gn, E(F∞)[p∞]

)
and cokerhn ⊆ H2

(
Gn, E(F∞)[p∞]

)
.

Lemma 2.1 asserts that dimZ/pZ
(
(kerhn)[p]

)
= O(1) and dimZ/pZ

(
(cokerhn)[p]

)
= O(1).

In particular, corankZp (kerhn) (hence, also corankZp (ker rn)) is finite and bounded inde-
pendent of n.

For the estimate of coker rn, we now study the growth of corankZp (ker gn). By Shapiro’s
Lemma,

ker gn =
⊕

vn∈S(Fn)

H1
(
Gn,vn , E(F∞,vn)[p∞]

)
.

If v is a prime which splits completely in F∞/F , then H1
(
Gn,vn , E(F∞,vn)[p∞]

)
= 0 for

every vn above v. Thus, we consider primes which do not split completely in F∞/F .
By Proposition 4.1, for v - p, the group H1

(
Gn,vn , E(F∞,vn)[p∞]

)
is finite and has

no Zp-corank contribution. We are reduced to studying v|p which do not split com-
pletely in F∞/F . In this case, the dimension of the decomposition group of G at v is

at least 1, so the number of primes of Fn above each v is O
(
p(d−1)n

)
. By Proposi-

tion 4.8, each H1
(
Gn,vn , E(F∞,vn)[p∞]

)
has bounded Zp-corank growth. It follows that

corankZp (ker gn) = O
(
p(d−1)n

)
. This completes the proof of the theorem. �

Corollary 5.2. Retain the setting of Theorem 5.1. Then,∣∣∣∣corankZp
(
R(E/Fn)

)
− corankZp

(
R(E/F∞)Gn

)∣∣∣∣ = O
(
p(d−1)n

)
.

In particular, R(E/F∞) is cotorsion over ZpJGK if and only if corankZp
(
R(E/Fn)

)
=

O
(
p(d−1)n

)
.
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Proof. The first assertion follows from Theorem 5.1. By Harris’ result (see Proposition 3.2),

corankZp

(
R(E/F∞)Gn

)
= corankZpJGK

(
R(E/F∞)

)
pdn +O

(
p(d−1)n

)
.

The final assertion is now immediate from this and the above estimate. �

We now consider an analogue of Theorem 5.1 for the p-rank.

Theorem 5.3. Retain the setting of Theorem 5.1. Then,∣∣∣∣dimZ/pZ
(
R(E/Fn)[p]

)
− dimZ/pZ

(
R(E/F∞)Gn [p]

)∣∣∣∣ = O
(
p(d−1)n

)
.

In particular, the Pontryagin dual of R(E/F∞) is a torsion ZpJGK-module with trivial

µG-invariant if and only if dimZ/pZ
(
R(E/Fn)[p]

)
= O

(
p(d−1)n

)
.

Proof. The proof of this estimate is similar to (and easier than) that of Theorem 5.1. Thus,

dimZ/pZ
(
R(E/Fn)[p]

)
= O

(
p(d−1)n

)
⇔ dimZ/pZ

(
R(E/F∞)Gn [p]

)
= O

(
p(d−1)n

)
.

By Pontryagin duality, the latter is equivalent to dimZ/pZ

((
R(E/F∞)∨/p

)
Gn

)
= O

(
p(d−1)n

)
.

In view of Proposition 3.4, this is the same as µG
(
R(E/F∞)∨/p

)
= 0. Equivalently (see

Lemma 3.3), R(E/F∞)∨ is a torsion ZpJGK-module with trivial µG-invariant. �

When G = Zp, the conclusion of the theorem was mentioned in [30, Proof of Theorem
5.5]. Thus, Theorem 5.3 is a generalization of the discussion there. This theorem is related
to a conjecture of Coates-Sujatha (see [6]) which we now describe.

Conjecture (Conjecture A). Let F cyc denote the cyclotomic Zp-extension of F . The fine
Selmer group R(E/F cyc) is cofinitely generated over Zp, i.e., R(E/F cyc)∨ is a torsion
ZpJΓK-module with trivial µΓ-invariant, where Γ = Gal(F cyc/F ).

By Theorem 5.3, Conjecture A holds if and only if dimZ/pZ
(
R(E/Fn)[p]

)
= O(1) (see [30,

discussion in the proof of Theorem 5.5]). For a general p-adic Lie extension, the following
result holds.

Corollary 5.4. Let E be an elliptic curve defined over F , and let F∞ be a d-dimensional
uniform p-adic Lie extension of F contained in FS. Suppose that F∞ contains F cyc. If

Conjecture A of Coates-Sujatha holds, then dimZ/pZ
(
R(E/Fn)[p]

)
= O

(
p(d−1)n

)
.

Proof. If Conjecture A holds, R(E/F cyc)∨ is finitely generated over Zp. By [6, Lemma
3.2], this implies R(E/F∞)∨ is finitely generated over ZpJHK where H = Gal(F∞/F

cyc).
Applying an observation of Howson [14, Lemma 2.7], we see that R(E/F∞)∨ is torsion
over ZpJGK with trivial µG-invariant. The result follows from combining these observations
with Theorem 5.3. �

Next, we prove an H-analogue of Theorem 5.1.
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Theorem 5.5. Let E be an elliptic curve defined over F . Let F∞ be a uniform p-adic Lie
extension of F contained in FS with Galois group, G = Gal(F∞/F ) of dimension d ≥ 2.
Suppose that F∞ contains F cyc. Write H = Gal(F∞/F

cyc) and let Fn be the fixed field of
Hn := Hpn. Then the kernel and cokernel of the restriction map

sn : R
(
E/Fn

)
−→ R

(
E/F∞

)Hn
are cofinitely generated over Zp. Furthermore,

corankZp (ker sn) = O(1) and corankZp (coker sn) = O
(
p(d−2)n

)
.

Proof. Consider the following diagram

0 −→ R(E/Fn) −→ H1
(
GS (Fn) , E[p∞]

)
−→

⊕
v∈SK

1
v

(
E/Fn

)ysn yβn yγn
0 −→ R

(
E/F∞

)Hn −→ H1
(
GS (F∞) , E[p∞]

)Hn −→
⊕

v∈SK
1
v

(
E/F∞

)Hn
with exact rows. The kernels and cokernels of the vertical maps are cofinitely generated
over Zp (see [6, Proof of Lemma 3.2]). An argument similar to Theorem 5.1 shows that
both corankZp (kerβn) and corankZp (cokerβn) are bounded independent of n, and that

corankZp (ker γn) = O
(
p(d−2)n

)
. �

Remark 5.6. In some special cases more can be said:

(1) When E(F∞)[p∞] is finite, both kerβn and cokerβn are finite and bounded indepen-
dent of n. In particular, |ker sn| = O(1). Indeed, by applying the inflation-restriction
sequence kerβn = H1

(
Hn, E(F∞)[p∞]

)
and cokerβn ⊆ H2

(
Hn, E(F∞)[p∞]

)
. Since

E(F∞)[p∞] is finite, it follows that kerβn and cokerβn are finite. Upon noting that
h1(Hn) = d − 1 for all n, it follows from Lemma 2.2 that the bound is independent
of n.

(2) When F∞ = F (E[p∞]), both kerβn and cokerβn are finite [5, Corollary 6]. Thus,
ker sn is finite. In fact, dimZ/pZ(ker sn)[p] = O(1), but we are unable to estimate
ordp|ker sn|.

(3) If F∞/F is a p-adic Lie extension such that the primes in S are finitely decomposed,
then ker γn has finite Zp-corank bounded independent of n.

Before continuing further, we recall another conjecture of Coates-Sujatha [6, Conjecture B].

Conjecture (Conjecture B). Let F∞ be a p-adic Lie extension of F containing F cyc, which
is unramified outside a finite set of primes, and whose Galois group G = Gal(F∞/F ) has
dimension ≥ 2. Then R(E/F∞)∨ is a pseudo-null ZpJGK-module.

This conjecture is very much open. Some examples verifying Conjecture B are given
in [3, 17, 23, 25, 36, 43]. As a corollary of Theorem 5.5, we show that Conjecture B
can be characterized in terms of the growth of the fine Selmer groups in the intermediate
cyclotomic extensions.
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Corollary 5.7. Retain the setting of Theorem 5.5. Suppose that R(E/F cyc) is a cofinitely
generated Zp-module. Then every R(E/Fn) is cofinitely generated over Zp and R(E/F∞)
is cofinitely generated over ZpJHK. Furthermore,∣∣∣∣corankZp

(
R(E/Fn)

)
− corankZp

(
R(E/F∞)Hn

)∣∣∣∣ = O
(
p(d−2)n

)
.

In particular, R(E/F∞)∨ is pseudo-null over ZpJGK if and only if

corankZp
(
R(E/Fn)

)
= O

(
p(d−2)n

)
.

Proof. Since R(E/F cyc) is a cofinitely generated Zp-module, we may apply [6, Lemma
3.2] to conclude that R(E/F∞) is cofinitely generated over ZpJHK. Once again applying [6,
Lemma 3.2] yields that every R(E/Fn) is also cofinitely generated over Zp. This establishes
the first assertion. The second assertion on the estimate is an immediate consequence of
Theorem 5.5. For the final assertion, we remind the readers of an equivalent definition of
pseudo-nullity (due to Venjakob) when R(E/F∞) is cofinitely generated over ZpJHK. By
[48, Example 2.3 and Proposition 5.4], we know that R(E/F∞)∨ is pseudo-null over ZpJGK if
and only if R(E/F∞) is cotorsion over ZpJHK. By the result of Harris (cf. Proposition 3.2),

corankZp

(
R(E/F∞)Hn

)
= corankZpJHK

(
R(E/F∞)

)
p(d−1)n +O

(
p(d−2)n

)
.

The final assertion follows from combining these observations with the estimate of the
corollary. �

6. Control Theorem over Certain p-adic Lie Extensions

In this section, we consider specific p-adic Lie extensions and prove sharper Control
Theorems for these extensions. These results are then applied to give asymptotic estimates
on the growth of non-divisible part of fine Selmer groups in the intermediate subfield of
the p-adic Lie extension.

Throughout this section, F is a number field and F∞ is a uniform p-adic Lie extension
of F with Galois group, G. We write Gn = Gp

n
and denote by Fn the fixed field of Gn.

As a start, we record a finiteness result which will be useful for our discussion.

Lemma 6.1. Let E be an elliptic curve defined over F , and F∞ be a p-adic Lie extension
of F at which E[p∞] is not realized over F∞. Suppose that at least one of the following
statements is valid.

(a) The elliptic curve, E, has no complex multiplication.
(b) The p-adic Lie extension, F∞, contains the cyclotomic Zp-extension F cyc.

Then E(F∞)[p∞] is finite.

Proof. If statement (a) holds, the conclusion follows from [28, Lemma 6.2]. When statement
(b) is valid, the conclusion follows from [52, Proposition 10]. �
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6.1. Zdp-extensions. When d = 1, the Control Theorem for fine Selmer groups has been
studied in [27, 49]. Therefore, we concentrate on the case d ≥ 2. Pertaining to this,
Rubin proved that the kernel and cokernel of the natural restriction map are finite (see
[39, Chapter VII, §3]). Here, we refine this result by giving an estimate on the orders of
the kernels and cokernels.

Theorem 6.2. Let E be an elliptic curve defined over F , and F∞ be a Zdp-extension of F ,
with d ≥ 2. Then the kernel and cokernel of the restriction map

rn : R
(
E/Fn

)
−→ R

(
E/F∞

)Gn
are finite. Furthermore,

ordp|ker rn| = O(n) and ordp|coker rn| = O
(
p(d−1)n

)
.

Proof. Consider the following diagram

0 −→ R(E/Fn) −→ H1
(
GS (Fn) , E[p∞]

)
−→

⊕
vn∈S(Fn)H

1
(
Fn,vn , E[p∞]

)yrn yhn ygn
0 −→ R

(
E/F∞

)Gn −→ H1
(
GS (F∞) , E[p∞]

)Gn −→
⊕

v∈S K
1
v

(
E/F∞

)Gn

with exact rows. By the Hochschild-Serre spectral sequence, we have

kerhn = H1(Gn, E(F∞)[p∞]) and cokerhn ⊆ H2(Gn, E(F∞)[p∞]).

Using an argument similar to that in Proposition 4.3, we see that both H1(Gn, E(F∞)[p∞])
and H2(Gn, E(F∞)[p∞]) are finite with p-power order O(n). In particular, ordp|ker rn| =
O(n). It remains to estimate ker gn =

⊕
vn
H1
(
Gn,vn , E(F∞,vn)[p∞]

)
. As in the proof of

Theorem 5.1, we only need to consider the primes which do not split completely. Now, if
the decomposition group of G at the prime v is at least 2, it follows from Proposition 4.3
that H1

(
Gn,vn , E(F∞,vn)[p∞]

)
is finite with p-power order O(n). Since the decomposition

group has dimension at least 2, the number of primes above such v grows like O
(
p(d−2)n

)
.

Hence, for such a prime v, we have

ordp

∣∣∣∣∣∣
⊕
vn|v

H1
(
Gn,vn , E

(
F∞,vn

)
[p∞]

)∣∣∣∣∣∣ = O
(
np(d−2)n

)
.

If the decomposition group at v has dimension 1, then the number of primes above such

a v grows like O
(
p(d−1)n

)
. But for these primes, we know that H1

(
Gn,vn , E(F∞,vn)[p∞]

)
is finite and the growth is bounded. This is Proposition 4.1(a) when v - p and Remark 4.4
when v|p. Hence,

ordp

∣∣∣∣∣∣
⊕
vn|v

H1
(
Gn,vn , E

(
F∞,vn

)
[p∞]

)∣∣∣∣∣∣ = O
(
p(d−1)n

)
.

Combining these estimates yields the required estimate for ker gn; hence, also for coker rn.
�
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Using a results of Liang-Lim, we estimate the growth of R(E/Fn)∨[p∞].

Corollary 6.3. Let E/F be an elliptic curve, and F∞ be a Zdp-extension of F , with d ≥ 2.
Then

ordp

(
R
(
E/Fn

)∨
[p∞]

)
= µG

(
R
(
E/F∞

)∨)
pdn +O

(
np(d−1)n

)
.

If F∞ contains F cyc and Conjecture A of Coates-Sujatha holds, then

ordp

(
R
(
E/Fn

)∨
[p∞]

)
= O

(
np(d−1)n

)
.

Finally, if F contains F cyc and Conjecture B of Coates-Sujatha is also valid, then

ordp

(
R
(
E/Fn

)∨
[p∞]

)
= O

(
p(d−1)n

)
.

Proof. Since R
(
E/F∞

)∨
is a finitely generated ZpJGK-module, by a result of Liang-Lim

(cf [22, Theorem 2.4.1]) we know that

ordp

((
R
(
E/F∞

)∨)
Gn

[p∞]

)
= µG

(
R
(
E/F∞

)∨)
pdn +O

(
np(d−1)n

)
.

The estimate in the corollary is now immediate from this and Theorem 6.2. For the second
assertion, it can be seen from the proof of Corollary 5.4 that if Conjecture A holds, then

µG

(
R
(
E/F∞

)∨)
= 0.

If both Conjecture A and Conjecture B are valid, applying [22, Proposition 2.2.1] we obtain

ordp

((
R
(
E/F∞

)∨)
Gn

[p∞]

)
= O

(
p(d−1)n

)
.

Combining this with Theorem 6.2, we obtain the required estimate. �

We mention another corollary of Theorem 6.2.

Corollary 6.4. Retain the settings of Theorem 6.2. Suppose that R(E/F ) is finite. Then
R(E/F∞)∨ is torsion over ZpJGK.

Proof. By Theorem 6.2 and hypothesis of the corollary, R(E/F∞)G is finite. The conclusion
of the corollary now follows from this and the main theorem of [2, pp. 5-6]. �

In view of the above result, we make the following conjecture.

Conjecture (Conjecture Yd). Let E be an elliptic curve defined over F , and F∞ be a
Zdp-extension of F . Then, R(E/F∞)∨ is torsion over ZpJGK.

When d = 1, the above conjecture is made in [27, Conjecture Y].
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6.2. Multi-False-Tate extensions. In this subsection, we suppose that the number field,
F , contains a primitive p-th root of unity. For d ≥ 2, we will consider the extension

F∞ = F
(
µp∞ , p∞

√
α1, . . . , p

∞√αd−1

)
, where α1, . . . , αd−1 ∈ F× whose image in F×/(F×)p

are linearly independent over Fp. Then Gal(F∞/F ) ∼= Zd−1
p o Zp and we call F∞/F a

multi-false-Tate curve extension of dimension d. Throughout this subsection, we assume
that E has (potential) good reduction at primes above p.

Theorem 6.5. Let E be an elliptic curve defined over a number field F with potential good
reduction at every prime of F above p. Let F∞/F be a multi-false-Tate curve extension of
dimension d ≥ 2 which is contained in FS. Then the kernel and cokernel of the natural
restriction map

rn : R
(
E/Fn

)
−→ R

(
E/F∞

)Gn
are finite with

∣∣ker(rn)
∣∣ = O(1) and ordp

∣∣coker(rn)
∣∣ = O

(
p(d−1)n

)
. If the dimension of the

decomposition group of G at every v ∈ S is at least 2, then ordp
∣∣coker(rn)

∣∣ = O
(
np(d−2)n

)
.

Proof. As before, we start by considering the following commutative diagram

0 −→ R(E/Fn) −→ H1
(
GS (Fn) , E[p∞]

)
−→

⊕
vn∈S(Fn)H

1
(
Fn,vn , E[p∞]

)yrn yhn ygn
0 −→ R

(
E/F∞

)Gn −→ H1
(
GS (F∞) , E[p∞]

)Gn −→
⊕

v∈S K
1
v

(
E/F∞

)Gn

By Lemma 6.1, E (F∞) [p∞] is finite. Now by applying the inflation-restriction sequence
and using Lemma 2.2, we see that ker(hn) and coker(hn) are finite and bounded indepen-
dent of n.

We will now estimate ker gn. For the primes not above p, using Proposition 4.1 we
conclude that

ordp

∣∣∣∣∣∣
⊕
vn|v

H1
(
Gn,vn , E

(
F∞,vn

)
[p∞]

)∣∣∣∣∣∣
=

O
(
p(d−1)n

)
, if the decomposition group at v has dimension 1,

O
(
np(d−2)n

)
, if the decomposition group at v has dimension 2.

Since we assume that the elliptic curve E has potential good reduction at all primes

above p, it follows from Proposition 4.5 that H1
(
Gn,vn , E

(
F∞,vn

)
[p∞]

)
is finite with

bounded growth. Thus,

ordp

∣∣∣∣∣∣
⊕
vn|v

H1
(
Gn,vn , E

(
F∞,vn

)
[p∞]

)∣∣∣∣∣∣
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=

O
(
p(d−1)n

)
, if the decomposition group at v has dimension 1,

O
(
p(d−2)n

)
, if the decomposition group at v has dimension ≥ 2.

The assertions of the theorem are now immediate from these estimates. �

Using a result of Perbet (see [37, Théorème 2.1]) we estimate the growth of R(E/Fn)[pn].

Corollary 6.6. Let E be an elliptic curve defined over a number field F with potential good
reduction at every prime of F above p. Let F∞/F be a multi-false-Tate curve extension of
dimension d ≥ 2 which is contained in FS. Then

ordp
(
R
(
E/Fn

)
[pn]

)
=

(
rankZpJGK

(
R
(
E/F∞

)∨)
n+ µG

(
R
(
E/F∞

)∨))
pdn +O

(
np(d−1)n

)
.

If the Conjecture A of Coates-Sujatha holds, then

ordp

(
R
(
E/Fn

)
[pn]
)

= O
(
np(d−1)n

)
.

Proof. Since R
(
E/F∞

)∨
is a finitely generated ZpJGK-module, the result of Perbet implies

that

ordp

((
R
(
E/F∞

)∨)
Gn

/
pn
)

=

(
rankZpJGK

(
R
(
E/F∞

)∨)
n+ µG

(
R
(
E/F∞

)∨))
pdn +O

(
np(d−1)n

)
.

The estimate is now immediate from Theorem 6.5. For the final remark, one sees that
from the proof of Corollary 5.4 that if Conjecture A holds, then

rankZpJGK

(
R
(
E/F∞

)∨)
= µG

(
R
(
E/F∞

)∨)
= 0.

�

Under the validity of Conjecture B of Coates-Sujatha, we have an even better upper
bound.

Corollary 6.7. Retain the settings of Theorem 6.5. If both Conjecture A and Conjecture
B of Coates-Sujatha hold, then

ordp

(
R
(
E/Fn

)
[pn]
)

= O
(
p(d−1)n

)
.

Proof. Since R
(
E/F∞

)∨
is a finitely generated ZpJHK-module by the validity of Conjecture

A, we may apply [26, Proposition 2.4] to obtain

ordp

((
R
(
E/F∞

)∨)
Gn

/
pn

)
≤ rankZpJHK

(
R
(
E/F∞

)∨)
np(d−1)n +O

(
p(d−1)n

)
.

If Conjecture B holds, then as in the proof of Corollary 5.7, rankZpJHK

(
R
(
E/F∞

)∨)
= 0.

Hence,

ordp

((
R
(
E/F∞

)∨)
Gn

/
pn

)
= O

(
p(d−1)n

)
.

Combining this with Theorem 6.5, we obtain the required estimate. �
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6.3. Trivializing Extension. We now consider the case of the trivializing extension. The
case of elliptic curve with and without complex multiplication will be treated separately.

When E has complex multiplication, it is well known that the Galois group Gal(F∞/F )
with F∞ = F (E[p∞]) contains an open subgroup which is Abelian and isomorphic to
Zp × Zp. In this situation, Theorem 6.2 (with d = 2) says that ordp (ker rn) = O(n) and
ordp (coker rn) = O (pn). In the next theorem, we show that a sharper estimate for the
cokernel is possible in this case.

Theorem 6.8. Let E/F be an elliptic curve with complex multiplication. Suppose that
F∞ = F

(
E[p∞]

)
and G = Gal(F∞/F ) is uniform. Then the kernel and cokernel of the

restriction maps

rn : R
(
E/Fn

)
−→ R

(
E/F∞

)Gn
are finite. Furthermore, ordp|ker rn| = O(n) and ordp|coker rn| = O(n).

Proof. In view of the proof of Theorem 6.2, it suffices to show that ordp|coker rn| = O(n).
This in turn reduces us to showing that ker gn has the same growth. Let K be the imaginary
quadratic field which gives E the complex multiplication. By base-changing, we may
assume that E[p] is realized over F , that K ⊆ F , that E has good reduction at every prime
of F , and that Gal(F∞/F ) ∼= Z2

p. Choose S to be the set of primes above p and the infinite
primes. From the theory of complex multiplication, we see that F∞ is the compositum of
F and K∞, where K∞ is the unique Z2

p-extension of K. By [21, Théorème 3.2], there are
finitely many primes of K∞ above p. So, there are finitely many primes of F∞ above p.
Combining this latter observation with Proposition 4.3, shows that ordp|ker gn| = O(n). �

In this situation, Corollary 6.3 (or Theorem 6.8) yields

ordp

(
R
(
E/Fn

)∨
[p∞]

)
= µG

(
R
(
E/F∞

)∨)
p2n +O (npn) .

In particular, if Conjecture A of Coates-Sujatha holds, then

ordp

(
R
(
E/Fn

)∨
[p∞]

)
= O (npn) .

There is one case where we have the above estimate without assuming Conjecture A holds.

Proposition 6.9. Let K be an imaginary quadratic field at which the prime p splits com-
pletely in K, say p = pp. Let F0 be a finite extension of K which is unramified at p. Let
E be an elliptic curve defined over F0 which satisfies all the following properties.

(a) E has complex multiplication given by the ring of integers of K.
(b) E has good ordinary reduction at all primes of F0 above p.
(c) F0(Etor) is an Abelian extension of K.

Let F = F0(E[p]) and F∞ = F0(E[p∞]) = F (E[p∞]). Then

ordp

(
R
(
E/Fn

)∨
[p∞]

)
= O (npn) .

Proof. Under the hypothesis of the proposition, one can show that µG

(
R
(
E/F∞

)∨)
= 0

by appealing to the results of Gillard and Schneps. (For the details of this argument, we
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refer readers to [31, Proposition 4.1].) Hence, it follows from this that we have the estimate
as asserted. �

We now come to the case of an elliptic curve without complex multiplication.

Theorem 6.10. Let E be an elliptic curve defined over F without complex multiplication.
Suppose that F∞ = F

(
E[p∞]

)
and G = Gal(F∞/F ) is uniform. Then the kernel and

cokernel of the restriction maps

rn : R
(
E/Fn

)
−→ R

(
E/F∞

)Gn
are finite. Furthermore, the power of p in ker rn is O(n) and the power of p in coker rn is
O
(
np2n

)
.

In [40], Serre proved that H i
(
Gn, E[p∞]

)
is finite for every i ≥ 0. For our purpose, we

need to go one step further by analyzing its growth (for i = 1, 2), which is the content of
the next lemma.

Lemma 6.11. Retain the setting of Theorem 6.10. Then for i = 1, 2, the groups

H i(Gn, E[p∞]) are finite and ordp

∣∣∣H i
(
Gn, E[p∞]

)∣∣∣ = O(n).

Proof. Since E is an elliptic curve without complex multiplication, the group G has dimen-
sion 4. By the discussion in [47, p. 302], and enlarging F if necessary, we may assume that
G = Z ×H, where Z ∼= Zp and H = Gal(F∞/F

cyc). By Lemma 6.1(a), E[p∞]Zn is finite;
it follows from Lemma 2.3 that H1(Zn, E[p∞]) = 0. Therefore, the spectral sequence

H i(Hn, H
j(Zn, E[p∞])) =⇒ H i+j(Gn, E[p∞])

degenerates to yield

H i
(
Hn, E[p∞]Zn

)
∼= H i

(
Gn, E[p∞]

)
.

Now, applying Lemma 2.1, we see that

ordp

∣∣∣H1
(
Gn, E[p∞]

)∣∣∣ = ordp

∣∣∣∣H1
(
Hn, E[p∞]Zn

)∣∣∣∣ ≤ 3 ordp

∣∣∣E[p∞]Zn
∣∣∣ = O(n) and

ordp

∣∣∣H2
(
Gn, E[p∞]

)∣∣∣ = ordp

∣∣∣∣H2
(
Hn, E[p∞]Zn

)∣∣∣∣ ≤ (3

2

)
ordp

∣∣∣E[p∞]Zn
∣∣∣ = O(n).

This completes the proof of the lemma. �

Proof of Theorem 6.10. In view of Lemma 6.11, it remains to study the growth of ker gn.
By base-changing, we may assume that E has no additive reduction outside p. Let S be the
set of primes of F consisting of the primes above p, the multiplicative primes of E outside
p, and the Archimedean primes. For all v ∈ S, the decomposition group has dimension ≥ 2
(see [4, Lemma 2.8]). The rest of the argument proceeds as before building on Propositions
4.1 and 4.7. �
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Remark 6.12. When the elliptic curve has potential good ordinary reduction at all primes
above p, more can be said. Indeed, under this assumption, Greenberg showed (cf. [11,
Proposition 5.3]) that the kernel of the restriction map on the classical Selmer groups
sn : Sel(E/Fn) −→ Sel(E/F∞)Gn is finite and bounded. Hence, ker rn is also bounded in
this case.

Corollary 6.13. Let E be an elliptic curve defined over a number field F without complex
multiplication and F∞/F be the trivializing extension. Then

ordp

(
R
(
E/Fn

)
[pn]
)

= µG

(
R
(
E/F∞

)∨)
p4n +O

(
np3n

)
.

If Conjecture A of Coates-Sujatha holds, then

ordp

(
R
(
E/Fn

)
[pn]
)

= O
(
np3n

)
.

Proof. Since F∞/F is the trivializing extension, it follows from [6, Lemmas 2.4 and 3.1]

that R
(
E/F∞

)∨
is a torsion ZpJGK-module. By [37, Théorème 2.1], we have

ordp

((
R
(
E/F∞

)∨)
Gn

/
pn

)
= µG

(
R
(
E/F∞

)∨)
p4n +O

(
np3n

)
.

The estimate follows from Theorem 6.10. The final assertion follows from Corollary 5.4. �

Corollary 6.14. Let E be an elliptic curve defined over a number field F and F∞/F be
the trivializing extension. If both Conjecture A and Conjecture B of Coates-Sujatha hold,
then

(a) ordp

(
R
(
E/Fn

)∨
[p∞]

)
= O (pn) if E is an elliptic curve with complex multiplication.

(b) ordp

(
R
(
E/Fn

)
[pn]
)

= O
(
p3n
)

if E does not have complex multiplication.

Proof. In the case when E is an elliptic curve with complex multiplication, the assertion
follows from Corollary 6.3 with d = 2. When E does not have complex multiplication, the
proof of the statement is similar to the argument in Corollary 6.7. �

Remark 6.15. It is natural to ask if the above growth formula can allow us to estimate the
growth of fine Shafarevich-Tate groups (see [50] for the definition) as done for the classical
Shafarevich-Tate groups in [10]. A key ingredient used in this proof is the p-divisibility
of E (Fn) ⊗Zp Qp/Zp. However, as the fine Mordell-Weil group need not be p-divisible
(see [50, §7]), the torsion part of the Pontryagin dual of the fine Shafarevich-Tate group
and R(E/Fn)[p∞]∨ need not agree. Therefore, the above asymptotic formula for the fine
Selmer group does not carry over to the fine Shafarevich-Tate group automatically. For
Zp-extensions, asymptotic growth estimates for the fine Shafarevich-Tate group has been
obtained by the second named author in [27] under certain hypotheses. Unfortunately, the
results rely on finer aspects of the structure theory of ZpJΓK-modules which are not available
for more general Iwasawa algebras, and so the techniques of [27] do not carry over.
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7. Examples

Example 7.1. Let E be the elliptic curve defined by y2 + y = x3 − x. Let p = 5. By [12,

Example 4.13], we know that Sel
(
E
/
Q(µ5∞ , α

−5∞)
)

= 0 for every α = (±5)m. From this,

it is then easy to verify that for every finite extension F of Q contained in Q(µ5∞ , α
−5∞),

one has Sel(E/F ) = 0 which in turn implies that R(E/F ) = 0. By Corollary 6.4, it follows
that R(E/F∞) is cotorsion over Z5JGal(F∞/F )K for every multiple Z5-extension F∞ of F .

Example 7.2. Let E be the elliptic curve 150a1 of Cremona’s table which is given by

y2 + xy = x3 − 3x− 3.

Let p = 5 and F = Q(µ5). Let S be the set of primes of F lying above 2, 3, 5, and∞. Then,
E has good ordinary reduction at the unique prime of F above 5 and split multiplicative
reduction at the unique primes of F above 2 and 3. By [3, Example 23] and [25, §6],
we know that R(E/F∞)∨ is a pseudo-null Z5JGal(F∞/F )K-module when F∞ is one of the
following 5-adic extension

Q
(
E[5∞], 35

−∞)
, Q

(
E[5∞], 25

−∞
, 35
−∞)

, Q
(
E[5∞], 35

−∞
, 55
−∞)

, Q
(
E[5∞], 25

−∞
, 35
−∞

, 55
−∞)

,

L∞
(
E[5∞], 25

−∞
, 35
−∞)

, L∞
(
E[5∞], 35

−∞
, 55
−∞)

, L∞
(
E[5∞], 25

−∞
, 35
−∞

, 55
−∞)

,

where L∞ is any Zr5-extension of F for 1 ≤ r ≤ 3. Therefore, Corollary 5.7 applies to yield

corankZ5

(
R(E/Fn)

)
= O

(
5(d−2)n

)
, where Fn = F

Gal(F∞/F cyc)5
n

∞ .

Example 7.3. Let E be the elliptic curve 79a1 of Cremona’s tables given by

y2 + xy + y = x3 + x2 − 2x.

Let p = 3 and F = Q(µ3). Let S be the set of primes of F lying above 3, 79 and ∞. By
[17, p. 362] and [25, §6], we see that R(E/F∞)∨ is a pseudo-null Z3JGal(F∞/F )K-module
when F∞ is one of the following 3-adic extensions

Q
(
µ3∞ , 3

3−∞
)
, Q

(
µ3∞ , 3

3−∞ , 793−∞
)
.

Corollary 6.7 then tells us that ord3

(
R
(
E/Fn

)
[3n]
)

is O (3n) and O
(
32n
)

for the above

two extensions, respectively.

Example 7.4. Let E be one of the following elliptic curves (with Cremona label): 256a1,
256a2, 256d1, 256d2 with complex multiplication by Q(

√
−2) or 121b1, 121b2 with complex

multiplication by Q(
√
−11). These elliptic curves have good reduction at p = 3. In [1,

Theorem 3.11], it was shown that these satisfy Conjecture A for p = 3 over the base field
F = Q(E[3]) which is non-Abelian over Q. However, it does not seem that the validity
of Conjecture B is known for any p-adic Lie extension over F . Nevertheless, we can still
apply Corollary 6.6 to obtain

ord3

(
R
(
E/Fn

)
[3n]
)

= O
(
n3(d−1)n

)
.
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for every multi-false-Tate extension, F∞ of F of dimension d ≥ 2, and apply Theorem 6.8
to yield

ord3

(
R
(
E/Fn

)
[3n]
)

= O (n3n) ,

when F∞ = F
(
E[3∞]

)
is the trivializing extension over F .

Example 7.5. Let E be the elliptic curve 3136u1 from Cremona’s table with complex
multiplication by Q(

√
−1). This is given by the equation

y2 = x3 − 343x.

This elliptic curve has good ordinary reduction at all primes satisfying p ≡ 1 (mod 4).
For p large, the validity of Conjecture A does not appear to be verified in literature.
Nevertheless, when F∞ = F

(
E[p∞]

)
is the trivializing extension over F , we can still apply

Proposition 6.9 to obtain

ordp

(
R
(
E/Fn

)∨
[p∞]

)
= O (npn) .
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