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GEORGE BOXER AND VINCENT PILLONI

ABsTrACT. We develop local cohomology techniques to study the finite slope
part of the cohomology of Shimura varieties. The local cohomology groups
we consider are defined by using a stratification on the Shimura variety ob-
tained from the Bruhat stratification on a Flag variety via the Hodge-Tate
period map. Overconvergent modular forms are a particular case of these lo-
cal cohomologies. We construct a spectral sequence from local cohomology to
cohomology. We are able to obtain vanishing theorems for the cohomology, as
well as classicality theorem comparing local and classical cohomology. We also
develop eigenvarieties by p-adic deformation of the local cohomology groups.
As an application, we prove some new properties of Galois representations
arising from certain non-regular algebraic cuspidal automorphic forms.
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1. INTRODUCTION

Let G be a split reductive group over a field k. Let B be a Borel subgroup,
containing a maximal torus 7. We let X*(T") be the group of characters of T. Let
FL = B\G be the Flag variety for G and 7 : G — F'L be the projection map. Let
d be the dimension of F'L. Let W be the Weyl group of G and p be half the sum
of the positive roots. We have a length function ¢ : W — [0,d]. Let wy € W be the
longest element. For any x € X*(T'), we define a G-equivariant line bundle £, over
FL. Tts sections over an open subset U < FL are functions f : 7=*(U) — A! such
that f(bu) = wor(b) f(u) for all u € 7=1(U). The right action of G on FL given
by (Bg)g' = Bgg' induces a left action on the cohomology groups H*(FL,L,). If &
is dominant, then HO(FL, L,.) is a highest weight representation of weight x. We
introduce the dotted action of W on X*(T): w-k = w(k + p) — p.

The following classical Borel-Weil-Bott theorem describes the cohomology of the
sheaves L, over F'L when the characteristic of k is 0:

Theorem 1.1 ([Jan03], 5.5, corollary). Assume that char(k) = 0. Let k € X*(T)
then:

(1) If there exists no w € W such that w - k is dominant then H*(FL,L,) = 0
for all i.

(2) If there exists w € W such that w - k is dominant, then there is a unique
such w, and H(FL, L) = 0 if {(w) # i, while H*“)(FL, L) is the highest
weight w - k representation.
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Following [Kem7§]|, section 12, one can study the cohomology of the sheaves L,
over F'L with the help of the Bruhat stratification F'L = U,ew B\BwDB and build
a Cousin complex which computes the cohomology. Namely, for all w € W, let
X be the Schubert variety equal to the closure of B\BwB in FL. Counsider the
stratification of F'L by closed subsets FL = Zy 2 Z1 2 -+ 2 Zq D Zgy1 = () where
Zi = Uy g(w)=d—iXw- Then there is a Grothendieck-Cousin complex Cous(x)

0—=HY ,; (FL,L.) = HYy 7 (FL,Ly) = - = HY , (FL,L:) =0

which computes RT'(FL, L,). The cohomologies le Ziin (FL,L,) are by definition

certain cohomology groups with support on the Bruhat cells of codimension 4.
The modules appearing in the Cousin complex are infinite dimensional, but the

action of the torus is very easy to determine and one can prove the following result

which is valid in all characteristics.

Proposition 1.2 (Proposition|3.7). Let k € X*(T) and let C(k) = {w € W, w(k+
p) € X*(T)*t}. Let RT'(FL,Ly)"™ be the big weight part of RT'(FL, L), which is
the direct factor where the weights of T are > w-k for allw ¢ C(k). Then the coho-
mology RT'(FL, L,.)" is a prefect complex of amplitude [ming,ec(e) (W), Maxyec () f(w)].

One can show that the Cousin complex is a complex in the BGG category O.
In characteristic 0, we derive a full proof of theorem as a combination of some
basic properties of the category O and the description of the action of the torus on
the Cousin complex. See theorem [3.9]

The main theme of this paper is the coherent cohomology of Shimura varieties.
The ideas we will employ use the close relation between Shimura varieties and
flag varieties, as provided by the Hodge-Tate period map constructed in [Sch15]
and refined in [CS17]. We develop methods from local cohomology similar to the
Grothendieck-Cousin complex of [Kem78|. Let (G, X) be a Shimura datum. By
definition G is a reductive group over Q and X is a complex analytic space equipped
with an action of G(R) and satisfying a list of axioms ([Del79]). There are two oppo-
site parabolic subgroups of G attached to (G, X), called P, and Pjtd. The space X
embeds G(R)-equivariantly as an open subspace of FLZ{CL((C) = G/Pjtd((C). This
is the Borel embedding.

For any neat compact open subgroup K C G(Ay), we let Sk (C) = G(Q)\X x
G(Af)/K be the corresponding Shimura variety over C. This is a finite disjoint
union of arithmetic quotients of X.

Any representation of the Levi M, of Pjtd defines a G-equivariant vector bundle
over FL‘E';%. Let Z; C G be the maximal torus of the center of G which is not split
but splits over R. We let M = M, /Z;. By pull back to X and descent to Sk (C),
we obtain a functor from the category of representations of M, to the category of
vector bundles on Sk (C), whose essential image is the set of (totally decomposed)
automorphic vector bundles.We make a choice of Borel subgroup contained in P,
and we let T be a maximal torus contained in this Borel and let 7¢ = T/Z,. We
label irreducible representations of M by their highest weight in X, (T¢)Mu:+. For
any x € X, (T¢)M«T we let V, be the corresponding vector bundle over Sk (C).

The Shimura variety Sk (C) has a structure of algebraic variety Sk defined over
a number field F, called the reflex field. For a combinatorial choice ¥ of cone
decomposition, there are algebraic compactifications S}?TE whose boundary Dk s, =
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S’ \ Sk is a Cartier divisor. The vector bundles V,; admit models over Sk and
canonical extensions V, 5, to S}g% We denote by V. »(—Dk x) the sub-canonical
extension ([Mil90|, [Har90al).

This paper is devoted to the study of the cohomologies of weight x (which are
independent of ¥): H (S, Ven), H (S¥, Ve x(—Dxk x)) as well as the interior
cohomology:

H' (S5, Ves) = Im(H (S5, Ve s (— Dk ) — H'(S12%, Vi)

The most fundamental example of a Shimura datum is the Siegel datum (GSps,, H)
for g € Z>1, where H, is the Siegel space. The corresponding Shimura variety Sk
is a a moduli space of abelian schemes of dimension g with a polarization and a
level structure prescribed by K. We assume in this work that the datum (G, X) is
an abelian Shimura datum, therefore Sk is (closely related to) a moduli space of
abelian varieties with certain extra structures (endomorphism, polarization, level
structure, Hodge tensors...). For the rest of this paper, we fix a prime p and we
also fix an embedding of F — @p. We assume that Gg, is quasi-split.

In summary, our two assumptions are:

Assumption 1.3. The Shimura datum (G, X) is abelian and Gg, is quasi-split.

We fix a compact open subgroup K? C G(A?). We now consider the following
G(Qy)-representations arising from the cohomology of Shimura varieties:

Hi(KP7 K) = coliprHi(SﬁgZ:Kp’Z, Vi),
HZ'(KI’7 K,cusp) = coliprHi(SﬁgSKp’E, Veg(=Drrk,.x))

as well as ﬁi(KP7 k) = Im(H (K, k, cusp) — H(KP, K)).
We define a first direct summand as G(Q,)-representation

HY(K?, k)/* C H(K?, k)

that we call the finite slope part of H (K?, k). It contains all the irreducible smooth
G(Qp)-subquotients which can be embedded in a principal series representation

nggz ;)\ for a character A of T(Q,). We define direct summands

Hi(Kp, K/)sssM(n) C Hi(]{p7 K)SSM(K,) C Hi(Kp, K/)fs

that we call the strongly small slope and small slope part of H(K?, ). These are di-

rect factors which contains all irreducible subquotient smooth G(Q, )-representations

of H'(K?, k)* which can be embedded in a principal series representation ng%’g)\
P

for a character A of T(Q,) whose p-adic valuation is small with respect to x, in a

sense that is made precise in the paper (section [5.11)).
We adopt similar definitions for the cuspidal and interior cohomology.

Ezample 1.4. In the case of modular curves and the sheaf of weight & modular
forms, an eigenvalue o for the U,-operator acting on the cohomology has small
valuation if v(a) < k —1 when k& > 2, v(a) < 1 — k when k < 0, while there is no
condition if k = 1.

For any k € X, (T¢)Mw ™t there is a range [(imin(K), fmax (k)] C [0, d] where d =
dim Sk where we expect to see interesting (for example tempered) cohomology
classes in the cohomology of that given weight. Here is a combinatorial description
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of this range. Let C(r)" = {w € W,w ™ wo m(k + p) € X*(T)g}. Put luin(k) =
Inf,eo(n)+ (W), lmax(K) = SUP,ec(x)+ £(w). Our first theorem is the following:

Theorem 1.5 (Theorem and [6.49). For any k € X, (T¢)Muwt,

(1) ﬁZ(Kp,/f)ssM(") is concentrated in the range [{min(K), {max ()],
(2) Hi(KP, k, cusp)**s" (%) is concentrated in the range [0, lmax ()],
(3) HY(KP, n)sssM(“) is concentrated in the range [(min(K),d].

Remark 1.6. We believe that our assumption ss™ (k) is optimal in order to obtain
such a result. We note that all ordinary class occuring in the cohomology will
satisfy ss™ (k). We conjecture that point (2) and (3) of the theorem should also
hold under the weaker small slope assumption. If k 4 p is sufficiently far away from
the walls that do not contain it, any ordinary class will satisfy sss™ (k).

Remark 1.7. If the weight x is such that & + p is regular, then C(k)T consists of a
single element. The interior cohomology is therefore concentrated in a single degree
Emin(ﬁ) = emax(ﬁ)'

Remark 1.8. In [Lanl6| or [BHR94], an analog of this theorem is proved without
any small slope condition, but with a regularity condition on the weight «.

Remark 1.9. There is a classical Archimedean result due to the combined works
of Blasius-Harris-Ramakrishnan, Mirkovich, Schmid and Williams (see [Har90al,
theorems 3.4 and 3.5) which asserts that for any compact open K C G(Ay), the

tempered at infinity interior cohomology ﬁl(Sﬁé’fz, V)P is concentrated in the

range [lmin(K), fmax(k)]. This temperedness condition is a growth condition on the
harmonic functions on X which represents the cohomology classes. The cohomology
ﬁZ(Sﬁ”TE,Vﬁ,E) is entirely expressed using automorphic forms 7 on G, and this
temperedness condition is therefore a condition on 7. On the other hand, the
small slope condition is a condition on the p-adic “size” of the coefficients of the
local representation m, of the group G(Q,). We therefore think of the small slope
condition as a p-adic version of temperedness.

Let v € X*(T°)* and let W, be the corresponding irreducible representation of
G and W)/ its contragrediant. We can attach to it a local system W,/ on Sk (C).
We have the Betti cohomology groups H*(Sk(C), W), H*(Sk(C),W)') and the
interior cohomology H"(Sk (C), WY) = Im(H?(Sk(C),WY) — H*(Sk(C), WY)).
We can consider

HY(K?, W)/) = colimg, H (Skr k., (C), W)

H.(K?, W))) = colimg, H.(Skrk, (C), W)

as well as H'(K,, WY) = Im(H.L(K?,WY) — Hi(K?, WY)). One can consider the
finite slope part (denoted by a supscript fs), the small slope part (denoted by a
supscript ssp(v)) and strongly small slope part (denoted by a supscript sss,(v)) of
these cohomology.

Using Faltings’s BGG spectral sequence we deduce easily:

Theorem 1.10 (Theorem and [6.49). For any v € X, (T°)",
(1) H (K, WY)**W) is concentrated in the middle degree d,
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(2) HL(KP WY)*s50() is concentrated in the range [0, d],
(3) HI(KP, WY)*s5:W) is concentrated in the range [d,2d).

Remark 1.11. The conditions ssp(v) and sssp(v) are the union of all conditions
ssM(k) and sssM (k) respectively where x € X, (T¢)™* runs through the set
{—wwo(v + p) — pyw € MW}, with MW C W the set of minimal length repre-
sentatives of Wy \W.

In [CS17] and [CS19|, Caraiani and Scholze proved a similar concentration result
for the Betti cohomology of unitary Shimura varieties under a genericity condition
for the action of the spherical Hecke algebra at a prime number p. Their result is
much more powerful because it also applies to the cohomology with coefficients in
a {-torsion local system for a prime ¢ # p. The three conditions of temperdness at
infinity, genericity at p and small slope at p are related as the following example
shows.

Ezxample 1.12. Consider a compact Shimura curve Sk associated to a quaternion
algebra over Q split at co and p. Assume that K = KP K, and K,, = GLy(Z,). Con-
sider 1 € HY(Sk, Os,. ), which comes from the trivial automorphic representation.
The degree 0 cohomology is the “wrong” degree, in the sense that the interesting
cohomology of Os,, =V sits in degree 1. We observe that the cohomology class 1
is:
(1) Non tempered at oo, since Vol(PGL3(R)) = oo,
(2) Not small slope at p, because the U, eigenvalue of the trivial representation
is p, and v(p) = 1. The small slope condition in weight 0 is having U,-
eigenvalue of slope < 1.
(3) Not generic, because the semi-simple conjugacy class attached to the trivial
representation via the local Langlands correspondence is diag(p%7 p‘é).

We see that any of the conditions: tempered at infinity, generic at p, and small
slope at p can be used to eliminate this class.

We now explain how these results are obtained. The main new object we in-
troduce are local cohomology theories and we briefly explain how these theories
are defined. Let FLg, = P,\G be the flag variety attached to P,. There is a
stratification into B-orbits, FLg , = [1,cmy Pu\PuwB where MW C W is the
set of minimal length representatives of W/ \W. Let FLg, » be the associated adic
space. Let S 5 = limg c e, (S kv )™ be the adic Shimura variety of infinite
level at p (this is a perfectoid space at least if (G, X) is of Hodge type and ¥ is
well chosen). There is a Hodge-Tate period map 7507 : i 5 — FLg,, defined in
[Schi5] and [CS17].

Fix w € MW, k € X*(T)™* and let x : T(Z,) — @: be a finite order
character. We define in section local cohomology theories RI',, (K, k,x)**
and RI,, (KP, K, x, cusp)™ /5. These are cohomologies with support on certain open
subsets of S}?:K,)’E for suitable K. These open subsets and support condition are
defined with the help of the period map w49 and the Bruhat stratification. We
also impose the finite slope condition, with respect to certain operators in Hecke
algebra at p. The + sign refers to two possible choices of Hecke operators at p,
which are exchanged when we consider Serre duality.

Let us give some more detail on the support conditions. We can view MW as
the set of T(Q,)-fixed point in FLg, . For any @ € FLg ,(Cp), (rior) "1 ({z}) is
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a perfectoid Igusa variety (see [CS17|, sect. 4.3). Roughly speaking, the choice
of = determines a p-divisible group with a trivialization of its Tate module (and
extra structures) by [SW13], and (7%7.)~1({x}) is the space of all abelian varieties
with that given p-divisible group. The subset MW C FLg,, corresponds to very
particular p-divisible groups. For example, in the Siegel case, MW is contained
in FLg,,,(Qp) and the corresponding p-divisible groups are ordinary. The support
conditions can be read from the dynamics of the action of T'(Q),) near the fixed point
w. In summary, the cohomologies RI',, (KP, x)*/* and RT,(KP?, k, cusp)®¥* are
therefore cohomologies with support over some neighborhoods of the Igusa variety
(i)~ ({w}).

Ezample 1.13. For GLy/Q and w = Id, RT'14(KP, k,x)Tf* is just (the finite slope
part of) the space of weight x and nebentypus x overconvergent modular forms
(viewed in degree 0). For w the only non-trivial element of the Weyl group,
Rl (K?, Kk, x) 7% is concentrated in degree 1 and is the finite slope part of the
cohomology with compact support of the “dagger” space ordinary locus. See [BP20].

Since Igusa varieties are affine in the minimal compactification, we can prove in
theorem that R, (KP, k, X, cusp)™/* is concentrated in the range [0, /= (w)],
with ¢4 (w) = ¢(w) and {_(w) = d — {(w).

One of our main results is theorem [5.15] which is the existence of a spectral se-
quence which expresses the finite slope part Hi(Kp, K, x) 7 of the classical coho-
mology in weight x an nebentypus y in term of the H* (KP, x, x)*/. This spectral
sequence means therefore that the finite slope cohomology of the full Shimura va-
riety can be understood with the help of the overconvergent cohomologies of the
Igusa varieties corresponding to w € MW,

From the spectral sequence, we can actually extract a complex Cous(KP, k, x)*:

H?d/wé‘/f (K:D’ Ky X)iﬁfs — @wEMWHﬁ)i(w) (Kp7 Ky X):t’fs A Hfuéw/fd(Kpa Ky X):I:,fs

that is an analogue of the Grothendieck-Cousin complex which computes the co-
homology of the flag varieties (here w}! is the longest element in ¥ W). We have
also a cuspidal and interior variant of this complex: Cous(KP?,r,x,cusp)* and
Cous(KP, r,x)*.

We conjecture (conjecture that when the Shimura variety is compact, this
complex computes H'(KP, x,x)™ . For general Shimura varieties we can prove
(corollary that H'(K?, k, x)*/* is a subquotient of

H'(Cous(K?, k, x)%).

An important technical result is theorem which bounds below the slopes for
the action of Hecke operators at p on each of the cohomologies RT,, (K7, k, X, cusp) =/,
RI,(KP, k,x)57* . We deduce that RT,,(K?, &, x)*/* has small slope vectors only
if we C(k)T ={we W,wwon(k+p) € X*(T)gy} and that RI, (K?, Kk, x) "¢
has small slope vectors only if w € C(k)™ = {w € W,w 1 (k + p) € X*(T)a} (and
similarly for cuspidal cohomology). This explains how we prove the cohomological
vanishing by combining the cohomological vanishing for the RT',, (K?, &, X, cusp) =,
the slope estimates on these cohomologies, and the spectral sequence converging
to classical cohomology. This bound also implies a classicity theorem when k + p
is regular and C(k)* are reduced to a single element (many cases of this theorem

for the degree 0 cohomology of PEL Shimura varieties were already proven, see for
example [Col96], [Kas06], [Pilll], [BPS16], [TX16], [Bij17]):
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Theorem 1.14 (Theorem [5.66). Let k € X*(T)M:* be a weight such that k + p
is G-regular. Then we have a quasi-isomorphism :

RT., (K7, i, )55 (9) = RT(K?, K, y) 5o (%)
where {w} = C(k)*, and similarly for cuspidal cohomology.

Remark 1.15. Here , &, ss5M (k) is a strongly small slope condition. We actually
conjecture that a weaker small slope condition =+, ss™ (k) would be sufficient.

The techniques of local cohomology can also be applied to de Rham cohomology.
Let v € X*(T°)*. Let (W) 5, V) the corresponding filtered vector bundle with
logarithmic connection. We consider the finite slope part of de Rham cohomology
groups in weight v and nebentypus x: RIgr(KP?, WY,x)*¥* and the de Rham
cohomology with compact support R4z, .(K?, W)/ x) 7%, We can construct local
de Rham cohomology groups R yr . (K?, W)/, x)™¥* (and similarly for compactly
supported cohomology), and we again have a spectral sequence from local to clas-
sical de Rham cohomology. We also have Falting’s dual BGG resolution. We can
combine everything to construct a double Cousin complex, as well as its compactly
supported and interior versions. The interior double Cousin complex is:

(Cous(K?, Wy, x)*)7) =

@wGMW,Zi (w)=1 69w/EMW,K(u)’):j ﬁ:u(va 7’LU/U.)0 (V + p) - P X)i’fs
whose horizontal line are the interior Cousin complexes of the automorphic vector
bundles of weight —w'wo(v + p) — p and the vertical differentials are obtained
from the differentials of the dual BGG complex of W;/ 4r- For compact Shimura
varieties, we conjecture that the total complex associated with the double Cousin
complex computes the de Rham cohomology. We can prove (proposition
that the interior de Rham cohomolgy groups ﬁ;R(Kp WY x)T is a subquotient of
H¥(Tot(Cous(KP?, W), x)¥)). Our main result for classical de Rham cohomology is
the following decomposition (and vanishing) theorem for the strongly small slope
part:

Theorem 1.16 (Theorem [5.87). For all v € X*(T°)", we have that:

an(KP W) 00 = () @y (KP, —wwo(v + p) — p,x) H* )

p+g=n
and that
na(KP WY x) s ) = @ Bt (w)=pHI(KP, —wwo (v + p) — p, X))
ptq=n

Moreover, these de Rham cohomology group vanish except if n € [d,2d]. We have
simalarly:

ZILR,C(KP7 Wl\//7 X)+7888b(y) = @ 69u;,[(u)):pI—Iq(}'{pa —Wwwo (V+P)_Pa X Cusp)-i_,SSSb(V)

pt+g=n
and that
iR (K" W) )75 = D) e (w)=pH (K, —wwo(v+p)=p, X, cusp) ).
ptg=n

Moreover, these de Rham cohomology group vanish except if n € [0,d].
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Remark 1.17. This decomposition of de Rham cohomology is reminiscent of the
complex decomposition using harmonic forms. We believe that this decomposition
should be induced by a Frobenius action on the cohomology.

Our next results consider p-adic interpolation. In the classical work [CM98], the
eigencurve was constructed by interpolating the Hecke action on the spaces of over-
convergent modular forms HY,(K?, s, x)7/¢ in the p-adic weight xx. This approach
of interpolating overconvergent modular forms was generalized to Siegel varieties
in [AIP15] (see also [CHJIT]|, [Bral6|, [Her19], [Bra20] for further generalizations).
In another direction, p-adic interpolation of the cohomologies H*(Sx (C), W)) was
considered (and in this setting, one considers general arithmetic quotient of locally
symmetric space, not only Shimura varieties). See for example [AS0§|, [Urbl11],
[Hanl7], [Eme06]. We also mention the case of Shimura sets which has been stud-
ied intensively, and for which there is no distinction between Betti and coherent
cohomology (see for example [Buz(7], [Che04]). In this paper, we construct eigen-
varieties by interpolating the local cohomologies H? (K?, 1, x)™/5.

Remark 1.18. For the HY,(K?, #,x)Tf*, we therefore recover certain of the con-
structions recalled above. The improvement is that we are not assuming that the
group G, is unramified or that there is a dense ordinary locus.

By Faltings’ BGG spectral sequence and its degeneration, there is a Hecke equi-
variant isomorphism

HZ(SK ((C)’ WIY) = EDwGMWHi_d—FZ(W)(S?,TZ ((C)a V—w01M1u(u+p)—p)

as well as similar variants for cuspidal and interior cohomology. The point of view
of this paper is to consider the p-adic interpolation of the right hand side of this
expression. We also want to consider Serre duality. Thus, on the classical side, we
are led to consider the finite slope cohomology groups (with nebentypus x):

H*(Kpa 7w0,Mw(V + ,0) - P X)+7fs7 H*(va w(’/ + p) - P X71)77f37

H*(K?, —womw(v + p) — p, X, cusp) ™/ HY(KP, w(v + p) — p,x ", cusp) ~/*

together with the Serre duality pairing :

HY(K?, —wo pw(v + p) — p,x) T x HHEP w(v + p) — p,x ", cusp) 7 = Q,
and

H(K?, —wo prw(v 4 p) — p, X, cusp) T x HE(KP w(v +p) — p,x )77 — Q,.

We will make the p-adic interpolation of all these groups in the p-adic weight
vy : T%(Z,) — @; (which is roughly the infinitesimal character of automorphic
representations contributing to these cohomology). In order to do this we first re-
place the classical cohomology group H*(K?, —wq prw(v+p) —p, x)/* by the local
cohomology H (KP, —wo prw(v+p) — p, x) T/ with respect to w, and then further
need to consider an analytic local cohomology Hy, ,,, (K, —wo pw(v+p)—p, )T fs
(section . The difference between HZ (KP, —wopw(v + p) — p,x)T7¢ and
H, o (KP, —wo prw(v 4+ p) — p, x)" /¢ is that in the first case we consider the over-
convergent cohomology with support of a classical automorphic vector bundle, while
in the second case, we consider the overconvergent cohomology with support of a
Banach sheaf modeled on a principal series representation of the same weight as the

automorphic vector bundle. We proceed similarly for H* (K, w(v+p)—p, x 1) 772,
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H*(K?, —wo yw (v + p) — p, X, cusp) ™7, HY(KP, w(v + p) — p, x ', cusp) 1 and
decorate them with a subscript 4, an.

Remark 1.19. The passage from H* (K7, —wo pyw(v+p)—p, x) 7% to Hy, . (KP, —wo arw(v+
p)—p,x) 7% (and not to H*

vt an(KP, —wo prw(v +p) — p, x)T/* for w’ # w) is mo-
tivated by theorem

Let W = Spa(Z,[[T(Zy)]], Zp[[T°(Zy)]]) Xspa(z,,z,) SPa(Qp, Z;) be the space of
characters of T°(Z,). Our interpolation result is the existence of an eigenvariety
7 : & — W. Points of the eigenvariety are triples (\,, \°) where )\, is a character
of T(Qp), S is the finite set of primes which contains p and all primes where K?
is not hyperspecial and A\° is a system of eigenvalues for the prime to S spherical
Hecke algebra. The projection to W is given by A, — v = >‘P|T(Zp)' When A, has
locally algebraic weight v = 44X (for x a finite order character and vq, € X*(T),

smo_ -1
we let A" = Apvg,o.

Theorem 1.20 (Theorem [6.41] [6.42] and [6.45]). The eigenvariety m : € — W s
locally quasi-finite and partially proper. It carries graded coherent sheaves

B (ot e H ) o L) @ BE ML)

w,cusp w,cusp
weMW,keZ

and they satisfy the following properties:

(1) (Any classical, finite slope eigenclass gives a point of the eigenvariety)
For any kay € X*(T¢)M:*, finite order character x : T(Z,) — F*, and
any system of Hecke eigenvalues ()\p,)\s) occurTing in Hi(Kp,malg,X)'*"fs
(T’_@Sp. H* (Kp’ 72pnc — Wo,MKalg, Xﬁl)i’fsy H’L(Kp; Kalgs X Cusp)Jr’fS; or
HY(K?, —2pp. — wo,Mfiazg,X_l,cuSp)_’fs) there is a w = wywM € W, so
that if v = vaigx with vy = —w ™ wo ar(Kag + p) — p, then (I/alg/\zz, M%) is
a point of the eigenvariety £ which lies in the support of @keZHk(M"J’fs)

w
(resp. ez H* (M3 "), GreaHY WIS, or @reaH (Mo T2,).

(2) (Small slope points of the eigenvariety in reqular, locally algebraic weights
are classical) Conversely if v = vqgX is a locally algebraic weight with v, €
X*(T)F, and (v, \p, \%) is a point of £ in the support of Gpeg HF (M H79)
(resp. @rezH*(My™1%), Ore HH(MYLL), or GrezHY (ML) for
some w € MW, and if \, satisfies +, 555, (v) then ()\;m,)\s) occurs in
H' (Kp7 Kalg X)+’fs (7‘68}?. Hi(Kp7 _2pnc_wO,M"‘5alga X71)77fs; H' (va Ralgs X Cusp)Jr’fS:
or HY(KP, —2ppc—wo, MFKalgs X s cusp) 1% for Kalg = —Wo, MW (Vaig+p)—
p and some i.

(3) (Serre duality interpolates over the eigenvariety) We have pairings:

HY ML) @ HITRHMTIo) = 7l oy,

and these pairings are compatible with Serre duality under the classicality
theorem.

(4) (Interior cohomology class deform over the weight space) Any interior co-
homology class ¢ € ﬁ*(Kp,X,n)f*fs belongs to a component of the eigen-
variety of dimension equal to the dimension of the weight space.

Remark 1.21. The condition +, sss,,(v) is a strongly small slope condition.
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Remark 1.22. Tt is plausible that the eigenvariety £ coincides with an eigenvariety
constructed via Betti cohomology interpolation, as in [Hanl7]. One can also be-
lieve that there is a p-adic Eichler-Shimura theory relating both constructions. See
[AIS15], as well as some forthcoming work of Juan Esteban Rodriguez.

. . S——t
Remark 1.23. We can define certain m—'&)y-torsion free sheaves Cous,, over the

. . ——= . . . .
eigenvariety. The sheaves {Cous,, },, interpolate the various modules of the interior
Cousin complex (which can be used to compute the interior cohomology). For all

——= . . . . .
w € MW, we let £, be the support of Cous,,, which is a union of irreducible com-
ponents of the eigenvariety of dimension equal to dim Y. Any interior cohomology
class lifts to a point on Uy, emyy &L,

Remark 1.24. Any classical interior cohomology eigenclass ¢ € ﬁ*(Kp,fi, x) e
gives a point on the eigenvariety, and we can attach to it the finite subset W (c)
of w € MW such that ¢ € &.,. It seems interesting to describe this set. We can
prove (proposition that under certain slope assumptions, we have MW (c) C
’w07MC(I<J)+w0.

Remark 1.25. For the group GL3/Q, the theory was explained in [BP20]. In this
case & is already equidimensional of dimension 1, and is the Coleman-Mazur eigen-

curve. The sheaves Cous:; and Cous,, are in perfect duality, and similarly Cousl+
and Cous; are also in perfect duality. Furthermore, the Atkin-Lehner involution

. . . ——t -
induces an isomorphism between Cousyy/,, and Cousi /1a- 1t follows that & =&,
is the cuspidal part of the eigenvariety.

Remark 1.26. For GSp,/L with L a totally real field, variants or special cases of
this theory are considered in [Pil20], [BCGP18]|, [LPSZ19].

Remark 1.27. The point (4) of the theorem is an advantage of the method we use
to construct the eigenvarieties. Such a result was only available in a limited number
of cases (Shimura sets, automorphic forms contributing to cuspidal coherent H°...).

Finally, using point (4) we can give a new construction of the Galois representa-
tions of certain automorphic forms realizing in the coherent cohomology of Shimura
varieties but not in the Betti cohomology. This construction is via analytic interpo-
lation, and yields results on local-global compatibility at p. In [FP19], section 9, we
defined a certain class of cuspidal automorphic forms for the group GL,,/L where
L is either a totally real or C'M number field. These are called weakly regular, odd,
essentially conjugate self dual algebraic cuspidal automorphic representations.

Theorem 1.28. Let w be a weakly regular, algebraic, odd, (essentially) conjugate
self dual, cuspidal automorphic representation of GL, /L. In particular, ¢ = 7V ®
x- Let A\ = (\iry1 < i < n,7 € Hom(L,Q)) and Alr = - > Ay be the
infinitesimal character of m. There is a continuous Galois representation pr, :

Gr — GL,(Q,) such that:
(1) p5, ~p¥ @€ " @ x, where x, is the p-adic realization of X,
(2) pr,. is unramified at all finite places v t p for which m, is unramified and
one has:

WD(,OW’L|GL”)F_SS = rec(m, ® | det |1;Tn)
(3) pr,. has generalized Hodge—Tate weights (—Ap, » + ”T_l, cee A "T_l)
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(4) Let v | p be a place of L and assume that m, is an irreducible unrami-
fied principal series representation with distinct Satake parameters. Then
pr.lay, s crystalline and

1-—n
WD(pailc,, )"~ =rec(m, ® |det [, ).

Remark 1.29. If 7 is regular rather than weakly regular, then a stronger form of the
theorem holds according to results of Bellaiche, Caraiani, Chenevier, Clozel, Harris,
Kottwitz, Labesse, Shin, Taylor... (see [CHI13|, [BLGGT14]) including purity and
local-global compatibility at all places. The above theorem is deduced from these
results by p-adic analytic interpolation.
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this topic. We finally acknowledge the financial support of the ERC-2018-COG-
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2. COHOMOLOGICAL PRELIMINARIES

2.1. Cohomology with support in a closed subspace. We recall the notion
and the basic properties of the cohomology of an abelian sheaf on a topological
space, with support in a closed subspace. A reference for this material is [Gro05],
chapter 1. Let X be a topological space. We let Abx be the category of abelian
sheaves over X. If X is a point, Aby is simply Ab the category of abelian groups.
We let D(Abx) be the derived category of Abx. Let i : Z — X be a closed
subspace. For an object . of Abx, we let I'z(X,.7) be the subgroup of HY(X,.7)
of sections whose support is included in Z. We let RT'z(X, —) : D(Abx) — D(Ab)
be the right derived functor of I'z (X, —) (see [Stal3|, Tag 079V, in particular for
the unbounded version). Let U = X \ Z and let .% be an object of D(Abx). We
have an exact triangle in D(Ab) ([Gro0], I, corollaire 2.9):

RT,(X,Z) — RI(X, .F) - RI(U,Z) 5

We have the classical pushforward functor i, : Aby — Abx and it admits a right
adjoint 7' : Abx — Abz which can be described as follows: Let W C Z be an open
subset. Let W’ C X be an open subset of X such that W = W’/ N Z. For any
object .Z of Abx, we have i'.7 (W) = 'y (W', .F|w). It follows that T'z(X,.7) =
HO(X,i,i'.%). The functor i' has a right derived functor Ri' : D(Abx) — D(Aby).
Moreover RI'z(X,.#) = RI'(X,i,Ri" 7).

Some properties of the cohomology with support are:

(1) (change of support)[[Gro05], I, Proposition 1.8] If Z C Z’, there is a map
er(X, ﬁ) — RFZ/(X, ﬁ)
(2) (pull-back) If we have a cartesian diagram:



HIGHER COLEMAN THEORY (VERSION 18/11/20) 13

Z——X

L)

7 —— X'
and a sheaf .# on X', there is a map RI'z/ (X', #) — RI'z (X, f*%).
(3) (Change of ambient space)|[Gro05], I, Proposition 2.2] If we have Z C U C
X for some open U of X, then the pull back map RI'z(X,.%) — RI'z(U, %)
is a quasi-isomorphism.

The above properties imply easily the following lemma:

Lemma 2.1. Let Z,Z5; C X be two disjoint closed subsets. Then the natural map
given by pushforward:

RFZl (X, ﬂ) D RFZQ(X, 3’) — RFZle2(X, 9\)
is a quasi-isomorphism.

Proof. For i € {1,2}, we let 4, : Z; — X. We finally let i : Z; U Zy — X.
The lemma will follow from the claim that for any .# € Ob(Cx), the natural
map (i1)431-F @ (ia)4ihF — i,i'.F is an isomorphism of sheaves. This is a local
computation. Since X = Z{ U Z$ and the claim holds true over any open subset of
Z{ or Z§, we are done. u

We now discuss the construction of the trace map in the context of schemes or
adic spaces and finite locally free morphisms ([Hub96], Sect. 1.4.4).

Lemma 2.2. Consider a commutative diagram of topological spaces:

Z——X

)

7 ——= X'
with X and X' ringed spaces, f a finite locally free morphism of schemes or adic

spaces, Z' — X' and Z — X closed subspaces. Let F be a sheaf of Ox:-modules.
Then there is a map RTz(X, f*F) — RI'z/(X', F).

Proof. We first recall that the category of sheaves of Op-modules on a ringed
space (T, Or) has enough injectives ([Stal3], Tag 01DH). It follows that it is
enough to construct a functorial map I'z(X, f*%) — I'z/(X', %) for sheaves &
of Ox-modules. If we let Z” = f~1(Z'), then we have a map I'z(X, f*.#) —
Ly-1(z)(X, f*F). Therefore, it suffices to consider the case where Z = f~1(Z').
We have a trace map Tr : f,0x — Ox:. Moreover, the natural morphism f,Ox®¢ .,
F — fo f*F is an isomorphism. We therefore have a trace map Tr: f, f*% — Z.
Let us complete the above diagram into:

J——X<—-U

N

Z/*)X/<37U/

where U' = X'\ Z' and U = X \ Z. We have a commutative diagram:
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F — ') F
We deduce that the trace map T'(X, f*%) — I'(X’,.%) induces a trace map
FZ(X,f*ﬁ)%FZ/(X’,f). [l
2.2. Cup products. Let (X, Ox) be a ringed space. Let K =T'(X, Ox).

Proposition 2.3. Let Zy, Zs C X be two closed subsets. Let F and 4 be two flat
sheaves of Ox-modules. There is a map:

Rz (X, .F) @k RT2,(X,9) = Rl 2,02, (X, 7 ©5, 9).

Proof. Let Zs = Zy N Zy. For 1 < j < 3, we let 4; : Z; — X be the inclusion.
For .7 and ¥ sheaves of Ox-modules we have a map (i1).i}.7 ®Rgy (i2):i59 —
(i3)+i5(F ®9). We claim that there is a map in the derived category:

(i1)«Ri} F @5 (i2)Rib¥ — (i3).Ri}(F @ 9).

Indeed, taking the Godement resolution ([Stal3], Tag OFKR) gives quasi-isomorphisms
F — F* and ¥ — ¥°* where Z#* and ¢° are bounded below complexes of flasque
sheaves of O'x-modules and for all z € X, the maps %, — Z» and ¥, — ¥ are
homotopy equivalences in the category of Ox z-modules. In particular, .#* and G*
are K-flat (by [Stal3|, Lemma 06YB and the property that .%, and ¥, are flat
Ox-modules). Since .7* and ¥* are K-flat, the map % @ ¥ — Tot(ﬁ" ® g')

is a quasi-isomorphism. We see that (i1),Ri}.% is computed by (i1),i}.#* and
(i2)«Riy9 is computed by (iz),i5%9°. Taking K-flat resolutions A® — (i1),i}.7*
and B® — (i2),i5%*, we see that Tot(A® ®¢, B*) computes

(i1).Ri\ F @5, (i2) RisY

and there is a map

Tot(A® ® oy B*) = Tot((i1),i1.F* @py (i2).i5F*)

— (i3)«i4(Tot (F* ® 9°)).

Taking a K-injective resolution Tot(.#*®%*®) — C* we finally find that (i3),i5(C*®)
computes (i3),Ri(.# ® ¢) and we have a morphism

(i3)ui5(Tot (F* @ 9*)) — (i3)4i5(C*).
There is also a usual cup-product map by [Stal3], Tag 0OFPJ:
RI(X, (i1).Ri}|.7) ®% RI(X, (i2),Riy¥) — RT(X, (i1),Ri1.Z @5 (i2)Rib¥).

Combining the two maps gives the map of the proposition. (I
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2.3. The spectral sequence of a filtered topological space. Let X be a topo-
logical space, % a sheaf of abelian groups, and let W C Z be two closed subspaces
of X. We can define RT' (X, #) = R[,2\w (X \W,.Z). f ZC Z' and W C W'
we have a map RI'z/w (X, %) = Rz jw/ (X, 7).

If we have Zs C Zy C Zy, then there is an exact triangle ([Kem78§|, lemma 7.6):
RFZ2/Z3(X7 ﬂ) — RFZl/Za(Xv ﬂ) — RFZl/ZQ(X7 32) 4;)1

Assume that there is a filtration by closed subsets X = Zy 2 Z; D --- Z, = .
Then there is a spectral sequence of filtered topological space ([Har66], p. 227):

BT =HyY, (X, F) = HH(X,.F)

which we can visualize as follows:

HlZo/Zl X, 7) szl/Zz(X’”gr)
H%O/Zl X, 7) HlZl/Z2 X, 7)
K, /2y (X, )

The differential d}? : H’Z?ZPH(X,?) — H’ZZ;F/IZPH (X, #) is the boundary

map in the long exact sequence associated with the triangle:

RUz,,,/2,.2(X,F) = Rz, /z,.,(X,F) = Rz, /z

+1
p+2( p+1(X7]:)—>'
2.4. The category of projective Banach modules. In this work we will con-
sider cohomologies that will be naturally represented by complexes of Banach mod-
ules (or projective limit of such complexes). We therefore recall the basics of this

theory. Our discussion follows [Urb11], section 2.

2.4.1. The derived category. Let (A, AT) be a complete Tate algebra over a non-
archimedean field (F,Op). We let w € Op be a pseudo-uniformizer. A Banach
A-module M is a topological A-module whose topology can be described as follows:
Let Ay be an open and bounded subring of A. Then M contains an open and
bounded sub Ag-module M, which is w-adically complete and separated. We let
Ban(A) be the category of Banach A-modules. This is an exact category and one
can consider its derived category D(Ban(A)) ([Urbll], sect. 2.1.3). Let I be a
set. Denote A(I) the submodule of A! of sequences of sequences of elements of A
indexed by I converging to 0 according to the filter in I of the complement of the
finite subsets of I. This module can also be described as follows. Let Ag be an
open and bounded subring of A. Let Ay(I) be the w-adic completion of the free
Ap-module with basis I. Then A(I) = A¢(I)[Z]. We see that A(I) is a Banach
A-module. A Banach A-module M is orthonormalizable if there exists a set [
and an isomorphism M ~ A(I). A Banach A-module is called projective if it is a
direct factor of an orthonormalizable Banach A-module. We let KP™°7(A) be the
category whose objects are bounded complexes of projective Banach A modules,
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and morphisms are homotopy classes of morphisms of such complexes. There is a
natural functor K%/ (A) — D(Ban(A)) and it is fully faithful ([UrbI1], lem. 2.1.8).
Finally, we let CP"f(A) be the category whose objects are bounded complexes of
finite projective A-modules, and morphisms are homotopy classes of morphisms of
such complexes. The objects of this category are called perfect complexes. This is
a full subcategory of KPT°7(A).

We let Proy(KP7%(A)) be the category whose objects are projective system of
complexes {K; € Ob(KP™(A))}ien and the K,’s have non-zero cohomology in a
uniformly bounded range of degrees. We denote an object of this category by
“limjen” K;

We end this section with a simple lemma:

Lemma 2.4. Assume that A is noetherian. Let M be a projective Banach A-
module. Then M is A-flat.

Proof. We reduce to the case where M = A(I) for a set I. We claim that for any
finitely generated A-module N, N ® 4 A(I) = N(I) is the module of sequences of
elements of N indexed by I and converging to 0. This implies that A(T) is flat. Let
An L Am i) N — 0 be a presentation of N. Let Ag C A be an open and bounded
sub-module. Then b(Af') = Ny is an open and bounded sub-module of N. For any
k € Z, we find that if y € w” Ny, then there is x € w? AR, b(x) = y. It follows that
the map A"(I) — N(I) is surjective. There is [ € Z such that (! A7) N Ker(b) C
a(AR). Tt follows that if # € @’ AZ" is such that b(x) = 0, then there is y € wh~1A?
such that a(y) = x. It follows that the map A™(I) — Ker(A™(I) — N(I)) is
surjective. We deduce that N(I) = Coker(A™(I) — A™(I)) = N ®4 A(I). O

2.4.2. Compact operators. Recall that a continuous morphism 7" : M — N between
Banach A-modules is called compact if it is a limit of finite rank operators (for the
supremum norm of operators). Let M*® N*® € Ob(KP™(A)) and let

T e HomD(Ban(A)) (M.a N.)'

We say that T is compact if it has a representative T e Homy (M, N*®) such that
T is compact in each degree.

Definition 2.5. Let M* € Ob(KP™°I(A)) and let T € Endpgan(ay)(M*). We say
that T is potent compact if for some n >0, T™ is compact.

We need to extend these definitions to the case of objects in Pron(KP™7(A)).
Let “lim; " M?, “lim; " N € Ob(Pro(KP"%(A))) and let

T e HomproN(Kpmj(A))(“ hm”Mi.a “lim”Ni.).

We say that T' is compact if there exists M*®, N®* € Ob(KPT°I(A)), a compact oper-
ator T" € Homp(gan(a))(M®, N*), and a commutative diagram:

M —2 N

| |

. T .
“lim; " M? —— “lim; " N,?
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We similarly say that T is potent compact if there exists a diagram as before
with T” potent compact.

Lemma 2.6. Let “lim;” M? € Ob(Pron(KP"%(A))) and let T be a compact endo-
morphism of “lim;”Mp>. Then T induces canonically a compact endomorphism T;
of M? for i large enough and there are factorization diagrams:

Tit1

Mi.—i-l Ml'.+1

.

Mp —— M?

Proof. By definition, the map “lim;”M? — M?* factors into “lim; "M} — M; —
M?* for some 7 large enough. The map N®* — “lim; ” M? is given by a collection of
compatible maps N®* — M?. The lemma follows. O

2.5. The cohomology of Banach sheaves. In this section we explain how we can
obtain complexes of Banach modules in the cohomology of rigid analytic varieties.
We use the theory of adic spaces described in [Hub96] and [Hub94] for example.

2.5.1. Sheaves of Banach modules over adic spaces. In this section we recall some
material from [ATP15], appendix A. Let F' be a non archimedean field with ring of
integers Op. Let w € F be a topologically nilpotent unit.

We recall that there is a good theory of coherent sheaves on finite type adic
spaces over Spa(F,Op). If X = Spa(A4, A1) is affinoid and .Z is a coherent sheaf
on X, then H(X,0y) =0 for i # 0, M = H*(X, Ox) is an A-module of finite type
and the canonical map M ®4 Ox — F is an isomorphism ([Hub94], thm. 2.5).
Moreover, M is canonically a Banach A-module ([Hub94], lem. 2.4). It follows
that a coherent sheaf .# over a finite type adic space X is a sheaf of topological
Ox-modules. In this paper we will have to manipulate topological sheaves which
are not coherent.

Definition 2.7. Let X be a finite type adic space over Spa(F,Op). A sheaf F of
topological O~ -modules is called a Banach sheaf if:

(1) For any quasi-compact open U — X, F(U) is a Banach Ox(U)-module,
(2) There is an affinoid covering X = U;U;, such that for any affinoid V C U;,
the continuous restriction map Ox (V) Qg wy) F Us) — F (V) induces a
topological isomorphism: Ox(V)® g F Us) = F(V),
A Banach sheaf F is called projective if there is a covering as in (2) such that
F(U;) 1s a projective Banach Ox(U;)-module.

Any coherent sheaf on X is therefore a Banach sheaf and a coherent sheaf is
a projective Banach sheaf if and only if it is projective. Banach sheaves over X
form a full subcategory of the category of topological &y-modules. We introduce
compact morphisms in this context.

Definition 2.8. Let X be an adic space of finite type over Spa(F, Op). Let F and
4 be two projective Banach sheaves. Let ¢ : F — 4 be a continuous morphism of
Ox-modules. We say that the map ¢ is compact if there is a covering X = U;U;
satisfying the point (2) of definition for both F and 4, such that the map
o FU;) = 9 (U;) is a compact map of Ox(U;)-modules.

Note that if ¢ is coherent, any morphism to ¢ is compact.
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2.5.2. Cohomological properties of Banach sheaves. We warn the reader that Ba-
nach sheaves which are not coherent sheaves are pathological in general. In partic-
ular it is not true that for X affinoid a Banach sheaf has trivial higher cohomology
groups or that a Banach sheaf is the sheaf associated with its global sections. Here
is nevertheless a simple example. Let X = Spa(A, AT) be an affinoid and let M be
a projective Banach A-module. Let .# = M® 4 Ox be the pre-sheaf whose value on
an affinoid open U = Spa(B, Bt) of X' is M&4B.

Lemma 2.9. The pre-sheaf . is a sheaf and H{(X,.#) =0 for all i > 0.

Proof. We reduce to the case that M is orthonormalizable, and everything follows
from the known properties of Ox. a

We now introduce a certain class of Banach sheaves that have better cohomolog-
ical properties. These are Banach sheaves admitting formal models which can be
controlled in a certain sense. We thus begin by discussing formal Banach sheaves
over formal schemes.

Definition 2.10. Let X — Spf Op be a finite type formal scheme over Spf(Op). A
sheaf § of Ox-modules is called a formal Banach sheaf if § is flat as an Op-module,
T = §/w™ is a quasi-coherent sheaf, and § = lim,, .

A formal Banach sheaf is called flat if .%,, is a flat Ox/w"-module for all n. It
is called projective if %, is a projective O /w"-module for all n. A formal Banach
sheaf is called small if there exists a coherent sheaf ¢ over X with the property
that %1 is the inductive limit of coherent sub sheaves .#; = colimjez. %1 ; and
Fi1./F1,j-1 is a direct summand of ¢ for all j > 0. -

The relevance of the smallness assumption is given by the following theorem:

Theorem 2.11. Let X — Spf Op be a finite type formal scheme and let § be a
small formal Banach sheaf. Assume that X has an ample invertible sheaf, and that
the generic fiber X of X is affinoid. Then H (X,¥) ®0, F =0 for all i > 0.

Proof. This is [AIPT5], thm. A.1.2.2. In the reference, the formal scheme X is
assumed to be normal and quasi-projective, but the only property needed in the
proof is the existence of an ample sheaf on X. O

Let X — Spf Op be a finite type formal scheme, and let X — Spa(F,OF) be
the generic fiber of X. Thus (X, 0F) = limyx/ (X', Ox:) where the limit runs over
all admissible blow-ups of X. Let § be a Banach sheaf over X. For any admissible
blow-up f: X' — X, we let §x/ = lim,, f*#,. We let .% = limx' §Fx/[1/w]. This is
a sheaf over X' that we call the generic fiber of §.

Theorem 2.12. Let X — Spf Op be a finite type formal scheme, with generic fiber
X. We have the following properties:

(1) There is a “generic fiber” functor going from the category of flat formal
Banach sheaves over X to the category of Banach sheaves over X, described
by the procedure § — F.

(2) IfU — X is a quasi-compact open subset and ' — X' is a formal model
for the map U — X, F(U) = Fx (W)[1/w].

(3) The property (2) of deﬁm’tion holds over the generic fiber of any affine
covering of X.
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(4) The generic fiber functor sends projective formal Banach sheaves to projec-
tive Banach sheaves.

(5) Let F be a Banach sheaf arising from a flat small formal Banach sheaf.
Then for any affinoid U — X we have H (U, F) = 0 for all i > 0.

Proof. The first three points are [AIP15], proposition A.2.2.3. We check the fourth
point. Let 4 be an open affine of X. Let M, = H°(U, M,,), A, = HO(U, Ox /™),
M = lim,, M,, and A = lim,, A,,. We claim that M is a direct factor of the com-
pletion of a free A-module. Let us pick a surjection Af — M; and for any n, we
can lift it successively to surjections AZ — M,,. We need to prove that we can find
a compatible system of sections s,, : M,, — AL. Tt suffices to show that the map
Hom 4 (M,,, ALY — Homu (M, _1, AL 1) is surjective. This follows from the short
exact sequence 0 — Homy, (M,,, A1) — Homa, (M,,, AL) — Homy, (M, AL _|) —
0. We check the last point. Let X be a formal model of X and § be a small flat
formal Banach sheaf over X. Let U be an affine formal model of . Let U;U; = U
be a finite affinoid cover of U. Let Y’ be an admissible blow-up of & with the
property that U;U; = U is the generic fiber of a covering of U’ and there is a map
I’ — X inducing the map U — X. Note that {{' has an ample invertible sheaf,
since it is a blow-up of an affine formal scheme. We can apply theorem [2.11]to Fy,
the pull-back to &’ of §F which is still small by flatness. This shows that the Cech
cohomology of U with respect to the covering U;U{; vanishes. Since this holds for
any finite cover, and U is quasi-compact, we deduce that H*(U,.%) = 0.

O

Definition 2.13. Let X be a finite type adic space over Spa(F,Op). A Banach
sheaf F is called a small projective Banach sheaf if it arises as the generic fiber of
a small projective formal Banach sheaf.

Remark 2.14. A projective coherent sheaf over X' is a small projective Banach sheaf
by the flattening techniques of [RGT1].

Remark 2.15. We don’t know if, for X = Spa(A, A1) affinoid and a small projective
Banach sheaf .7, it is true that .# (X)) is a projective Banach A-module and the
map .F (X)@40x — F is an isomorphism.

2.5.3. Acyclicity of quasi-Stein spaces. In our arguments, it will often be usefull to
consider not only affinoid covers of adic spaces, but also some quasi-Stein covers.

Definition 2.16 ([Kie67|, def. 2.3). We say that an adic space X — Spa(F, Op) is
quasi-Stein if X = Ujez.,X; is a countable increasing union of finite type affinoid
adic spaces Xj — Spa(F,Op) and Ox, , — Ox, has dense image.
Example 2.17. Here are some examples of quasi-Stein adic spaces:
e An affinoid space, like the unit ball B(0, 1).
e A Stein space like the open unit ball: B°(0,1) = U, B(0, [p |).
e A “mixed” situation like B°(0, 1) Xgpa(r,0,) B(0, 1).
We also recall the following classical acyclicity result:

Theorem 2.18 ([Kie67|, Satz 2.4). Let X be a quasi-Stein adic space and let F
be a coherent sheaf over X. Then HY (X, %) =0 for all i > 0.

We also have:
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Proposition 2.19. Let X = Spa(A, AT) be an affinoid finite type adic space, let
M be a projective Banach A-module and let F = M®s0x. Let U — X be a
quasi-Stein open subset. Then H'(U,.F) =0 for all i > 0.

Proof. We reduce to the case where M is orthonormalizable, and therefore to the
case of Oy where we can apply theorem [2.18 (]

2.5.4. Cohomology compleres. We now illustrate how one can obtain complexes of
Banach modules. We denote by D(F') the derived category of the category of F-
vector spaces. We have natural functors: KP™°(F) — D(F) and Proy (KP4 (F))) —
Pron(D(F))). Moreover, to any object in Proy(D(F))) we can attach its derived
limit in D(F). In general derived categories, the derived limit (when it exists) is
unique up to a non-unique quasi-isomorphism (see [Stal3], Tag 08 TB), but over a
field there is no ambiguity. For an adic space X over Spa(F, Of), and a sheaf & of
O y-module, the cohomology groups RI'(X, %) are objects of the category D(F).
Nevertheless, they often carry more structure and can be represented by complexes
of Banach modules. We formalize this in this section.

Lemma 2.20. Let X be a separated finite type adic space over Spa(F,Op). Let &
be a projective Banach sheaf over X. Let U C X be a quasi-compact open subset.
Let Z C X be a closed subset, with quasi-compact complement. Then one can
naturally view RT zqy (U, F) as an object of KP™I(F).

Proof. We have an exact triangle RT' zqy (U,.-#) — RI'U, F) — RI'U \ (Z N

u),7) 1} and therefore, we are reduced to prove the claim for R['(U,.#) and
RT'(U\ (ZNU),F). Finally, it suffices to prove that for a quasi-compact open U C
X, RI(U,F) € Ob(KP™I(F)). We can compute the cohomology by considering an
affinoid covering of U for .Z, and the associated Cech complex by [Hub94], thm.
2.5. Then each of the terms of the Cech complex carries a canonical structure of
Banach K-algebra. Any two complexes obtained that way are quasi-isomorphic,
hence homotopic. (I

Lemma 2.21. Let X be a separated finite type adic space over Spa(F,Op). Let F
be a projective Banach sheaf over X. LetU C X be an open subset which is a finite
union of quasi-Stein spaces. Let Z C X be a closed subset, whose complement is a
finite union of quasi-Stein spaces. Then one can naturally view RT zry (U, F) as

an object of Proy(KP™I (F))).

Proof. As before, we are reduced to see that for an open U C X which is a finite
union of quasi-Stein spaces, RI'U,.Z#) € Ob(ProyKP ™ (F)). We let U = UiV
be a finite covering of U by acyclic quasi-Stein spaces V. We let Vi, = U;>oVi i
where Vy, ; is affinoid. We let U; = UpVy ;. We let RI'U, .F) = “lim”"RI(U;, F).
We can prove that this is independent of the covering U = Uy ;V ;. Indeed, let
U = U ; Wy ; be another covering. By considering intersections, we may assume
that Uy ;Wi ; refines Uy ; Vi ;. If we let U] = Up Wi ;, we see that for all 4, there
exists ¢ > ¢ > 4" such that U, CU; C U],. Therefore, the limits are equal. O

2.5.5. Compact morphisms in the cohomology of adic spaces. We give some ex-
amples of compact morphisms arising from maps between the cohomology of adic
spaces. First, let us fix a standard notation. Let T be a topological space and let S
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be a subset of T. Then we denote by S the closure of S in T and by g‘ the interior
of Sin T

Lemma 2.22. Let X — Spa(F,Op) be a proper adic space and let & be a locally
free sheaf of finite rank over X. Let U’ C U C X be quasi-compact open subsets.
Assume that U’ CU. Then the map

RI(U,.F) — ROWU', F)
1s compact.

Proof. We claim that there exists a formal model X — Spf Op of X, and two
opens 4 and ' of X with generic fibers & and U’ such that &' C . Remark
that & — Spf Op is proper because X was assumed to be proper ([L90], Th. 3.1).
We deduce that U’ is relatively compact in & (JL90], lem. 2.5). We prove the
claim. Recall that the ringed space (X, ﬁ;) is the inverse limit of the ringed spaces
(X, Ox) where X runs over all the formal models of X. For a cofinal subset of X,
we have opens ty and U5 of X with generic fiber & and U’. We let U’y be the
generic fiber of . Then U’ = NxU'x. The topological space X equipped with
the constructible topology is compact (in fact this is a profinite set). We have that
U)¢ = Ux(U'x) N (U)°. Since (U)€ is compact, we deduce that there is a model X
such that ¢’y C U, and therefore 'y C $lx. This finishes the proof of the claim.

Let U’ = U;esU! be a finite affinoid cover of &’. By |L90|, thm. 5.1, for each
1, there exists an affinoid U{ C U; C U such that Z/l{ is relatively compact in U;
(equivalently ﬁz’ CU;). Let U" = Uje ;. We claim that the map

RIO(U", F) — RO(U', F)

is compact. Indeed, these cohomology can be represented by the Cech complex
with respect to U;i; and U;U]. By the same argument as in [KLO05|, prop. 2.4.1,

we find that the maps #(Nycilh;) — F (NyciU]) are compact. Finally, the map of
the lemma is compact because it factors over a compact map. (I

Lemma 2.23. Let X — Spa(F,Or) be a proper adic space and let & be a locally
free sheaf of finite rank over X. LetU' C U be two quasi-compact open, and Z C Z'

be two closed subspaces, with quasi-compact complements. Assume that u CU and
ZC 2;’. Then the map

Rz U, F) = Rz (U, F)
18 compact.

Proof. It suffices to see that R['(U, F) — RI'(U',.F) and RT(U \ (ZNU), F) —
RT'U' \ (Z2'nU"), F) are compact. This follows from the fact that o C U and

u\2nuc u \ (2’ mU’) C U\ (ZNU) and the previous lemma. O

We now give a stronger form of the lemma.

Lemma 2.24. Assume that X is proper. Let U’ C U be two open subsets which
are finite unions of quasi-Stein spaces, and Z C Z’ be two closed subspaces, whose
complements are finite unions of quasi-Stein spaces. Assume that there exists a
quasi-compact open U" such that U' N Z' CU" withU" C U, as well as two closed
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subset 2" C Z" with quasi-compact complement, such that ZNU C 2", 2" C 2"
and Z C Z'. Then the map

ermz/{(u,y) — RFZ’OZ/{’ (L{’, ﬁ)

is compact in Pron(KP™I (F)).

Proof. We can write U = U,U, with U, quasi-compact. Since u' CU and X
equipped with the constructible topology is compact, we deduce that u’ cu,
for n large enough. The map RI'zvry, Un, F) — RIzwqy(U”,.F) is com-
pact by lemma There is a restriction-corestriction map RI' z~y (U, F) —
RFZ”ﬁMn (Umy)

We also have a restriction-corestriction map

R zomyn (U, F) — RU zime (U NU . F).

On the other hand, RI'z/~y (U',.F) = Rl zrqp (U’ NU",.F). All together, we
deduce that the map

RFZnu(U,y) — RFZ/OZ/I’ (ul, th')

factors through the compact map RIzvry, (Un, F) — RTzmmy (U, F) and is
compact. O

We finally conclude this section with a last lemma where we deal with Banach
sheaves which are not necessarily coherent.

Lemma 2.25. Let X, U, U', Z, Z’ be as in lemma[2.2]} Let F and 9 be two pro-
jective Banach sheaves and let ¢ : F — 4 be a compact morphism. The morphism

RFZmu(U, 32) — Rz (Z/{/, g)
is compact in Proy(KPTI (F)).
Proof. Easy and left to the reader. O

2.6. Integral structures on Banach sheaves. We now consider integral struc-
tures on Banach sheaves, but this time more in the spirit of analytic geometry. We
let X be a separated adic space locally of finite type over Spa(F,Op). We let &
be a projective Banach sheaf over X. We can view % as a sheaf on the étale site
of X by [BG9S].

Definition 2.26. An integral structure on .F is a sheaf F 1 of ﬁ;-modules on the
étale site of X, such that:
(1) F* > Z and F+ @0, K = Z,
(2) There is an étale cover [[U; — X by affinoid spaces such that F+(Uy;)
is the completion of a free ﬁ;(Ui)-module of finite rank and the canonical
map f*(Ui)@)ﬁ;(Ui)ﬁi_ — F 1|y, is an isomorphism.

Remark 2.27. A stronger property would be to ask that the étale cover [[U; — X
is in fact an analytic cover. In our applications, this stronger property will not
be satisfied. Indeed, we will produce sheaves arising from torsors under various
groups, and these torsors are usually only trivial locally for the étale topology.
However, we will not consider the étale cohomology H’,(X,.ZT), but only the
analytic cohomology H: (X, 7).



HIGHER COLEMAN THEORY (VERSION 18/11/20) 23

Lemma 2.28. Assume that X is reduced. Let U — X be an étale map. Then
FT(U) is an open and bounded submodule of F (U).

Proof. Let i be a finite set and let ]|

affinoid and &%
property we have an exact sequence:

—>H H (U; xu Uj)

and .Z (U) is a closed Banach subspace of [], # (U;). Since [[, .#*(U;) is open and
bounded in [[; % (U;) (using that €% (U;) is bounded by the reduced hypothesis),
FHU) =11, Z7(U;) N.Z(U) is open and bounded in .Z*(U). O

U; — U be an étale cover such each U; is
rr,-modules. By the sheaf

iel

We now will elaborate on a result of Bartenwerfer which we first recall.

Theorem 2.29 ([Bar78|). Let X be an affinoid smooth adic space over Spa(F, Op).
There exists N € Z>o such that H:, (X, 0%) is annihilated by pN for all i > 0.

Proof. Bartenwerfer’s result is stated for Chech cohomology. By [Pil20] prop. 3.1.1,
this implies the claim for cohomology. (]

Lemma 2.30. Let X be an affinoid smooth adic space over Spa(F,Or). Let F
be a projective Banach sheaf which is assumed to be associated to its global section
(i.e. satisfies point (2) in definition . Let F be an integral structure on F.
There exists N € Zx>o such that for all i > 0 the cohomology groups H, (X, .77)
are annihilated by p™

Proof. Let X = Spa(A4,AT). By assumption, .# = M®40x is associated to a
projective Banach A-module M. Let I be a set such that A(J) = M & N. Let
M+ =AT(I)NM and Nt = A*(I) N N. The injective map MT & NT — AT (I)
has cokernel of bounded torsion. Moreover, if we let M, be the image of AT (I) in
M under the projection orthogonal to N, then M+ < M has cokernel of bounded
torsion. We deduce that there exists an integer NV such that the multiplication by
pY maps M+ — M™ factors through: M+ — A*(I) — M* (where the first map
is the inclusion, the second map is the orthogonal projection with respect to N
composed with multiplication by p" and followed by the inclusion p™¥ M, C M¥).
It follows from theorem that H (X, 05 &4+ AT(I)) is of bounded torsion for
all i > 0. We let .Z* be the subsheaf of 65® 4+ A*(I) N.Z equal to the image of
the sheaf associated to the presheaf ﬁ;@ A+M™ (in other words, it is the subsheaf
of & of sections which can locally be written as tensors in ﬁ;@ A+ M),

We see that multiplication by pV : .#* — .#* factors through .4+ — 05 & 4+ AY(I) —

M. We deduce that H' (X, .# ) is of bounded torsion for all i > 0. After rescal-
ing, we may assume that M+ C .Z 1 (X), with cokernel of bounded torsion by lemma
We therefore get a morphism: .#+T — Z+. We claim that this morphism has
cokernel of bounded torsion. Let U;c;U; — X be an affinoid étale covering with the
property that %
the set I is finite. It suffices to show that &' (U;)® 4+ M+ Z1(U;) has cokernel
of bounded torsion. This follows since the image of &'F(U;)& 4+ M* is open. We
finally deduce that H,,(X,.Z ") is of bounded torsion for all ¢ > 0. O
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2.7. Duality for analytic adic spaces. In this section we fix X a proper smooth
adic space over Spa(F, Op) of pure dimension d. Let QilY/F be the canonical sheaf,
equal to AdQ}\,/F. Let + : Z — X be a closed subset, equal to the closure of

a quasi-compact open subset U/ of X. One can consider the cohomology group

Remark 2.31. We give some translation to the language of [GKO00]. Let UT be
the dagger space attached to U — X. And let % be a coherent sheaf defined on
a neighborhood of Z in X. Then H'(UT, #) = H(Z,., '.#) and HS(UT, F) =
HL (X, 7).

Theorem 2.32 (JGKO00], [Bey97)]). (1) There is a trace map trz : HL (X, Q%/F) —
F.
(2) If 2 C Z’, there is a factorization

tro/
trz : HE (X, Q% k) = HE (X, Q% p) 3 F.

(3) For any coherent sheaf F defined on a neighborhood of Z the map trz
induces a pairing:

Ext] 14, (" F,07'Q% p) x HE H(X,.F) - K

(4) When Z = X the cohomology groups are finite dimensional K -vector spaces,
and the pairing is perfect.

(5) WhenU is affinoid and F is a locally free sheaf, Ext?_lﬁx (r7, L’lﬂfv/K)
is a compact inductive limit of F-Banach spaces, HL (X, F) is a compact
projective limit of F-Banach spaces, and the pairing is a topological duality
between locally convex F-Banach spaces. Moreover, Ext!_, O (r7, L_lng/K>

and HL (X, F) vanish for i # 0.

3. FLAG VARIETY

3.1. Bruhat decomposition. Let F' be a non archimedean local field of mixed
characteristic with residue field k& of characteristic p, discrete valuation v and uni-
formizer w. Let G — Op be a split reductive group with maximal torus 7" contained
in a borel B with unipotent radical U. Let B C P be a parabolic. We choose a
Levi M C P.

Remark 3.1. In our application to Shimura varieties, the unipotent radical of P
will be abelian. Nevertheless, this assumption is not relevant for the moment.

We let @ be the set of roots, T be the subset of positive roots corresponding
to our choice of B and ®~ = —®*. We let CDJT/[ be the subset of positive roots
which lie in the Lie algebra of M and &M = ¢+ \ <I>;(/[. We let @, = —(I)J]Q[ and
M — _p+M

We let W be the Weyl group of G. We denote by ¢ : W — Z>( the length
function. For each w € W, we choose a representative in N(T') that we still denote
w. The group W acts on the left on the cocharacter group X, (T) and on the
character group X*(T) on the left as well via the formula wk(t) = k(w1 tw) for
k € X*(T) and w € W. Let Wy be the Weyl group of M. The quotient Wy \W
has a set of coset representatives of minimal length (the Kostant representatives)
called MW . This is the subset of W of elements w that verify (I’z\+4 C wdt.
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Let FFIL = P\G — Spec O be the flag variety associated with P. The group G
acts on the right on FL.

For any w € MW, we let C,, = P\ PwB be the Bruhat cell corresponding to w.
We have the decomposition into B-orbits FIL =[], cumyy Cw. We can also consider
the opposite Bruhat cell: C* = P\PwB for the opposite Borel B.

We let X, be the Schubert variety equal to the Zariski closure of C\, in F'L. We
also let X be the opposite Schubert variety, equal to the Zariski closure of C'*
in FL. There is a partial order < on MW for which X,, = U <wChyr and X =
Uw/Zwa/. For the length function ¢ : MW — [0, dimF L], we have ¢(w) = dim C,,
(here dimensions are relative dimensions over Spec Op).

We also define for all w € MW, Y, = U >wChyw. This is an open subscheme of
FL containing C,.

Lemma 3.2. We have an inclusion X* —Y,,.

Proof. By |[BLO03|, I, lemma 1, we know that X* N X, # § & v > w. We deduce
that X NC, # 0 = v > w, so that X* C Uy>4,C,. O

The following lemma gives a description of the Bruhat cells. For all a € ®, we
let U, be the one parameter subgroup corresponding to a.

Lemma 3.3. The product map (for any ordering of the factors)
H Uso — Cu

ac(w=1e—-M)Ne+
(o) — w H Ta
o

is an isomorphism of schemes.

Proof. We need to prove that the map Hae(w,@,,,w)mw U, = (BNw tPw)\B
is an isomorphism. This follows easily from the following facts:
¢ B=T x]],co+ Ua (in any order),
e dF = (w1 M)N O [[(wldT) N OT [[(wldy,) N,
e BNuw 'Pw=T x Hae(w*1¢>+)ﬁ¢+ [T(w—1o7)no+ U,.
O

We also introduce the open subset U,,, which contains C\,, defined to be the
image of the map (for any ordering of the roots):

II v. = FL

acw—1¢—M

(o) +— waa.

This is the right the translate of the big cell Cy,, by wy L.

3.2. Interlude: the cohomology of the flag variety. In this subsection, which
is independent of the rest of the paper, we discuss the coherent cohomology of the
flag variety following [KemT78]|, section 12. We assume here that P = B is a Borel
subgroup. We consider the stratification Zg = FL 2 Z1 D -+ D Zg D Zgi1 = 0
where d = dimF'L and Z; = U, ew ¢(u)=d—i Xw- Let & € X*(T'). We associate to x
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a G-equivariant line bundle £, on F L. If 7 : G — FL is the projection map, then
for any open U — F'L,
Lo(U)={f:n7'(U) = A | f(bu) = wor(b) f(u)}.
We consider the spectral sequence

"y, (FL,Ly) = HYY(FL,L,).

In order to study this spectral sequence, we need the following basic result:
Lemma 3.4. Letm > n. Let A™ = Spec Op[X1, -, X;n] and A™ = Spec Op[X1, -+, X,].
Let A™ — A™ be the closed immersion given by X,41 = --- = X,;, = 0. We have
HY.(A™) =0 ifi#m —n, and
H ™ (A™) = oy or [[xF
ki, kn>0, kpt1, km <O =1

Proof. One can use a Koszul complex. See [Gro05|, exposé II, proposition 5. a

Let p = 23 cor a. We define the dotted action of W on X*(T) by w -k =
w(k + p) — p. We also define Hy, (FL, L) = HE, (Uy, Ly).

Lemma 3.5. We have a decomposition
+
Hy, (FL.L)= @ HLMU(FL,L.)
weW L(w)=d—p
and these groups vanish when q # 0. Moreover, the character of T acting on
1 (FL,L,) is given by the formula:
(w™lwg) - K
[Toco-(1— )
Proof. Since Zy \ Zpt1 = Uyew t(w)=d—p Cw and Uy, is a neighborhood of C,, in
FL, we deduce from lemma [2.1] that

H%:?Zp+1 (FLv ‘CR) = @wEW,E(w):dprzé’tq(Uw7 [’K)

We have U, ~ wA?%, with coordinates X,, a € w™'®~. We have C,, ~ wA W)
with coordinates X,, a € w™'®~ N ®*. Moreover, for t € T we have the formula
w]] Xot = wtw™lw [JAd(t~1)(X,). In particular, we deduce easily that

Hzé—:q(Uw, EH) = H%Tuq(Uw7 ﬁFL) X OF(w_lwon).

We deduce from lemma that H’étq(Uw, L) is concentrated in degree p, and the
cohomology is isomorphic to the free Op-module:

k
S Or [ [ xar
ka>0 Vacw—1®—Nd+ k,<0 Vacw—1d— NP~
We can compute the character of the T-action. We have
P _ k
ch(HL, (Uy, Orr)) = > I1e*
ko>0 Vacw—1d+Nd~ k>0 Vacw—1d—Nd—

Haew*fb*r@* a

Ha€<1>— (1 - O()

p L 1pt

[loca+ (1 =)
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It follows that
1

[oco+r(1 =)

wpT = (wlwy) - k. O

ch(HY. (Uy, L)) = w twok.p tw™tp™!

w

We conclude by noting that w™ wgk.p~!

It follows from the lemma that the following complex (the Grothendieck-Cousin
complex):

Cous(r) : 0 = HY ,, (FL, L) — - = HY ;. (FL,L;) =0
computes RI'(F'L, L,). Each group decomposes

(FL,L,) = &y HP (FL,L,)
weWL(w)=d—p

HP
Zyp|Zpt1

and we have established a precise formula for the weights of T' on each module.

There is a partial order on X*(T') where A > 0 if and only if X is a sum of
positive roots. Lemma tells us that the weights occurring in HZ,_Z(UJ)(FL, L)
are exactly those which are < (w™'wy) - . In particular certain “big weights” will
occur in as few of the terms of the Cousin complex as possible. We begin with the
following lemma:

Lemma 3.6. Let v € X*(T') be such that v + p is dominant. Then the following
conditions on a weight A € X*(T) are equivalent:

(1) AL w-v forallw e W with w-v # v.

(2) AL sq -V for all o € A with sy - v # v.
Moreover if we additionally assume that X < v then we have the further equivalent
condition:

(3) A=v=3 caNat withng < (a",v)+1 for all a € A with (¥, v)+1> 0.

Proof. Clearly the first condition implies the second. For the converse, writing w
as a reduced product of simple reflections, there must be at least one factor s, with
Sa vV F#v. Then w > s,, and so by lemma [5.55] w-v < s, - v, and hence A\ £ s, - v
implies A € w - v.

The equivalence of the second and third points follows from the formula s, - v =
v—({aV,v) +1)a. O

We say that a weight A satisfying the conditions of the proposition has big weight
(with respect to p) and for a T-module M which is a direct sum of its weight
spaces we denote by M"¥ () the direct sum of its weight spaces corresponding to
big weights. We note that if v + p is regular the last condition may be expressed
as A>v—y A{(aV,v)+1)a.

Let (k) = {w e W | (w™twy) - k € X*(T)6 — p}. This set is nonempty, and
Kk + p is regular if and only if it consists of a single element. For example, if  is
dominant, C(k) = {wo}. We let v = (w™lwy) - k for w € C(k) (this is independent
of w e C(k) as X* (T)a — p is a fundamental domain for the dot action of W on
X*(T)g.)

Proposition 3.7. The cohomology complex RF(FL,L:H)Z’“’(V) is a perfect complex
of Op-modules of amplitude [min,,cc(x)(d — £(w)), max,ec () (d — £(w))].
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Proof. Fix w; € C(k) so that v = (w] *wg)x. For w € W, the weights occurring in
HE ) (FL,L,) are < (w™lwpg) - & = (w™lwy) - v. Moreover w € C(k) if and only
if (w™lw) - v = v. Hence if w ¢ C(k), Hﬁ,ﬁz(w)(FL,En)bw(”) = 0. Thus only the
terms of the Cousin complex corresponding to w € C(k) remain. d

Remark 3.8. In particular when s + p is regular so that C(k) = {w} consists of
a single element, we have that H*(FL, £,.)"(") = H* (FL, L,)*®*). We view this
statement as a sort of analog of Coleman’s classicality theorem, where the algebraic
local cohomology groups Hy, play the role of the overconvergent cohomology groups
introduced in this paper, and the big weight condition plays the role of the small
slope condition.

We emphasize that the vanishing of Proposition[3.7]is characteristic independent.
Of course in characteristic zero, the classical Borel-Weil-Bott theorem gives a precise
description of H*(F'L, L,;). For the sake of completeness, we explain how the Borel-
Weil-Bott theorem may be deduced from the computation of H*(FL, L) via the
Cousin complex and basic properties of category O.

Theorem 3.9 (|[Jan03|, 5.5, corollary). Let k € X*(T') then:

(1) If there exists no w € W such that w - k is dominant then H (FL, L) ®0,
F =0 for all i,

(2) If there exists w € W such that w - k is dominant, then there is a unique
such w, and H(FL,L,) @ F = 0 if {(w) # 4, while H“)(FL, L) ® F is a
highest weight w - k representation.

Proof. There is a famous sub-category of the category of U(g)-modules, called the
category O. See [HumOg]|, chapter 1 for the definition and properties of the category
0. We recall a number of basic results concerning the category O that will be
used in the argument. The category O is abelian, Artinian and Noetherian. The
simple objects are indexed by weights A € X*(T') ® F and denoted by Ly. If the
module L) is finite dimensional then A € X*(T) ® F is dominant. Moreover if
A € X*(T)* then Ly arises from the highest weight A\ representation of G. For
all A € X*(T') ® F we also denote by My = U(g) @y p) F'(N) the Verma module
of weight X\. The simple module L) is the unique simple quotient of M,. The
Grothendieck group of O, denoted by K (0O), is the free module on the [L,]. We
denote by M — [M] the semi-simplification map from O to K(0). In K(O) we
have [M)] = Gya<ra(w - A\, N)[Ly.x] with a(A, A) = 1. Since any element M € O
has diagonalisable t-action, we can associate to M its formal character chM which
is an element of the group X of functions X*(T)® F — Z. The character is additive
on short exact sequence and we get a map K(O) — X, [M] — ch[M]. Moreover,
this last map is a group injection. We denote by X its image. Finally, any U(g)-
module with diagonalisable t-action, and whose formal character belongs to Xp is
an object of O.

It follows from lemma/3.5|that ch(H%p i
The Grothendieck-Cousin complex

0—=HY 7 (FLL)®F == HY ;. (FL L) ®F =0

(FL,LK,)@OI:F) = 69w,é(w):p("h(]\4w~;<,)-

carries an action U(g) by [Kem78|, lemma 12.8, and is therefore a complex in the
category O. At this stage, we see that if none of the elements in the set {w - Kk} is
dominant, then none of the H’;p o (FL,L,) ®0, F contains a finite dimensional
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subquotient. Otherwise there is a unique w such that w- is dominant. We see that

for p = £(w), [HZP/ZP+1 (FL,L,)®0, F] has a unique finite dimensional constituant

(with multiplicity one) equal to [Ly.,.]. On the other hand [H%i/Zi+1 (FL,L,) ®op
F] has no finite dimensional constituant for ¢ # ¢(w). The cohomology groups
HY(FL,L,) ®o, F are finite dimensional because FL is proper. If none of the
elements in the set {w-x} is dominant, the cohomology is therefore trivial. If there
is a unique w such that w - x is dominant, we see that H(FL,L,) ®o, F = 0 if
i # l(w), and H ) (FL, L) @0, F = Luy.x. O

3.3. Analytic geometry. If S — Spec Op is a finite type morphism of schemes,
we let & = S Xgpec 0p Spa(F,Op) be the associated analytic adic space and
Sk = S Xspec 0 Spec k be the special fiber. One can also consider S, the
analytification of the scheme S Xspec 0 Spec F, and there is a map § — S§"
which is an isomorphism when S is proper (see [Hub94], section 4). There is a
continuous specialization map spg : & — Sk and the preimage of a subset U C S
is denoted by spg'(U). If U is a locally closed subset of Sy, we let |U[s be the
interior of sp~*(U). This is an adic space, called the tube of U (see [Ber91]). The
difference between spg'(U) and |Ul[s consists only of certain higher rank points.
The tube |U[s is the adic space associated to a “classical” rigid space, while spg1 U)
is not in general.

3.3.1. The Iwahori decomposition. Let G be the quasi-compact adic space associ-
ated to G and let Iw =|Bj[g be the Iwahori subgroup of G.

For any root o € ®, we have an algebraic root space U, — Spec Op. We let U,,
be the corresponding quasi-compact adic space (isomorphic to a unit ball) and we let
U2 =]{1}[y, be the tube of the identity element (isomorphic to an increasing union
of balls of radii » < 1). We also let U™ be the analytification of U, (isomorphic to
the affine line).

The following result gives a strong form of the Iwahori decomposition.

Proposition 3.10. Let a1, -+ ,a, be an enumeration of the roots in ®. The
product map

T x HZ/[;z — Iw

is an isomorphism of analytic adic spaces, where U} = Uy, if oy € DT and U =
uo: Zf a; € O,

Qi

Remark 3.11. The existence of a product decomposition T(K) x [JuUyi (K) —
Iw(K) for K a discretely valued field is a consequence of Bruhat-Tits theory [Tit79],
sect. 3.1.1.

Proof. We let Jto be the formal group scheme obtained by completing the group G
along the closed subscheme Bj,. For each root «, we let 4, = Spf Op(T) be the
formal one parameter subgroup and 42 = Spf Or[[T]] be the formal completion of
#, at the point "= 0. We also let T be the formal completion of T along T}.. We
consider the map of formal schemes: T x [J4% — Jw. We claim that this map
is formally étale. Since it is an isomorphism on the associated reduced schemes
because T}, x Hae¢+ Ua,r — By is an isomorphism, we deduce that the map is an
isomorphism. The associated map on the generic fiber (which is the map of the
lemma) is an isomorphism. We are left to prove that the map is formally étale. Let
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k' be a finite field extension of k. Let (t,uq,) € T x [T (K'). Note that us, =1
if a; € . The map on Zariski tangent spaces is given by:
(t(1 + €T), ta,, (1 + €Ua, )1<i<n) > t(1 + €T) [ [ tta, (1 + €U, )
where (T, (Uq,; )1<i<n) € Lie(T}) @i k' @; Lie(U,,) ®x k', and there is an equality:
n+1 n
b1+ [Tt (1€Ua,) = [ty AT T t10) ™) (T)+ S A tt) ™)V )-
i i i i=2 k=i
Therefore, if we identify the tangent space of Tx ]y at (,u,,) and the tangent
space of Jwo at ¢ [ u,, with
Lie(Gk) ® k' = Lie(Ty,) @y k' @; Lie(Uy,) @k K,
the map on tangent spaces is given by the endomorphism:
n+1 n
(T, (Ua i) = A ) )T) + 30 AT ) )V,
i i=2 k=i
Observe that ([T}_; ua, )" € U(K') for all 1 <4 < n. By Chevalley’s commutativ-
ity relations ([Stel6], chapter 6), we know that for any v € U(K’), any o € ® U {0}
and any v € Lie(Gy)a ® k', Ad(u).v = v +w where w € @/, Lie(Gr)or @ K.
A simple inductive argument proves that the map on tangent spaces is an isomor-
phism. [

For any w € MW, we now consider the tube of the Bruhat cell |Cy x[rc=
P\Pwlw, as well as the tube of the Schubert variety | X, x[7, and the tube of
Yo klre. It follows from lemma that X =Yy, k[rc.

3.3.2. The tube of the Buhat cells. We can now give a very precise description of
the tube of the Bruhat cells.

Corollary 3.12. For any w € MW, and for any ordering of the roots in ®, we
have an isomorphism of analytic spaces:

H U, X H U, — 1Curlrc

a€(w—1d—>M)NG+ ag(w—1e—M)NP—
(Uo)acw—10-M + W H Ug,
(e

where the product [ ], uq is taken according to our fized ordering.
Proof. This follows easily from proposition O

We can also consider the analytification of U,,, U3". This open subset of FL
contains |Cy, k7 and we have an isomorphism of analytic spaces:

I ue - ur

ac(w—1@—M)

(ua)QEw—1¢—,M = w Hua
(6%
We now introduce certain quasi-Stein subspaces of U as well as some partial
closures of them. If T is a topological space and S C T' is a subset, we let as usual
S be the closure of S in T'. We will use repeatedly the property that in a spectral
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space, the closure of a pro-constructible set is the set of all its specializations (see
[SchiT], lemma 2.4).

We identify each U, with the unit ball of center 0 and coordinate wu, with its
additive group law (the coordinate u, is well defined up to multiplication by a
unit). For all m € QU{—oo} and all & € ®, we let Uy, = {|.| € UL", |ual| < |p™|}
and U ,,, = Uprsmla . For all m,n € QU {—oo}, we let |Cy k[m,n be the image

of
w H ug,m X H uoz,n — ug;nv
a€(w—1e—M)NG— ac(w=1e—M)Nd+
For all m,n € Q, we let |Cy i[m,» be the image of
w H Z/Ig,m X H Ua,n — ug;na
ac(w=te—M)NP— ac(w=te—M)NP+
we let |Cy k[m.m be the image of
w H Z/l(g,m X H uoz,n — ug;na
ac(w-1e— M) ac(w=1—M)Ne+
and we let |Cy, [m 7 be the image of
w 11 us,, x 11 Uy — U,
ac(wte—M)NG— ac(w=1e—-M)Ne+
Clearly, |Cuw £ [=]Cuw k0.0, |Cuw .k [m.nC]Cuw k| if and only if m, n > 0, and moreover
then we have ]Cw,k[m,n:]cw,k[m,Oﬁ]Cw,k[O,n; ]Cw,k[ﬁ,n:]cw,k[ﬁ,om]cw,k[o,n and
]Cch[m,ﬁ:]Cch[m,Om]Cw,k:[O,ﬁ-
Remark 3.13. In the above formulas, we make the product for any ordering of the
roots in (w 1@ M)N @+ or (wldM)N®~. See [Stel6|, lemma 17 for a justifi-
cation that the order doesn’t matter. We also point out that in our applications to

Shimura varieties the unipotent radical of P is abelian so that the root groups U,
for « € w™'® M commute with each other.

Remark 3.14. For any a € ®, the closure U, is the set of all specializations of
points of U, in U™ (or G). Concretely, U, \ U, consists of a rank two point
whose maximal generalization is the Gauss point of U, and which points towards
oo (if we identify U, with a ball of center 0 and radius 1). Similarly 9 is sp&i ({1}).
Concretely, U2 \ US consists of a rank two point whose maximal generalization is
the Gauss point of U, and which points towards 0.

3.3.3. Orbits of Cells. We can give a more group theoretic description of certain of
the above sets. We introduce some subgroups of G.

For m € Qo we let Gp m (resp. Gum, 9B m: gﬁ,m) for the affinoid subgroup
of G of elements reducing to B (resp. U, B, U) mod p™. We also define GBm =
Um’>mgB,m/7 g(o],m = Um’>mgB,m’~

Then for all m,n € Q>o we let G = G, NG5, In particular we note that
Go,o = Iw. We also let Q}nm = gf’]’m N (]Um.

We would also like to introduce some “partial closures” of these groups. For all
m,n € Q> we let G, = mﬂ ng and glmn = @mgﬁw where the closures
are taken inside G. We note that gm} = spfl(Bk), the closure of Iw in G. Finally
for all m,n € Q> with n > 0 we let G, 7 = Gp ,, ﬂgﬂl and G} o = G0m ﬂ?ﬂ
where again the closures are taken inside G.
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Note that the groups G, n, Gmn, and G, » all have the same rank 1 points.
Moreover they all have Iwahori decompositions:

Proposition 3.15. Let w € W. Then for m,n € Q>o and for G’ one of G
Grom 0T if n >0, Gr = with x € {0, 1} the product map

Tng x [ uy I ui—g

a;Cw— 1o+ a;Cw—1d—

m,n’

is an isomorphism, where if a; € ®T then Urt is Uy m (Tesp. m} if G =
Grrns Gp (resp. G' = G o) while if a; € ® then Ui is U, ,,, (resp. US, ) if
G =Gmns G (resp. G =Gr )

Proof. We give the argument for Gg, and leave the general case to the reader.
Since G5, = sp~'(Bi), and By — w™'ByBjw, it follows that G5, — T x
[ocw 10 Ualacw-15+ Uar We now let g € G5 o (K, KT) for a field K and valua-
tion ring K+ C K. Let mg+ be the maximal ideal of K. By definition, g € G(K™)
and its image g in G(K T /m};) lies in B. Let g = t [T co-10+ Ua [Lncep-1 Ua- We
have § = t]] co-10+ Ta | [ncw-1 Ta and we find that 7, = 1 if o € @~ by unicity
of the decomposition. O

Remark 3.16. For the group Gy o = Iw, the decomposition holds for any ordering
of the root o € ® by proposition [3.15} We don’t know if this property holds for
Jpo for example.

As a consequence we have that for all m,n € Qso, |Cy klmn= P\PwGn ., =
P\PwG, 1> |Cw k[mn= P\PwGmn = P\PwG, , and ifn > 0, ]Cy k[mn= P\PwGmm =
P\ngﬁ%ﬁ
Lemma 3.17. For all m € Z>o and k € Zxq, the groups g}n+k7k, gjn+kk and

1
gm+k k
Proof. We can find a closed embedding G — GL, and a Borel Bgr,, of GL, with
the property that B = G N Bgyr, . Indeed, first consider a faithful representation
of G into GL,, then consider the action of B on the flag variety of Borels of GL,..
This action of a solvable group on a proper scheme must have a fixed point Bgr,,.,
and then B C G N Bgyr,. But then we must have B = G N By, as the later is
a solvable subgroup of G containing B. Therefore, the problem is reduced to the
case of the group GL,. We now consider certain sub-algebras of the algebra of r x r
matrices M2". For all s € Q, we let B(0, s) the (quasi-compact) ball of center 0
and radius s, and B°(0, s) = Uy <sB(0, ") be the “open” ball of radius s (which is a
Stein space). For any m > 0, we let:
Liem Q(S S+)
{(a; ;) € M2(S,5%), a;; € B°(0, [p™|)(S,S1)ifi > j,a; ; € B(0,1)(S,ST)ifi < j},
Llem O(S S+)
{(aij) € M¥™(S,57),a;; € B(0, [p™]) |pm|)(S St)ifi > j,a;; € B(0,1)(S,S5T)ifi < j},
(S,57%)
(S,81)ifi > ja;; € B(0,1)(S,ST)ifi < j}.

are normalized by G, o.

m,

m,0
{(ai ;) € M2(5,5%), a;; € B°(0, [p™])
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We claim that these algebras are stable under the adjoint action of G,, . Since
Lie, o is the Lie algebra of G}, 0> and G, o normalizes gL (0, this case follows easily.
The other cases are elementary to check by hand. A typical element of G} Shk
(resp. G R TSP Gt o k) writes (1+p*g) where g € Lie,, o (resp. Liem o, resp.
Lie,, 5). For h € G0, we have h(1 4+ pFg)h~! = 1+ pFad(h).g. O

Lemma 3.18. Letw € MW. Letm > 0, and let K, C G 0 be a profinite subgroup.
For all k > 1, the sets

1Cuw km+ ki Kp, ]Cw7k[m+k,ka and ]Cw,k[m-s-k,EKp
are a finite disjoint union of translates of the form
1Cw k[mti 6l ]Ow,k[m,khz and respectiveley ]Cw,k[m+k,Eh for h € K.

Proof. We prove the first statement, the others are identical. For h € K, we have
1Cw klmsk b = P\ng exh = P\Pwhgl 4k Dy Lemma ThlS proves
that if for h,h' € K, }Cw,k[m—Q—k,khm}C’w,k[m-ﬁ—k,kh £ 0, then Cw,k[m-i—k,kh =
1Cw.k[m+k.kh'. Therefore, |Cuy k[m+k kK p is a disjoint union. This disjoint union is
finite because Gy,41,1 N K is of finite index in K,. ([l

‘We now consider certain intersections.

Lemma 3.19. Let w € MW. Let m,n € Z>o and let K, be a subgroup of G 0.
Then we have:

1Cw k[m, 0 KpN]Cuw klonKp = [Cuw klm.nKp,
]C [ K ﬂ]C’ [0 ﬁKp = ]Cw,k[mﬁKp)
1Cw. k[, oKpﬂ]C k., Kp = 1CuwklmnKp.

Proof. We only check the first statement as the others are identical. As K, C G 0,
1Cw k[m0Kp =]Cuwklmo. Let © €]Cy klm,0KpN|Cuw.ilonKp. Then, there exists
h e Ky, h €]Cy k[m,0N|Cuw.k[0,n=]Cw,k[mn- The reverse inclusion is trivial. O

3.3.4. Intersections and unions of cells. We prove a few more results concerning
the intersections and unions of various subsets of F£ we have introduced so far.
Lemma 3.20. Let w,w’ € MW. Assume that {(w) < {(w') and w # w'. Then:
(1) [ Xk [N]Yu 1 [= 0,
(2) Xkl Vo[ = 0.
Proof. We prove the first point. Note that | X, x[ = sp™1(Xux) and |V x[=
sp_l(Yw/’k). Thus the first point follows from the fact that X, , N Yy, = 0. We
prove the second point. Since |Y, x| is quasi-compact open, |Y,, i[ is the set of all its

specializations. Therefore, both Y, [ and ]X,, ;[ are stable under generalization.
But they have no common rank one point, again as Xy, N Yy, = 0. ([l

Lemma 3.21. (1) We have |Cyy x| =]Cu, klooC Us®
(2) We have |Cy k[0,—00 ] Xuw k-

(3) We have |Cy k-0 OC] k-

(4) We have Yy, k[ﬁ]Xw,k[:]thk[o

() R[N X k[ =]Cuk

s
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Proof. We begin with the first point. Let Z = FL\ U,, a closed subset. Let Zj be
the special fiber of Z. As Cy 1, C Uy ks, |Cu k[N Z[= 0 and therefore |C,, 1 [C] Zy[¢
and so |Cy x| C]Zk[¢ as ] Zx[¢ is closed. It remains to prove that ]Z;[°C UL". To
see this, we note that FL = U"U]Zy[ is a covering of FL.

We now prove the second point. We observe that w]],c,, 15-vner US" =
Car C Xy, C] Xy x| and since | X, x| is invariant under multiplication by the Iwahori

subgroup,
w 11 U x 11 US C) X k|-
ac(w—1d—M)NP+ ac(w—1d—M)NP—

We check the third point. We observe that w[],c,-1¢-mnp- UG = C" C
X" C]Y, [ and again the conclusion follows because |Y, k[ is invariant under mul-
tiplication by the Iwahori subgroup.

We prove the fourth point. Since |Y,, x[ is quasi-compact, it is constructible, and
therefore |Y,, [ is the set of all specializations of |Yy, [ in FL£. Let 2 € [Yyy [N X i
and let y be the maximal generalization of z in F£. Then y €]Y,, [ﬂ]Xw k=

]Cuw.k[- The subset of |C,, x| consisting of points whose maximal generalization is in
]ka[ is exactly w[],e(p-19-21)n0+ Uy X [Toe(w-19-21)ne- US- This proves that
mﬁ]Xw,k[ is included in that set. The converse inclusion follows easily from
the second and third points. We prove the last point. Since | X, x| = sp™ (X 1)
and Yy, k[= sp™ (Y .x), we deduce that 1Yy, 1[N ] Xy k[ =sp 1 (Cuw k) C ]Cu k[ has
exactly the announced description. O

Lemma 3.22. (1) We have | Xo k[=]Cu klo 51U Yn <w] Xuw k[
(2) We have |Yiy k[=]Cuw,k[5.0U Yw >w] Yur k|-

Proof. We prove the first point and the direct inclusion. We first observe that since
X i is closed, | X, k[ is a finite union of Stein spaces. Therefore X, ; is stable
under specialization. Let x €]X,, x[. If its maximal generalization is in ]X,, x| for
some w’ < w, then actually z €] X, r[. Otherwise, x € |Cy 1[N Xw k[=|Cw ko5 bY
lemma [3.211 The converse inclusion inclusion follows from the same lemma. We
prove the second point. We note that |Y, x[=sp~! (Y. x) and therefore,

]Yw,k [: Sp71 (Cw,k)ﬂ]yw,k [U Uw’Zw}Y

By lemma P~ (Cuw k)Y k[C]Cuw k50 The reverse inclusion follows also
from the lemma. (]

3.4. Dynamics. Let v : F — R U {400} be the p-adic valuation normalized by
v(p) = 1. We consider certain sub-semigroups of T'(F). We let TT(F) = {t €
T(F),v(a(t)) > 0, Va € ®F}, TTH(F) = {t € T(F),v(a(t)) > 0, Va € &1},
T-(F)={t € T(F),v(a(t)) <0, Va € T}, T (F) = {t € T(F) v(a(t)) <

0, Vo€ o},
Lemma 3.23. (1) Ift € TH(F), | Xwk[t C]Xuw k] for allw e MW.
(2) Ift e T~ (F), Y[t C]Y3 [forallwe My

Proof. By [Hub93|, corollary 4.2, we reduce to check the inclusions on rank 1 points.
For the first point, it suffices therefore to prove that |Cy k[t C] Xy k[ Let wbu €
JCwi[ with b € B and u € [],cq- US. We find that wbut = wt™'btt~ ut. Now,
Ad(t "u € [, cqp- U, while Ad(t™ 1)b € B, In particular wAd(t~1)b € X, C

(Rl
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| Xw.k7c. Therefore wAd(t~')bAd(t~")u €] X, x[. For the second point, it suffices
to prove that |Cy & [.t €]V &[. Let wub €]Cyy 1| with b € Band u € U°. We find that
wubt = wt— utt='bt. Now, Ad(t~")b € B, while Ad(t~")u € B"". In particular,
wAd(t Yu € XY C]Y, k[7z. Therefore wAd(t~HuAd(t1)b €]Ye k[ O

Fort € TT*(F), we define min(t) = min,cqe+ v(a(t)) and max(t) = max,eq+ v(a(t)).
For t € T~ (F), we let min(¢) = mingeq- v(a(t)) and max(t) = max,ce- v(a(t)).
We note that min(t) > 0 and that min(¢) = min(¢t~!) and max(¢) = max(t~!) for
teTHH(F).

Lemma 3.24. (1) Lett € TTH(F). For allw € MW, m,n € Q, we have
}Cw,k[ermax(t),nfmin(t) - ]Cw,k:[m,n-t g]cw,k:[mntmin(t),nfmax(t)

]Cw,k[m,nnt g]cw,k[

]Cw,k:[m,ﬁ-t g]cw k:[

Rlm+min(t),n—max(t)"

N

vk[m—f—max(t),n—min(t) m-+min(t),n—max(t)’

Q8

N

ok [ermax(t),nfmin(t)

(2) Lett € T~—(F). For allw € MW and m,n € Q, we have

1Cw k[m—mint),ntmaxt) S ]Cuw,klmn-t C]Cuw k[m—max(t),n+min(t)
}Cw7k[m’n+max(t) C Cuwklmnt Q]Cw,k[m,n+min(t)7
}vak[m—min(t),n—&-miax(t) C Cuwilmmt Q]Cw,k[m_max(t),m.

Proof. Easy and left to the reader. O

3.5. Dynamics of correspondences.

3.5.1. Certain compact open subgroups. We now assume that the group Gp =
G Xspec 0p Opec F is defined over Q, and quasi-split. Therefore, we have a re-
ductive group Gg, with borel Bg,. The group Gg, splits over the extension F' of
Qp. Moreover, we have a reductive model G' of G over Spec Op. The Borel B,
base changes to a Borel Brp of Gp which extends to a Borel B of GG. Simlarly,
we have a maximal torus T@P C B@p of GQP, and its base change Tr extends to a
maximal (split) torus of G. We will often drop the subscripts Q, or F' when the
context is clear.

Remark 3.25. Starting from the next section, we will consider a Shimura datum
(G, X), where G is a reductive group over Q. The group Gg, that we consider here
will be the base change to Q,, of the group G which is part of the Shimura datum.
We appologize for this slightly inconsistant notation.

We let T(Z,) be the maximal compact subgroup of T(Q,). Note that T'(Z,) =
T(Or) NT(Q,). We have an exact sequence 0 — O — F* = Q and tensoring
with X, (T") and taking Galois invariants, we obtain the sequence: 0 — T(Z,) —
T(Qp) = X,(T%) ® Q where T stands for the maximal split torus inside 7" and
X, (T) for its co-character group. The image of T(Q,) in X, (T?) ®Q is easily seen
to be a Z-lattice.

We let T+ = T(Q,) N T*(F), T+ = T(Q,) N T+ (F), T~ = T(Q,) N T~ (),
and 77~ = T(Q,) N T~ (F). These are monoids in T'(Q,) and one proves easily
that they generate T(Q,) (since there are regular elements in the maximal split
torus T%).
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We will now consider certain compact open subgroups of G(Op). For all m €
Zso, welet K, ,, € G(OF) be the preimage of B(Or /w™) under the map G(Or) —
G(Op/w™). We observe that K,y = G(Op) and K, is the Iwahori subgroup of
G(Op) with respect to the Borel B(Op). For b € Z>q we let I?pi,,b C G(OF)
be the preimage of U(Op/w®) under the map G(Of) — G(Op/w’). Finally for
m>b>0welet Kymp=KpmNKypp Inother words K, 5 is the subgroup of
G(Or) of elements whose reduction mod w™ lies in B, and whose reduction mod
w? lies in U. We note that we have f(p,m,b C Gm—1,0-

For m > b > 0 and m > 0, the groups K .m,b have an Iwahori decomposition, in
the sense that the product map

Em X Tb X U(OF) — Kp,m,b

is a bijection, where T, = ker(T(Op) — T(Op/w’OF)) and U,, = ker(U(Op) —
U(OF /=), N
We now let K ., = G(Qp)NEKp mp. This is a compact open subgroup of G(Q,).
For m > b > 0 and m > 0, the groups K, ,, » have an Iwahori decomposition, in
the sense that the product map

Uy x Ty x U(Zyp) — Kpmop

is a bijection, where T, = T, N T(Q,) and U, = U N U(Q,), U(Zy) = U(OF) N
U(Qp)-

Remark 3.26. Let L be a local field with ring of integers Oy, maximal ideal me,
and finite residue field. Let H be an unramified reductive group over Spec L.
Then H admits a quasi-split reductive model H — Spec Op. Let B — H be
a Borel subgroup. The Iwahori subgroup of G(L) attached to B is by definition
the subgroup of H(Op) of elements with reduction in B(Oy/mep, ). We also note
that the Iwahori subgroups of G(L) are all conjugated. If we don’t assume that H
is unramified (and therefore to have a reductive model over Spec Or), there is a
notion of Iwahori subgroup defined using Bruhat-Tits buildings. See the appendix
of [PROS|. This definition is rather involved. In the situation that H = Resz/,; H’
for a finite extension L’ of L and H' is an unramified reductive group over Spec L/,
then an Iwahori of H(L) is the same thing as an Iwahori of H'(L’). This follows
from the natural identification between the Bruhat-Tits buildings of H and H' (see
[Pra01], page 172 for example). Going back to our situation, it is not clear to us
wether the group K, 10 is always an Iwahori subgroup of G(Q,). In the important
case that G = Resg /g, G1 where G is an unramified reductive group over Spec K
and K is a finite extension of Q,, the group Kj 1 is indeed an Iwahori by the
above discussion. In the general case, we found it convenient to work with K, 1 o,
and the problem of deciding wether K, 1 o is an Iwahori or not has no influence on
the results of this paper.

3.5.2. Change of group. In this paragraph we make a short digression that will be
useful when we deal with abelian type Shimura varieties. Assume that we have
an epimorphism of reductive groups Gg, — G(’@p with central kernel. This implies

that G and G’ have the same adjoint group G®. We assume that these group
split over F' and we fix models over Op, that we denote G and G’ together with a
map G — G’ over Spec OF, extending the map Gp — G'%». We also assume that
G, and Gbp are quasi split and pick Borel B and B’ defined over Q, such that
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B — B’. We can therefore deﬁne compact open subgroups K, ., C G(Q,) and
K, .5 € G'(Qp) as in section

Lemma 3.27. The groups Ky, and K, have the same image in G**(Q,).

Proof. This follows from the Iwahori decomposition of these groups. Since Gg, —
Gpr is an epimorphism with central kernel, the induced map on root groups are
isomorphisms. ([l

3.5.3. Hecke algebras. Welet H, . be the Hecke algebras Z[Kp 1 s \G(Qp) / Kp.m.b)-
We denote by 7—[+ m.p the sub-algebra generated by the double cosets (K pm bt K p.m ]

with ¢ € T and by H1F , the ideal generated by [Kpm ptKpmp] with t € THF.
We define similarly ’Hp’m’b and My

Lemma 3.28. For allm > b > 0 with m > 0, the map t — [K}, p ptKp m ] induces
isomorphisms Z[T* /Ty] — H.' . and Z[T~ [Ty] — H

p,m,b"

Proof. This is [Cag|, lem. 4.1.5. (Alternatively it can be deduced from lemma
below.) O

3.5.4. Action of correspondences on the flag variety. Let K, C Go(Q,) be a com-
pact open subgroup.

We consider the quotient space FL/K,. This space carries an action by corre-
spondences of double cosets K,gK, for g € Go(Q,). Namely, given 2K, € FL/ K,
we let K, .K,gK, = {zvugK,, v € K,/(gK,g7' N K,), @ € K, lifts u}.

We now consider a compact open K, = K, for m’ > b >0 and m’ > 0.
Lemma 3.29. Let w € MWV.

(1) Lett € T*. The sequence {| Xy k[.(KptKp)™ b0 is nested.
(2) Lett € T—. The sequence {|Yy k[.(KptK,)™" tn>0 s nested.
(3) Lett € Tt and m > 0. We have

]vak [m max(t),—m min(t) 'Kp <

}Xw,k[ (K tK. ) ]Cw k[m min(t), —mmax(t U Uw <w w’ k
(4) Lett € T~ andn > 0. We have

]vak' [771 min(t),n max(t) Kp <

1Yo o[- (Bt Kp)™ C1C0w k[t min() K U Y=Y,
(5) Lett e T*t. For all m,n € Z>o,
]Xw,k[‘(Kpth)m ]Y [ (K t_lK ) ]Cw k[mmln(t) OK O]Cw k[o nmm(t)KP'

6) Lett € T——. For all m,n € Z>o,
X k[ (Kpt T Kp)™ N Yo i [ (Bt Kp)™ ClCu i by 0o Ko Cuoke 6,1 minge) K-

Proof. We observe that | Xy, x[.(KptK,)™ =Xy x[t" K, and |Yy x[ (KptK, )m =
Yo k[t K, using the very definition of the action, and also noting that (KptK,)™
K,t™ K, by lemma [3.28] Therefore, the first and second points follow from lemma
2. 29!
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We note that ]Xw,k' [:]Cw,k[o,ﬁu Uw/<w]X'w’,k[ and ]Yw,k [:}ka [ﬁOU Uw’>w]Yw/,k[
by lemma [3:22] The third and fourth point follow from this, the first two points,
and lemma

We know that | X. &[] Yw,k[ =]Cuw,klo5 by lemma Moreover, |Cy k [y 5N Xw k[=
0 if w’ # w and |Cy ko 5N Yo k[= 0 if ' # w (because |Cy, k[ 5, | Xuw k[ and [V,
are all stable under generalization and they have no common rank one point).
Therefore,

]Xw,k[-(Kpth)m n ]Yw,k [~(Kpt71Kp)n -
]Cw,k[o,ﬁm]cw,k[ Kpmcw

K, C

- [.
m min(¢),—m max(t) kRl p max(t—1),n min(t—1)"

1Cw klm min(t),ﬁKpn]Cw:k[Qn min(t)Kp'
The proof of the last point is similar.

4. SHIMURA VARIETIES

Let (G, X) be a Shimura datum. Thus X is a G(R)-conjugacy class of homo-
morphism h : Res¢/rG, — Gr satisfying a list of familiar axioms ([Del79], section
2.1):

(1) For all h € X, the Hodge structure on ggr has weight (1,—1), (0,0) and
(-1,1).

(2) The involution Ad(h(i)) is a Cartan involution on Gg<.

(3) The group G has no compact factor defined over Q.

Via base change to C, we have (Resc/rG.)c = G x Gy, (given by z = (2, 2))
and projection to the first factor induces a co-character u : G,,, — G¢. Associated to
1 we have two opposite parabolic subgroups Pjtd = {g € G¢, lim;—, oo Ad(u(t))g exists}
and P, = {g € Gc¢,lim;—,0 Ad(p(t))g exists}. We also let M, be the Levi quotient
of P, and Pstd. We let FLg,‘L = GC/Pstd and FLg, = P,\Gc be the Flag vari-
eties. Let E be the reflex field, which is the field of definition of the conjugacy class
of . The two flag varieties are defined over Spec E.

Let K C G(Ay) be a neat compact open subgroup and let Sk (C) = G(Q)\X x
G(Ay)/K be the corresponding Shimura variety. It has a canonical model Sk —
Spec E [Mil90]. In the rest of this paper, all the compact open subgroups K C
G(Ay) are assumed to be neat, so we do not always repeat this assumption.

The most fundamental Shimura data are the Siegel data (GSpy,,H,) for all
g € Z>1, where H, is the Siegel (upper and lower) half space of matrices M €
M, (C) such that ‘M = M and Im(M) is definite. The corresponding Shimura
varieties parametrize abelian varieties of dimension g, with a polarization and level
structure prescribed by K. A Shimura datum (G, X) is of Hodge type if it admits
an embedding in a Siegel datum. All PEL Shimura data are of Hodge type. A
Shimura datum (G, X) is of abelian type if there exists a datum (G, X;) of Hodge
type and a central isogeny G — G'°" which induces an isomorphism of connected
Shimura datum (G, X*) = (G39, X;) where X7 is is a connected component of
X (and similarly X;" is a connected component of X;).

FEzample 4.1. Let L be a totally real field extension of Q. The datum (ReSL/QGSp2g7 HE,L:Q])
is of abelian type. We call it a symplectic datum. In the case g = 1, the corre-
sponding Shimura varieties are the Hilbert modular varieties.
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We let S — Spec E be the minimal compactification of Si. Depending on the
auxiliary choice of a projective cone decomposition ¥, we let Sﬁ?,’"z — Spec E be
the toroidal compactification of Sk corresponding to X. The boundary Dk s =
S}?TE \ Sk is a Cartier divisor. The cone decompositions ¥ are partially ordered
by inclusion, and any two cone decompositions admits a common refinement. The
cone decompositions ¥ which are such that Si%; is a projective smooth scheme are
cofinal among all cone decompositions, and we usually choose them this way. We
refer to [Pin90] for the construction of these compactifications.

4.1. Automorphic vector bundles and their cohomology.

4.1.1. Automorphic vector bundles. We choose a field extension F' of E' which splits
G and we work over F' in this section. In most of this paper, F' will be a finite
extension of @, but this is not necessary for the moment. We can pick a rep-
resentative of p that is defined over F, and choose a maximal split torus 7" with
w(Gy) CT C M,.

We let Z;(G) be the largest subtorus of the center Z(G) which is R-split but
contains no Q-split subtorus. We let G¢ = G/Z(G), and define Mg, T¢, Pg, Pg
and P,j’Std similarly.

Remark 4.2. In the Hodge type case, Zs(G) = {1}. For the symplectic datum
(Resr /oGSpy, ’;’-lEJL:Q])7 Z4(@) is the kernel of the norm Resy, oG — G-

Let Rep(M ﬁ) be the category of finite dimensional algebraic representations of
the reductive group M, on F-vector spaces.
By [Mil90], thm. 5.1 and [Har89], thm. 4.2 we have a right Mg-torsor Myr over

Ster k,,» and it corresponds to a functor:
Rep(M;) — VB(S¥%)
V = VK,E
where V B (S}?TE) is the category of locally free sheaves of finite rank over Sﬁ?fz.
This functor is compatible in a natural way with change of level K and of cone

decompositions 3. The locally free sheaves in the essential image of this functor
are called automorphic vector bundles. They carry an equivariant action of G(Ay).

Remark 4.3. We recall the description of Mgr X gtor_ Sk (C) as a complex analytic
space. First, we have the Borel embedding § : X — FL4 (C) = G°(C)/P5*(C)
which sends h € X to the parabolic stabilizing the Hodge filtration. The Borel
embedding is equivariant for the left action of G(R). We have a the canonical map
G°(C) — FLgfL (C). This map is a right P;**(C)-torsor and is G(C)-equivariant
for the left action. Similarly, the canonical map G°(C)/U pe.qta(C) — FLZ%((C) is
f ;
a right M (C)-torsor. Then we have:

Mar X sizr, Sx(C) = G@Q\ (B~ (G(C)/Upgna(C)) x Gllg)/ K.

Remark 4.4. We give the description of Myg for the Siegel Shimura datum (GSp,,, H)-
Let us first work over Sk . Let w4 be the co-normal sheaf of the universal abelian
scheme A — Sk along its unit section and Lie(A) be its dual. The torsor Myg
parametrizes trivializations 1) © o : 04 @ 0% — Lie(A) ®war, such that under
the isomorphism Lie(A)Y = w4: given by the polarization, we have 1, = c(¢5!)*
for a unit ¢ € ﬁSX.K. The torsor Myr extends to a Zariski torsor that we keep
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denoting Mg over S;?TZ. Indeed, A can be extended to a semi-abelian scheme Ay
over S, and we can let Myp be the torsor of trivializations of Lie(As) ® wat ,
compatible, up to a unit, with the polarization.

We now make the construction of automorphic vector bundles explicit, and label
them using weights. We begin by making a choice of positive roots of T: we first
choose a set of compact positive roots @ which lie in m,, the Lie algebra of M,,.
We then choose the non-compact positive roots ;. to lie in g/pffd where pst¢ is
the Lie algebra of P5'®. We let &+ = &F [] ;)

m
nc*

Remark 4.5. This choice implies that the Borel corresponding to @ is included in
P,, or equivalently that the cocharacter p of the Shimura datum is dominant. In
section [3] we fixed a parabolic P of G containing a Borel B. In the applications to
Shimura varieties, P will be P,. Therefore our convention is also compatible with
the choice made in section [3

We let X*(T)M«* be the cone of characters of T which are dominant for
¢, We label irreducible representations of M, by their highest weight x €
X*(T)Mw*. An explicit construction of the highest weight s representation V,
is as follows. Let wg,pr be the longest element of the Weyl group of M,,. For any
k € X*(T)Mut we consider the space V,; of functions f : M, — A! such that
f(mb) = (wo,pk)(b~1) f(m) for all m € M, and b € BN M,. The action of M, on
itself via left translation induces a left action on Vi, i.e. (m’- f)(m) = f(m'~ " (m)).
The irreducible representations of M are the irreducible representations of M,
labelled by dominant characters & of T¢. We let X*(7T¢)™«+ be the cone of these
characters.

We denote by V, kx the locally free sheaf associated to the irreducible rep-
resentation of highest weight x of M7. Concretely, we consider the right torsor
g: Mgr — S}?’TE and we let V,; xx be the subsheaf of g,0h,,, of sections f(m)
such that f(mb) = wo,pk(b~1)f(m) for all b € BN M,. We will often abbreviate
Vi, k5 to V.

We also introduce the subsheaf Vi k »(—Dk,x) where Dk sy, — S}?,Tz is the
Cartier divisor of the boundary Sﬁ(oj"z \ Sk,». Again, we often abbreviate this sheaf
to V.(—D).

4.1.2. The cohomology of automorphic vector bundles. We let mg s : S}?’TZ — S%
be the projection from toroidal to minimal compactification.

Theorem 4.6. We have R (7 5)« Vi k2 (—nDg x) = 0 for alli > 0 and alln > 1.

Proof. In the PEL case (and for n = 1), this is [Lanl7], thm. 8.6. We give
an argument which follows closely [AIP15] and which is also similar to loc cit.

Let € Sg. We write Si%,  for the formal completion of S’y along W,}}Z(x).

By the theorem on formal functions ([Stal3|, Tag O207) It suffices to prove that
HZ(S}?'Z Viks(—nDgx)) =0for all i >0 and n > 1.

We may now use the description of S/f(ix in terms of the local charts, following
the notations of [MP19]. The argument is mostly about torus embedding, so we do
not need to explain in detail the structure of the toroidal compactification, but just
recall what is strictly necessary. Suppose that x belongs to a boundary component
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indexed by a cusp label representative ®. There is a tower of spaces:

Ska(Qa, Da) % Sky(Qg, Da) — Sky(Gaon, Dog)

where Sg, (Qa, Do) — Sk, (Qg, Do) is a torsor under a torus Ex(®). There is

a locally free sheaf V, x over Sk, (Qgp, Da). There is a twisted torus embedding
Sk.(Qs,Ds) — Sk, (Qae, Do, X (P)) which depends on the choice of X. There

is an arithmetic group Ag(®) acting on X*(Ex(®)) and on Sk, (Qe,Ds) —
SK(I)(Q@,Dq),Z((I))). Let g : SK(I)(Q‘@,D(I),Z((D)) — SK(I)(Q@,Dq)). The arith-

metic group also acts on g*V, k. We have a Ag(®)-invariant closed subscheme
Zr,(Qao,D3,3(P)) = Sk, (Qa, Do, X(P)). There is a finite morphism Sk, (Go b, Do.n) —
S’ whose image contains z. There is a series of morphisms:

ZK@(Q(I)aD‘:I)a E(Q)) — Sch (@@75¢‘) - SK@(G{),}L?D{),}L)'

We let Zk, (Qa, Do, 2(P)), be the closed subspace equal to the inverse image of
2. The main result on the description of toroidal compactifications states that:

_—z — Zr 4 (Qa,Da,5(P))s
S ~ Ag(P)\(Sky (Qe, Do, B(®))  ©
Moreover, the sheaf g*V,, x on Sk, (Qa, Do, X(P)) descends to

— Zkg (Qa,D3,5(P))x
Ak (P)\(Sks(Qa, Do, X(®P)) )

G We let D be the boundary divisor %, \ Sk. Un-
K, ’

der the isomorphism above, it corresponds to the divisor Dy = S Ko (Qa, Do, X(P))\
Sks(Qa; D).

There is a divisor D’ on S}?’E which has exactly the same support as D and
such that Ogror (—=D’) is ample relatively to the minimal compactification. It cor-
responds to a divisor D} on Sk, (Qe, Do, X(®)).

We will prove the following statement: for any C € Z~(, there exists s > C, a
finite morphism -

and identifies with V,; k x|

P S}g& — S}g’%
such that ¥*V, k » = Vi k,» and we have a split injection 0(—nD) — ¢, 0(—sD").
This implies the theorem, as we deduce that for all ¢ > 0, HZ(S’%’TE Vi i, n(—nD))

is a direct factor of Hi(Sﬁ(OTEm,VKyK,g(st’)). Taking C' large enough, this last
group vanishes. We now prbve the claim about the existence of 1. Our proof fol-
lows [AIP15], p. 679. We will construct everything on Sk, (Qo, Do, X(®P)). For
any integer ¢, the multiplication by ¢-map on the torus Ex (®) induces a finite mor-
phism vy : Sk, (Qa, Do, X(P)) — Sk, (Qs, Dg, X(P)) which is Ag (P) equivariant
and for which ¥;3*V, k = 7"V« k. The morphisms 1), induces a finite morphism
of S}?j"zw. We have Dj = 3~ cx(gy(1) @pDp where X(®)(1) is the set of one dimen-
sional faces in X(®) and Do = }_, cxy(g)(1) Dp- Since Dy is Ak (®)-equivariant and
Y(®)(1)/A(P) is finite, we deduce that for any s > 1, there exists £ such that
0 < sa, < {. It follows that the round-down of the Q-divisor —(~1D} is —Dy. We
deduce from [CLS11], lem. 9.3.4 that &(—Dg) — (1¢)+0(—sD}) is a split injection.
Pulling back this morphism by ,,, we deduce that &(—nDg) — (¢¢)O(—snDy)
is a split injection. [
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We let g g/ 5 ¢ }g”"z — S}g,’”z, be the map associated to a change of level
(for K/ C K) and cone decomposition.

Theorem 4.7. We have 1%z (’/TK.,K/.,E,E’)*VK,K,E =0 and RZ (WK,K’,E,E/)*VH,K,E(_DK,E) =
0 for all i > 0. Moreover if K' C K is normal then we have

(R(mx 0 3.5 ) Ve re,2) K =

o K1, 5
and )
(R(7x, k' 5.5 ) Ve, 5 (—Dr ) =V k2 (—Dier x).

Proof. This is easily extracted from [Har90b], section 2 (look in particular at propo-
sition 2.4 and proposition 2.6 and their proofs). In the PEL case, this is explicitely
[Lan17], prop. 7.5. O

In particular from the case that K = K’ we deduce that the cohomologies
RI(S¥s, Vi k.52) and RT (S, Vi k 2(—Dk 1)) do not depend on 3.
We also recall that the maps 7k k' x s/ have fundamental classes in the sense

of [FPI9| section 2.3. Namely we have maps Ogror — 7TIK-7K/72’26’S;?/TE, and

ﬁ’s?)g(fDKg) — W%,K/,z,z:ﬁs;g,fz, (=Dg x) or equivalently by adjunction trace

maps R(mx k' .5 )+ Oster, = (T k72,5 )« Oser, = Ogtor  and R(mk k7 2,5)«(Osper, (—Dk x)) =
(WK,K’,Z,E/)*(ﬁS?f‘E (—DK;;)) — ﬁsi?f.z/ (_DK/,E’)y both of which extend the trace

map for the finite étale morphism g g+ : Sk — Sk-.

4.2. Action of the Hecke algebra.

4.2.1. Action of Hecke correspondences on cohomology. Let K1, Ko C G(Ay) be
open compact subgroups, and let g € G(Ay). To this data we associate a Hecke
correspondence

SKlﬂngg’l

% K
SK2 SKI

where p; is the forgetful map corresponding to the inclusion K; N gKsg~! C K,
and po is the composition of the action map [g] : Sk, ngr,9-1 — Sg-1k,gnK, and
the forgetful map corresponding to the inclusion ¢ 7' K19 N Ky C Ko.

For any weight k € X*(T¢)™x% we have a cohomological correspondence (p1)xp3 Ve 1, —
V.. k,. This is obtained by combining the trace map tr,, : (pl)*OSKlﬁngg—l —
Osy, for the finite étale map p; with the isomorphism p3V;; k, ~ piVx k,, which
is itself composed of the isomorphism pi Vi i, ~ Vi k,ngK,e—1 and the similar iso-
morphism for the forgetful map S;-1x,gnx, — Sk,, as well as the action map
[9]*])%,9‘11(1901(2 = Vi, KingKag—1-

One readily verifies that the cohomological correspondence ((Sk,ngr,g-1>P1:P2), (P1)+P5 Vi, ks —
V.. K, ) only depends on the double coset K7gKs, up to canonical isomorphism.

Now for suitable choices of cone decomposition we have a diagram

Stor
KingKeg~1,2"

tor tor
SK27E/ SKl,Z
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and we claim that our cohomological correspondence on the interior extends to a co-
homological correspondence R(p1)«p5 Ve k5,50 = (P1)xP5 Vi, Ko, 50 — Vi iy 5 as well
as a cuspidal version R(p1)«piVs k0.5 (—Drysr) = (p1)«P5 Vi ko5 (— Dy 5v) —
Vi i, 57(—Dk, 5). We have already discussed the extensions of the trace map in
the previous section. As for the action map, it also induces an isomorphism of
canonical extensions p3V,. K, s — P1Vk,Kk,,» as well as a morphism of subsheaves
P5 (Vi k5, 5(=Drcz50)) = (01Vi k1, 2) (= Diyngrag—1,57)-

Finally these cohomological correspondences induces maps on cohomology in the
usual way, namely we denote by [K;gK>] the composition

t t
RI(SK; sy Vi, ko, s) = RE(SE g iy -1 50 P2 Vis K 3v) =

RE(SR 5, R(01)+05 Vi o 50) = T(SE 5, Vi1 3)

where the first map is p5 and the last map uses the cohomological correspondence.
We have a similar definition for cuspidal cohomology.

4.2.2. Composition of Hecke correspondences. Let us briefly explain the point of
this section. We have defined an action of individual Hecke operators on coherent
cohomology, and we would like to show that this actually gives an action of the
Hecke algebra. The standard proof (see [Har90b, Prop. 2.6]) is to pass to a limit
over all K to obtain a representation of G(Ay), and then use the purely group
theoretic fact that Hecke algebras act on its invariants. However in this paper we
will also study coherent cohomology with support conditions which are not G(Q))
invariant, and so we no longer expect an action of the full Hecke algebra, but
only of certain Hecke operators which preserve the support conditions in a suitable
sense. We would still like to know that these Hecke operators compose according
to relations in the abstract Hecke algebra.

For this reason we develop a different approach to composition of Hecke oper-
ators, by directly studying the geometric composition of Hecke correspondences.
This material is presumably well known but we lack a reference (see [FC90}, VII §3]
for a closely related discussion.)

We recall the formalism of double coset multiplication. Fix a Haar measure on
G(Ay) and let C°(G(Af),R) be the Hecke algebra with its convolution product.
For K1, K; C G(Ay) we consider the free group Z[K1\G(A)/K>] and we write the
basis elements as [K71gK>]. We have an embedding ik, k, : Z[K1\G(Ay)/K3] —

C>®(G(Ay),R) which sends [K;gKs] to ————1,,x,, where 1k, x, de-
vol(K1)vol(K2)

notes the characteristic function of the double coset K;gKs.
For K1, Ko, K3 C G(Ay) open compact, there is a product map

ZIKANG(Af) /K] X ZIKIN\G(Af) /K] = ZIK\G(Af) /K]
which can be defined by
ircy K5 ([K19 K] [Kah K3)) = i, Kk, ([K19K2]) * ik, 1y ([K2h K3))
To see that the right hand side is in the image of ik, x, note that
(1 ky gk * Lonk, ) () = vol(K1gK2 N rK3h ' K>)

is an integer multiple of vol(K3). We also note that this definition is independent
of the choice of Haar measure.
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It follows from the definition that double coset multiplication is associative and
satisfies
([K19K:][KohK])" = [KahK3]' [KigKo)'
where the transpose map (—)' : Z[K1\G(Ay)/Ky] — Z[K2\G(A)/ K] is defined by
[K19K>]! = [K2g~*K1]. This corresponds to transposes of Hecke correspondences.
We now give a formula for double coset multiplication which is closely related
to geometric composition of Hecke correspondences.

Proposition 4.8. Let ky,...,k, € Ko be a set of representatives for the double
cosets (Ko N g K19)\K2/(Ks N hK3h™1). Then we have

n

[K19K5][KohKs] = Z (k) [ Ky gkihIKs]

1=

where C(k’l) = [gilKlg n (khh)Kg(klh)il : gilKlg NKoN (klh)Kg(kvh)il]

Proof. We first note that for z,y € G(Af) we have 1k, x 1,x, = vol(z 'K 2 N
ngy’l)llest. Decomposing K;gK>s into right K; cosets and KohK3 into left
K3 cosets we have

1k gr, * Lionis = Z vol(z ™' K1z Ny Ksy ™)1k, wyic,-

z€K1\K19K>
yGthKg/Kg

—_

Now note that the terms of this sum are constant in K5 orbits, for the action
k- (Kiz,yK3) = (Ki2k~' kyK3). We have a bijection
(K2 Mg 'K19)\K2/(Ks NhEK3h™") = Ko\ ((K1\K19K>) x (K2hK3/K3))
sending the double coset of k to the orbit of (K;g,khKs3). Moreover the stabilizer
of this orbit is Ko N g~ K19 N (kh)K3(kh)~!. Tt follows that
" vol(Ks)vol(g~ K19 N (kih) K3(k:h) 1)

1 1 - 1K, ohshKs -
KigKs % LEh Ky ; vol(K3 N g~ 'K1g N (kih) K3 (kih) 1)~ Srokihfs

which translated back into double coset multiplication gives the proposition. (I

Suppose we have K, K>, K3 C G(Ay) open compact subgroups and g,h €
G(Ay). We have a diagram of correspondences

SKanhKsh—1 SKingKag-1
SN TN
SK3 SKz SKI

where the middle diamond is cartesian. We denote s; = p1r1, S2 = @ors.

It is not true in general that the correspondence (C, sy, s2) is isomorphic to a
disjoint union of Hecke correspondences. However this is almost the case in a way
we now explain.

We first construct another correspondence (C’, s}, s5) between Sk, and Sg,. Let
ki,...,k, be as in proposition Now let C" = [, Sk,ngiag—1n(gkih)Ks(gksh) 1>
let s} : C" — Sk, be the forgetful map on each component, and let s} : C' — Sk,
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be the action map [gk;h] followed by the forgetful map. Then we note that while
the components of C’ are not necessarily Hecke correspondences themselves, we

nonetheless have commutative diagrams

SKlﬂgKggflﬁ(gkih)Kg(gk,yh)*l

|

SKlﬂ(gkih)Ka(gkq;h)*l

L T

SK3 SK1

where the vertical arrow and rightward arrows are forgetful maps and the leftward
arrows are the action maps for [gk;h] followed by forgetful maps. In particular the
bottom correspondence is exactly the Hecke correspondence corresponding to the
double coset Kygk;hK3.

Proposition 4.9. There is an isomorphism of correspondences (C, s1, s2) =~ (C', s, s5).
We will use the following group theoretic lemma.

Lemma 4.10. Let K be a group and Hi, Hy C K subgroups. Let X be a right
K-torsor. Then there is a bijection

11 X/gHig"'NHy, — X/H x X/H,
HygH>eH\K/H>

z(gH1g~ ' NHy) + (zgHy, xH>)

Proof of proposition[{.9 We recall that a point of the Shimura variety Sx over
a connected locally noetherian base is some data which is independent of K (an
isogeny class of abelian varieties with Hodge tensors) to which one associates a
right G(A)-torsor, and a K level structure is just a K orbit in this G(A)-torsor.
Moreover for any K’ C K the forgetful map Sk — Sk at the level of points sends
the K'-orbit to the K-orbit generated by it, and the action map [g] : Sk — Sy-1x,
is given by right multiplication by g.

With this observation the proof of the proposition proceeds formally. We can
consider a slightly expanded diagram.

/\\
/

SKgr‘nthh 1 g~ K1gNK, <7 SKlﬂngg

TN |

SK3 SKI

Here all three quadrilaterals are Cartesian. We can compute C” using lemma
Indeed giving a point of C” lying over a point of Sk, is the same as giving a pair
of an Hy = Ky NhKsh™! and Hy = ¢ ' K9 N K> orbit inside a K = Ky-torsor X.
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We deduce from lemma [£.10] an isomorphism

n

i
C" ~ H Sg*1KlgﬁK2ﬂ(kih)K3(kih)*1
i=1

where on each factor, the map to S;-1x, 4nk, is the forgetful map, while the map
to Sk,nnisn—1 is the action map [k;| followed by the forgetful map. Then the
isomorphism C ~ (' is obtained as the composition

[ - 9!
¢ il " — H 8971KlngZQ(k'ih)K3(kih)71 e

i=1

Moreover from the descriptions of the maps out of C” above one immediately
deduces the compatibility between s1, s} and sa, s5. O

The following proposition is readily deduced from [Har90b, Prop. 2.6], but we
give an alternative proof which will also work for cohomology with support.

Proposition 4.11. We have [K1gK>3] o [KohK3| = [K19Ks][K2hK3) as maps
RF(S?;ZN, Vﬁ,Ks,E”) — RF(S?I,E7 VK,Kl,Z)'

Proof. We can choose toroidal compactifications of all the Shimura varieties occur-
ring in this section: Sk,, i =1,2,3, Sk, ngK,g-1:SKanhKsh—1y SKiN(gksh)Ks(gkih)~1>
SKingKag—1n(gk:ih)Ks(gksh)~1 SO that all the diagrams appearing above extend to
the compactifications (we will not be particularly consistant or careful with our
labelling of the various cone decompositions in this argument, and they will be
denoted by X, where * is an index). In particular we obtain a compactification
Ct°r of the correspondence C' which is isomorphic to a disjoint union of toroidal
compactifications of Shimura varieties. Moreover using this description, we can
construct cohomological correspondences over C*°" as in section using the ac-
tion maps for gk;h. We first claim that this cohomological correspondence acts on
cohomology by the linear combination of Hecke operators on the right hand side of
the formula in proposition
Consider a commutative diagram

Stor
K1mnggflﬁ(gkih)K3(gk‘ih)7l,21

tor Stor
K3 ,23 Kl 724

We claim that the following diagram commutes (where the vertical map is in-
duced by the adjunction Id = c,c*, the other maps are given by the cohomological
correspondence, and c¢(k;) is the generic degree of the generically finite flat map c):
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try

1A\ * S
Rp*(q) VN,K3723 K, K1,31

Rp.(9)* Vi, k5,55

These are maps of locally free sheaves by theorem [£.7] and the commutativity
of the diagram follows from its commutativity away from the boundary which is
clear.

Hence to prove the proposition, we need to see that the action of the cohomo-
logical correspondence C*°" is equal to [K1gK3| o [KohK3).

Consider the diamond from the proof of proposition [4.9]

O//tOT

tor
S “1K1gNK2, 5y
to’r‘

K2 >/

\

tor
SKthK3h71,Ea

/

which is cartesian away from the boundary. We would like to know that
RF(C”tOT, (ql)*v _1K1 9Ky, Eb

T tor il to
R (SK2nhK3h*1,za k,KoNhKgh—1, Ea RI(S,2 *1KIng2 =’ VmgflKlgﬁKz,Eb)

RO(SIET 5 Ve kg 5

commutes, and similarly for cuspidal cohomology. Note that here what we write
as (p')* is really the composition

t
RT (S A niah1 5,0 Vekannksh-1,5,) = RE(C" " (0) Ve karmicn—1,5,) =

t
RF(CH 07“7 (ql)*vm,g_lKlgﬁKz,Zb)

where the first map is literally (p’)* and the second map is described on each

component of C”*" as the action map [k;] (see the description of p/,¢ given in the

proof of Proposition [4.9])
We claim that the following diagram commutes:

R(q/)*(p/)*q*Vn,KthKg.hfl,za = R(q/)*(q/)*p*vn,Kgﬁthh*1,Ea Hp*vﬁ,gflKlgﬁKg,Zb

A ——

s *
Rp*qxq*Vik,nhksh-1,5,

This is a diagram of locally free sheaves by theorem [£.7] and therefore the com-
mutativity can be checked away from the boundary, where this is clear. [
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Remark 4.12. We remark that for K’ C K C G(Ay) open compact subgroups, the
Hecke operator [K'1 K] and [K1K'] are the pullback and trace for the forgetful map
Sk+sr — Sk,x. Moreover if g € G(Ay) then [Kg(g~'Kg)] is simply the action map
[g]*. Finally for K, Ko C G(Ay) open compact subgroups and g € G(Ay), we have
a factorization

[K19Ks] = [K11(K1NgKag™ M) [(KiNgKag™ ) g(g™ " K1gNK>)][(g7 ' K1gNK3) 1Ky

of [K1gK3] into a pullback map, an action map, and a trace, which is essentially
the definition of [K;gK5].

4.2.3. Serre duality. The dualizing sheaf of Sk 5 is V_9,,. kx(—Dk,x) where pp.
is half the sum of the non-compact positive roots. Indeed, recall our choice of non-
compact positive roots being in g/pffd and that g/pffd is the tangent space at the
identity of F Lgi and then apply [Har90b], proposition 2.2.6.

The Serre dual of the automorphic sheaf Vi i x is therefore V_s,, . —wo yr.x,2(—Dr.x)

where wo ps is the longest element of the Weyl group of M,,. Serre duality is:

Proposition 4.13. There is a Serre duality isomorphism
DF(RF(S%{TZ? V&K,Z))[fd] = RF(S?,TXH V—Qpnc—wo,Mu57K72(7DK,E))

where Dp(—) = RHomp(—, F) is the dualizing functor for F-vector spaces and d
is the dimension of Sk. Moreover this isomorphism, is compatible with the Hecke
action in the sense the action of [KgK] on the left matches the action of [KgK|]t =
[Kg—'K] on the right.

Proof. For the existence of the duality pairing we refer to [Har66]. We simply prove
the formula for the adjoint. We denote by

.DK/ (—) = RHOHI(—, V,QPHC’K/’E/// (_DK’,E”’))

the dualizing functor on S%’T s for any compact open K’ (and cone decomposition

¥"). Let f = [KgK] be a characteristic function to which we associate a Hecke
correspondence S’y el Sﬁ?gg Kg-1.5 7 572", The action of f on the cohomology
arises from a cohomological correspondence (see section [4.2.1):

fr Id®trp1 |
fipsVexs =01 Ve rs — DPiVeks

We find (since duality switches * and ') that

Id®trp1
DKﬂgKgfl(f) :pTDK(VN,K,E) — p!lDK(VmK,Z) _>p!2DK(VH7K7E)'

Remark that
PiDk(Vekn) = PiVYks ®@piVosp.xs(—Dky)
Py Dk (Veks) = P5VY ks @ PyV-2p,. k,5(—Drk )
We have a canonical isomorphism

Id: pyV_s,,. x(—Dkx) = phV-2p.. x> (— Dk 1),

as both sheaves identify with the canonical sheaf of S}?ggKg,l sv- The map p!l Dx(Vikys) —

Py D (V. k.5) therefore writes f¥ ® Id. Let f! = [Kg~'K]. We observe that
I = (f")—wo.rr by definition (this identity boils down to A* = ((A~!)~1)* for a
matrix in GL,,). We now claim that we have a commutative diagram:
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Id®tr £ ®Id
PiDk (Ve xy) ——= Dk (Ve s) — > 0D (Ve i 52)

IdT Id®trp1 T
t
I o ngn—2me

Pi Dk (Vi ks) — piDx (Vi kx) ———— p5Dx (Vi k5)

Id®trp2 T

This implies that Dyngxg-1(f) = f*. The commutativity of the diagram now boils
down to the commutativity of:

1d
P1V-2p,..k5(~Drz) ————>= V-2, .k 5(~Drx)

trpy T trp, T
t

f7 nc
PiV-2p,..k5(—Dkx) s P3V-2p,. k2(—DKk x)

It is sufficient to prove the commutativity outside of the boundary. For any level
K, the identification of the canonical sheaf of Sk with V_s, x is functorial in
the tower of Shimura varieties. Therefore, for the action map [g] : Sxngrg-1 —
Skng-1Kkg, We find that the map [9]*V_s,  kng-1kg — V-2p,..Kngig-1 s the
canonical isomorphism between canonical sheaves. We finally deduce that the map
(fY)=2pne 1 PTV=2p,0. k6 — P5V—2,,.. K decomposes as:

p?l(v72pan - V_2p7L67ngK971 - g*V_QpncangilKg - p§V72pnc,K
where the first map is induced by tr,,, the second map is the canonical isomorphism,
and the last map is induced by g*(tlrplz)_1 where py : Sgng-1xy — Sk. This is
telling us that the diagram commutes. O

Remark 4.14. One proves more generally that the adjoint of an Hecke operator
[K1gK>] for two (not necessarily equal) compact open subgroup K; and K> is
[K19K>]t = [K2g~ ' K1]. Details are left to the reader.

4.2.4. The finite slope part of classical cohomology. We now assume that Gq, is
quasi-split. We assume that K = K? x K, where K, = K ,,, s form >b>0,m >0
is one of the subgroups with an Iwahori decomposition introduced in section [3.5.1]
We recall that for a choice of + or — we have commutative sub-algebras szvt,m,b of

ZKpmp\G(Qp)/Kpmp]. The subalgebra ’H;Wb is generated by the double cosets

(K pmptKpmp] with t € T, We have isomorphisms ., , = Z[T*/T,]. We
also have the ideals ’Hiﬁb generated by the double cosets [Kp ., ytKp m 5] with

t € T**. The anti-involution of Z[K, ms\G(Qp)/Kpms) defined by inversion
exchanges H;m,b with H ., and H;’:@’b with H
We let

p,m,b’

tor +,fs _
RF(SKPKPJ,L,Q,,E’ VﬁprKpnn,baz) -

RE(SE K, 050 Vi K2 Kymst) @Gt 1) QUT(Qp)/Th]
be the finite slope direct factor of RF(S?;'KEMJME, Vi, KPK, n.,x) for the operators
in [Kp,m bt Kp mp) for t € T*. We have a similar definition for cuspidal cohomology.
We note that the monoids 7% have the property that for any t € T+*+ and s € T+
there is an s' € TF and an n > 0 such that ss’ = . It follows that the finite
slope part can also be described as the finite slope part fo the single operator
(K p,m st K pm ) for any t € T+,
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We note that the Serre duality pairing of Proposition restricts to a duality

Dp(RU(S%rw, 50 Viko Ky pn) 79 [=d]l 2 RO(SE k50 Vo2pne—wo i K9 Ky 5 (—D)

on finite slope parts.

Remark 4.15. Assume that the group Gg, is a Weil restriction of an unramified
group. Then, as explained in remark [3.26] the compact K, 1,0 is an Iwahori, and
the compact Kp 1,1 is a pro p Iwahori. Let K, = Kp, 11 or K, 1. All the Hecke
operators [K,tK,] for t € T or t € T~ are already invertible in Q[K,\G(Q,)/ K]
(see [Vig05| Cor. 1] in the unramified case, and [Vigl6l Proposition 4.13] in general)
and so

t +,fs _ t
RU(S%h ik, 500 Ve kv i, 2) 7" = RU(SR g, 52, Vi kv ke, 5)

and similarly for cuspidal cohomology.

Next we recall how the finite slope part behaves under certain changes of level.
We first recall some classical relations in these Hecke algebras.

Lemma 4.16. Let K1, Ky, K3 C G(Q,) be open compact subgroups with Iwahori
decompositions K; = K; KYK;". Let t1,t2 € T(Q,). Suppose that t; K| t; N
Kty C Ky Ct7 Koty t7 KT N oKt 'Ky C taKf ity and K9 N K C
Kg g K?Kg Then [KlthQ][KQtQKg] = [KltthKg]

Proof. This is an immediate consequence of proposition [I.§ upon noting that our
hypotheses imply Ky = (Ko Nt K1t1)(Ko Nt2Ksty ') and ¢ K1ty NtaKaty ' C
K. O

Lemma 4.17. Let m/ > b >0 and m > b > 0 satisfy m' > m >0 and b’ > b.
(1) For allt € T* we have
[prm/yb’th,m’,b’}[Kp,m’yb/le,myb] = [Kp,m’yb’le,m,b] [prmybth,m,b]'
(2) For allt € T~ we have
[Kp’m,btK ,m,b][Kp,m,ble,m”b’] = [Kp,m,ble,MQb’][Kp,m’,b’th,m’,b’]'
(3) For allt € TT" we have factorizations:
[Kp,m,bth,m,b} = [Kp,mybth,m-&-l,b] [Kp7m+1,b1Kp7m7b}
and
[Kpmt1,6tKpm+1.6] = [Kp,m+1,61Kp,m b [Kpm ot K p,m+1,0]-
(4) For allt € T~ we have factorizations:
[Kp,m,bth,m,b} = [Kp,m,ble,m-H,b] [Kp,m+1,bth,m,b}
and
[Kp,erl,bth,erl,b] = [Kp,erl,bthym,b} [Kp,m,ble,m+1,b]~

Proof. We note that the second and fourth points are just the transposes of the
first and third. The first and third points are immediate consequences of lemma
4.16] |

Here are the consequences on cohomology:

Corollary 4.18. Let m’ > b >0 and m > b > 0 satisfy m’ > m >0 and b/ > .

3F7f3)
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(1) For all t € T%™, the following diagram commutes:

tor SKp‘yn/’b/th’yn/’b/ﬁ tor
RF(SKPKP YR S1) Vn,Kpr’m/‘b/,Z - > F(SKpr_m, b,,EaVn,K”Kp,m/_,buE)

! T

[Kp m bth m b]
tor e e tor
RF(SKPK,,)M);,,E’ Vme’Kp,m,b,Z) - RF(SKpr,m,b,za Vn,Kpr,m,b,Z)

(2) For allm’ >m and t € T%~, the following diagram commutes:

RF StOT‘ SKp’yn/’b/ th’yn/’b/ﬁl_‘ StOT
_— >
( Kprﬁm’be/,E’VH/7KPKp,m,/‘b/7Z ( Kpr,mlwbl,E’VK/)KPKp,m/,b/7E)

; :

[Kp m bth m b]
tor e o tor
RF(SKPKp)m,b,Ea VmKPKp,m,b,E) - = RF(SKpr,m,b,za Vm,K”Kp,m,b,Z)

(3) For allm and t € T ++ | there is a factorization:

[ p,m+1 btlip m+lﬁ
tor S i ’ i tor
RI KPK n) ——— | KPK )
(SKPKP;,,VFL[,,E’V% PKp m+1,bs (SKT’KP,WFFLZHZ’V’@ PKp m+1,bs )

L e

tK
ror p,m,bt B p m b] tor
RF(SKPK,,,M,b,Z’ VH’Kpr’m,b,E) RF(SKPKp‘mJnE? Vn,Kpr,m,b,Z>

(4) For allm and t € T%~~, there is a factorization:

[S(p m41,0tKp m+1ﬁ
tor > > > tor
RF(SKpr,mJFLb,E’V"‘vaKp,m+1,b72 - F(SKpr,mH,b,EaVK,KPKp,mH,b,E)

ltr / \Ltr
tKp m.b)

[K ,m,b
RT(SE K, o5 Vi KP Ky 5) —— RE(Si#rk, 50 Vi KKy %)
(5) We have the same results for cuspidal cohomology.

We deduce the following classical corollary

Corollary 4.19. (1) For allm' > m > b with m > 0, the pullback map

e

tor +,fs tor
RE(S%rk, nss Vi kK mnn) T = RUS o Ve kK, 0 pn

p,m/,bs

and the trace map
RU(Si K, .5 Ve krK

are quasi-isomorphisms, compatible with the action of Q[T'(Qp)/Ts], and
the same statements are true for cuspidal cohomology. Moreover these iso-
morphisms are compatible with Serre duality.

(2) For allm >V > b with m > 0, the pullback map

t , t
RE(S%rk, s Ve Kpman) 77 = RU(SRE ko Vi

and the trace map

tor —,fs\Tv /Ty tor —,fs
RT(SKr Kk, om0 VeikrE, ,0m) 7 °) 0 = RU(SRI K, 50 Ve KP K 0.5)

—,fs tor —J S
2) 7 S ROk, 20 Vekr Ky 2) T

p,m’ bs

b/’2)+;f5)Tb/Tb’

p,m,
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are quasi-isomorphisms, compatible with the action of Q[T'(Q,)/Ts], and
the same statements are true for cuspidal cohomology. Moreover these iso-
morphisms are compatible with Serre duality.

Proof. Immediate from corollary and theorem [£.7] O

Now let x : T(Z,) — F* be a finite order character (enlarging F' if necessary.)
For allm > b > cond(x) with m > 0, the spaces RI‘(S}?{,KW@E, VK,KPKPY,M,E)*J‘S[X]
are canonically isomorphic. We denote this space by RI'(KP?, k,x)*7*. We define
in the same way RI'(KP?, s, x)/*, and the cuspidal versions RT'(K?, k, x, cusp) /%
and RT(KP, k, x, cusp) ~/*

These are classical finite slope cohomologies, for a tame level K? and a M-
dominant locally algebraic weight (k,x). They satisfy a Serre duality:

Dp(RI(K?, &, X)i’fs)[—d] ~ RI'(K?, —2ppc — wo, 1, K, x L, cusp)TE.

4.3. Jacquet Modules. In this section we translate the finite slope condition into
more representation theoretic terms. We keep assuming that Gg, is quasi-split with
borel B. We let U be the unipotent radical of B. Let m be a smooth admissible
representation of G(Q,) with coefficient in a field of characteristic 0. We let 7(U) C
7 be the submodule generated by the elements n.v — v for n € U(Q,) and v € 7.
We let 7y = w/m(U) be the Jacquet module of 7 (with respect to U). This is
a smooth admissible representation of T'(Q,) by [Cas|, thm. 3.3.1. Moreover, the
functor 7 — 7y is an exact functor by [Cas]|, prop. 3.3.2. We can define similarly the
Jacquet module 7 with respect to U. Note that conjugation by the longest element
wo of the Weyl group realizes an isomorphism from 7y to 7. Let ¢ : T(Q,) — C*
be a continuous character. We let (G (1)) = {f : G(Q,) — C, smooth, f(bg) =
¥(b)f(9)}, equipped with the left action induced by right translation of G(Q,) on
itself. We define similarly L%(1/)).
The adjunction formula of [Cas], thm. 3.2.4 states that

Homg(Qp) (7‘(, Lg (’L/))) = HOIHT(QP) (7TU, ’(/J)
and
Homgq,) (7, 15(v)) = Homr(q,) (777, ¥)-
Let K = Kpmp. The algebra Him’b = Z[T*/T;) (by lemma acts on
7Ermb and we can define 7fr mo:E:fs C 7Epmb ag the sub-vector space where the
operators [Kp vt K m ] for t € T act bijectively.

Ty

Proposition 4.20. The natural map wv.mptfs 15 an isomorphism which

is T /Ty equivariant, and the natural map 7%pmv-=Fs w%’ is an isomorphism

which is T~ /T, equivariant.
Proof. See [Cas|, Lemma 4.1.1 and proposition 4.1.4. |

Proposition 4.21. For a smooth irreducible representation = of G(Q,), the fol-
lowing properties are equivalent:

(1) There exists m > b > 0 such that 7&emst:ls £,

(2) There exists m > b >0 such that 7eme=1fs £ (),

(3) There exists a character ¢ of T(Qy) such that ™ — 15,
(4) There exists a character ¢’ of T(Q,) such that m — L%w’.
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Proof. The points (1) and (2) are equivalent because the non-vanishing of 7%rm.e.%.fs
is equivalent to the non-vanishing of 775’7 and ﬂ%” respectively by proposition
But conjugation by wy realizes an isomorphism between these spaces. Similarly (3)
is equivalent to (4). If we assume (3), the adjunction formula shows that 7y # 0,
hence there exists b such that 7r5” # 0 and 7Hpmetfs £ 0 for any m > b by
proposition Conversely, if 7pm.0:+:F5 £ 0 then wgb # 0 and by adjunction,
there is a non zero map: © — L%?/) for a character 1. Since 7 is irreducible, this
map is injective. O

If one of the equivalent properties of the proposition is satisfied, we say that an
irreducible smooth representation 7 is a finite slope representation.

Let m be an admissible representation of G(Q,). By adjunction, we have a
morphism © — Lgﬂ'U and we let 7/% be the image of this morphism. We call 7f*
the finite slope part of 7.

Proposition 4.22. The following properties are satisfied:

(1) The G(Q,)-representations ©/* is a direct summand of .

(2) Any irreducible factor of n¥* is a finite slope representation.

(3) Any irreducible factor of © which is a finite slope representation lies in wf*.

(4) 7/ is the sub-representation of m generated by the (mw)Kv.motfs for qll
m >b>0.

Proof. By the Bernstein decomposition of the category of smooth representation
representation m = 7' @ 7" where 7’ satisfies properties (1), (2) and (3) of the
proposition. We have that 7, = 0 because the Jacquet functor is exact and n”
has no finite slope irreducible sub-quotient. We deduce that 7y = 7j;. Moreover
the morphism 7 — (G factorizes into 7' — (§mpy and it follows again from the
exactness of the Jacquet functor that the map 7’ — 1§y is injective. Therefore
7/ = 7/%. Let 7" be the sub-representation of 7 generated by (7)&em.b-E:fs for
all m > b > 0. We see that 7”7 C nf*. But it follows from proposition that

Y = ﬂ{,s. Therefore 7% /7" has trivial Jacquet module, hence contains no finite
slope sub-quotient and has to be trivial. (I

Let us denote by

Hi(va K) = coliprHi(Sﬁ(O;Kp_’E, V,{,Kp}{pyz),

H(K?, k, cusp) = coliprHi(Sﬁgf,sz, Ve irk, s(—Drrk, s))

and
H'(K?, k) = Im(H(KP, k, cusp) — H/(KP, k)).

These are smooth admissible G(Q,)-representations. We can consider their fi-
nite slope parts H!(KP?, k), H!(KP?,k,cusp)/® and ﬁi(K_”,/ﬁ)fs. These are di-
rect summands of H(K?, k)*, H!(KP, k,cusp)’® and ﬁl(K”,m)fs respectively,
and are generated as G(Q,)-representations by the vector spaces H'(KP?, , x)*7$,
HY(KP, K, x, cusp) 7% and ﬁi(K”, K, X)H 7% = Im(H (KP, k, x, cusp)™/* — HY(KP, K, x)T /%)
for all characters x : T(Z,,) — T
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4.4. The Hodge-Tate period morphism. In this section we recall a number
of results concerning the Hodge-Tate period morphism and infinite level Shimura
varieties. We now assume (unless explicitly mentioned) that F' is a finite field
extension of Q, such that we have an embedding £ — F' and such that G splits
over F. In this paper, the rationality questions with respect to E are not very
important. We will frequently allow ourselves to enlarge F' if necessary. Let S%* =
(Sk x Spec F)™, S = (Sj x Spec F)*", Si%, = (S’ x Spec F)™, FLg,, =
(FLg,, % Spec F)* (see section for the meaning of the superscript an). The
first of these spaces is not quasi-compact if the Shimura variety is not proper, the
other three spaces are quasi-compact. We will also consider the groups G*"* =
(G x Spec Qp)*", Py = (P, x Spec F)*", M§" = (M, x Spec F')*".

4.4.1. Inverse limit of adic spaces. We start by a definition following [SW13], sect.
2.4.

Definition 4.23. Let {X;}ic1 be a cofiltered inverse system of locally of finite type
adic spaces over Spa(F,Op), with finite transition maps. Let X be a perfectoid
space with compatible maps X — Xj.

We say that X ~ lim;er X; if:

(1) The maps X — X; induces an homeomorphism of topological spaces |X| =

(2) There is a covering of X by open affinoids U = Spa(A, A") such that U is
the preimage of an affinoid U; = Spa(Ai,A;.") C &, for a cofinal subset of
I and the map colim;A; — A has dense image.

If X ~ lim;e; X;, then the diamond lim; Xio is representable by the perfectoid
space X by [SW13]|, prop. 2.4.5. In particular, X is unique up to a unique isomor-
phism.

In the notation of point (2), we see that A° is a ring of definition of A (because
A is uniform) and A is the completion of colim;AY with respect to the p-adic
topology.

Definition 4.24. Let {X;};c1 be a cofiltered inverse system of locally of finite type
adic spaces over Spa(F, Op) with finite transition maps. Let X be a perfectoid space
and assume that X ~ lim; X;. We say that an open affinoid subset U — X is good
if it satisfies the second property of definition[[.23 We say that an open affinoid
U, = X; is pregood if the open subset X X x, U; of X is good.

Remark 4.25. We remark that a rational subset of a good open affinoid is also good
by [Sch13b]|, proposition 2.22.

Remark 4.26. Tt is conjectured in [Sch13b], conjecture 2.24 and proposition 2.26
that any open affinoid in & is pregood.

We end this paragraph with two useful lemmas.

Lemma 4.27. Let {X;};cr be a cofiltered inverse system of locally of finite type
adic spaces over Spa(F, O) with finite transition maps. For each i let I1; be the set
of connected components of X; which we assume to be finite. Let Il = lim; IT;. For
any e € II we get a cofiltered inverse system {X; .}. If there is a perfectoid space X
such that X ~ lim; X; then for all e € 11, there is a perfectoid space X, ~ lim; X; .
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Proof. We reduce to the affine case. Let X; = Spa(A4;, A]). For each e € II;, we
have X; . = Spa(Ai,e,Axe) and A4; = HeGHi A; .. We may assume that all rings
A; are reduced (by taking the reduction). In particular A? is open and bounded.
This does not affect the ~-limit because perfectoid spaces are reduced. We may
also assume that all maps A; — A; are injective for ¢,5 € I and j — i (replacing
A; by its image in A;).

We assume that there is a perfectoid space X = Spa(A4, A*) ~ lim; X;. Then A°
is the p-adic completion of colimiA?p and A is a perfectoid Op-algebra: there is
w € A° with @? | p and the Frobenius morphism ¢ : A°/w? — A /w? is surjective.
Moreover, A = A°[1/p] and A* is the closure of colimA; in A. By approximation,
we may assume that @ € A? and by projection we get an element w € A; .

We need to see that the map ¢ : colimiA(i{e [P — colimiAg ./wP is surjective.
Let z;, € A;¢/w?. Since AC is perfectoid, we see that there exists j — ¢ and
Yj.e € Aje/w? such that yﬁe =Tie. O

Lemma 4.28. Let {X;}icr be a cofiltered inverse system of locally of finite type
separated adic spaces over a perfectoid field Spa(F, Op) with finite transition maps.
Let G be a finite group acting on the inverse system via Spa(F, O)-morphisms.
Let X be a perfectoid space such that X = lim; X;. Assume that for some index
i, we have a G-invariant covering of X; by pregood affinoids. Then the categorical
quotient J; = X;/G is representable by an adic space for a cofinal subset of I, the
categorial quotient Y = X /G is representable by a perfectoid space, and Y ~ lim; ;.

Proof. We may reduce to the affine case with X = Spa(A, A*) and X; = Spa(A;, A}).
By [Han19], thm 3.5, AY is perfectoid. It is clear that colimA¢ is dense in AY since
we have a projector A — A%, a ﬁ deGg.a. O

4.4.2. Siegel Shimura varieties. We assume in this paragraph that (G, X) is the
Siegel Shimura datum (GSp,,, Hy). Let K = K,K? C G(Ay) be a compact open
subgroup. The reflex field is Q and the Shimura variety Sk is a moduli space of
abelian varieties A, with a level structure and polarization (prescribed by K).

The Shimura variety Sy carries a right pro-étale G(Q,)-torsor. Namely, equip
Qf,g with the standard symplectic form and consider the torsor of isomorphisms
Qf,g — H; (4, Qp), respecting the symplectic forms up to a similitude factor, where
A is the universal abelian scheme (defined up to isogeny) and H, (4, Q,) = V,,(4) is
the rational Tate module of A. After choosing a geometric point T — Sk, this torsor
corresponds to a representation of the algebraic fundamental group m(Sk,Z) —
G(Qp). The image of this morphism lies in the compact open subgroup K, C G(Q,)
and the corresponding K -torsor is realized geometrically by the tower of Shimura
varieties limK;}ng SK;)Kp. By pullback to the adic space S§*, we get a G*(Q,)-
torsor Go7y . If K, C G(Z,), this torsor has a G(Z;) reduction of group structure
that we denote by Gpet,p.

The (relative) Hodge-Tate filtration is the exact sequence of pro-étale sheaves
over S

0— Lle(A) ®ﬁs?{” é’sg{n — Hl(A,Qp) ®Qp ﬁAgK — WAt ®ﬁs(}(n é’s;{n —0

The Hodge-Tate filtration gives a P;"-reduction of structure group Py of the

G"-torsor Gl , X gan(q,)G*". Namely, we consider trivializations of Hi (4, Q,)®q,

ﬁ:gK which respect the filtration. This is a right P;"-torsor.
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We can consider the pushout Pg. x7u" M = M. This pro-étale torsor
actually identifies canonically with (the pull back to the pro-étale site of) of the
analytic torsor M%7 which is the analytification of Myg (see section .

The pro-étale K,-torsor lim K S KK, extends to a pro-Kummer étale K ,-torsor
limpe, S?ZKWE‘ We can pull it back to the anaytic space S, (see [DLLZI9)] for
the definition of the pro-Kummer étale site). By pushout along K, — G(Q,) we
get a pro-Kummer étale G(Qp)-torsor Go7; . If K, C G(Z;) we also have the
pro-Kummer étale G(Zp,)-torsor Gpet p-

Let Ax; be the semi-abelian scheme over S}g’z The Hodge-Tate exact sequence
extends to a sequence over the pro-Kummer étale site

0 — Lie(4y) ®¢ ﬁg;{n —0

I

ﬁs;{o&) — Hl(AE7QP) ®Qp ﬁs?&: - wAtz ®ﬁ$§(o,2

tor
SK,X}

Therefore, the torsors Pyl and M$. extend over SiZs,. Moreover, again by

construction, the torsors M%% and MG} are canonically identified.

4.4.3. Perfectoid Siegel Shimura varieties. By [Schlb|, thm. IIL.3.17 there is a
perfectoid space Sk, ~ limg, Sipyc -

By [Sch15|, we have G(Qp)-equivariant map mgr : Sj — FLg . Moreover,
there exists an affinoid covering FLg,, = U;V; such that Uﬂr;{%«(Vi) is an affinoid
perfectoid covering of S}, which satisfies the property (2) of definition Note
also that for any rational subset V' C V;, we deduce that 755(V) is again affinoid
perfectoid.

The construction of the map mgr : Sip — FLg,, is delicate at the boundary,
but over the complement of the boundary Sif, ~ limg, Si” g, it has a simple
description which is given below.

By [PS16], for any cone decomposition X, there is also a perfectoid space St 5~
limg, Sier Kp.® (it is important that the cone decomposition does not vary in the
limit) and we have a map S}?{,’,E — Skp of perfectoid spaces induced by the map
at finite level K,.

The torsor Ga7, , becomes trivial over S 5, and we therefore get a Hodge-Tate
period map 7% : }?572 — FLa,u. Let us explain very concretely how this map
is defined. Let Spa(R, R") be a perfectoid affinoid open subset of Sy ;. We can
evaluate the sequence

0— Lie(Ag) ®ﬁSwT2 ﬁS}fE — Hl(AZ7Qp) ®@p és?% — way Re ﬁs;’.{’ﬂ — 0

i
K, s

35
on (R, R*) (viewed as an object of the pro-Kummer-étale site of Si'y;) and use the

trivialization Q%g ~ H;(Ayx, Q,) to get an exact sequence:
0 — Lie(As) ® R — R* = wy @ R —0

After localizing, we may even assume that Lie(Asy) ® R and w AL ® R are free

R-modules. Now let 0 — RY — R* — RY — 0 be the (polarized) chain with
automorphism group P, (R). We have that P¥%.(R, RT) =

Isomgymp (0 = R — R* — R? — 0,0 — Lie(Ax) ® R = R* — wyy, ® R — 0)

and P (R, RY) C Isomgymp(R?7) = GSpy, (R). This is a right P, (R)-torsor and
there is an element x € G(R) such that P¥%.(R, RT) = P, (R). The automorphism
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group of 0 — Lie(Asy) ® R — R?9 — war @ R — 0is zP,(R)z~!. Finally we let
mioh(Spa(R,RY)) =2~ € FLg ,(R).

Remark 4.29. We are forced to use =1 above because FL¢ , = P,\G. Note that
taking the right quotient by P, is natural because right translation on G defines
a right G-action of F'Lg, and the map mg7r : Sk, — FLg,, is equivariant for
the right G(Qy)-action. We chose to define Pg; as a right P;"-torsor, because we
want to identify the torsors M%), and MG}. But in the classical theory, Mgr is
a right torsor. It means that in our convention, the torsor Pg is pulled back via

wier from the torsor G4 — FLg ., x> x 7L

Both maps w}f} and g7 coincide by construction on the open subset Si,. We

deduce that 7y factors canonically the map 7{9%.. We have a diagram:

tor
SKP,E

tor
THT

THT
Skr —>FLau

The key properties of this diagram that we will use are:

e The pull back of the torsor ga”/Ume — FLg,, via 7897 is M%7 and this
is canonically identified with the pull back via S 5, — S}?:KP’Z of M.
e The map myr is affine.

4.4.4. Formal models of perfectoid Siegel Shimura varieties. We need to consider
formal models of the perfectoid Siegel Shimura varieties in order to be able to use
the vanishing result below (theorem [£.40). We first recall a number of statements
from [PS16]. Let K = K,KP?. For K, = GSpy,(Z,), we have natural models
over Spec Z,, for Sy, kv, Si o and Silpe, s that we denote Sk, kv, Sk x» and
Sﬁ?; Kr,x- We can also consider the corresponding p-adic formal schemes S, kv,
&%, e and 6% e, 5.

Now let Kj, C GSpyy(Zy). We can define G, xr, 6% g» and 6%y, 5 as
the normalizations of Sasp, (z,)K7: GEszg(ZP)Kp and Gg’gp%(zp)pr in Sk, K,
Sk, kr and S;g:KpE respectively. We denote by A the semi-abelian scheme over

6g’§p2 (Z,)K?.5 (it is defined up to prime-to-p isogeny by our choice of level struc-
g ,

ture).
Let us denote by K, , = {M € GSpy,(Z;,), M =1 mod p"}. This is the prin-
cipal level p™ subgroup. Consider the module Z29 with canonical basis e, - - - , €25

equipped with the standard symplectic form (,) given by (e;,ezg—i+1) = 1 and
(ei,ej) = 0if i+ j # 29 + 1. Over Sk, k» we have a symplectic isomorphism
(Z)p"Z)*9 — Alp"] (up to a similitude factor), and it extends to a morphism of
group schemes over &k, , kr, Z/p"Z*9 — Alp"]. We have the Hodge-Tate mor-
phism HT,, : A[p"] — wat/p™. Using the prime-to-p polarization, we can identify
war and wa. We therefore have sections HT,(e;) € HY(Sk, , kv, wa/p"). We also
have a map AYHT,, : AY(Z/p"Z)? — detwa/p"™. Let r :(;’g). Let fi,---, f. be a
basis of A9Z?9 obtained by taking exterior products of e, -, ea,. We get sections

AIHT, (f;) € HY( Ky ke detwa/p").
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By [PS16], proposition 1.7 and corollary 1.7, the sections HT,,(e;) extend to
sections HT,,(e;) € HO(Gﬁgngpﬂ,wA/p") and the sections AYHT,,(f;) extend to
sections AYHT,,(f;) € H( Ky icr detwa/p").

It follows that over &} «» we have a morphism AYHT,, : A9(Z/p"Z)29 —
detwa/p™. These morphisms satisfy the natural compatibilities as n varies. The
cokernel of this morphism is killed by pﬁ (resp. 49 if p = 2) by [Farl0], theorem
7. We let det wrmi’" be the subsheaf of detw, which is the inverse image of

Im(AYHT,,(AY(Z/p"Z)*) @ Os:. — detwy4/p")

KP

in det w4. We have pﬁ det wa C det wTJd’n C detwya (resp. 49 detwa C det wTJd’n C
detwy if p=2) .
Let f : G%WLHKP — GFQWKP be the projection. We clearly have a map

det w74 & Im(f* detw7°*" — detw,). This map is an isomorphism if

n > 1% (resp. n > 2g if p = 2). We now assume that n is larger than ng = p%l
(resp. ng = 2g if p = 2). We simply denote detw’;°*™ by detw’y°?, this is a
subsheaf of detwa. The sheaf detw’7°? is not locally free. We can perform a blow

up to make it locally free. Let us start with a definition:

Definition 4.30. Let X be a locally of finite type p-adic formal scheme and let T
be a coherent sheaf of ideals such that p € V. We let BLz(X) be the p-adic formal
scheme obtained by taking the admissible blow-up of X at T. We let NBLz(X) be
the normalization of BLz(X), this is the normalized blow-up.

Remark 4.31. The normalization of a formal scheme is well defined in our context
by [Con99], coro. 1.2.3.

Let Z,, be the sheaf of ideals of Og: givenbyZ, ={a € Os:._ _ ,adetws C

det w7°?}. We let 6;(’:1:?@ = NBLz, (&%, , k»)- Over G}j:f{p, the sheaf det w4
is locally free and moreover the map '

AYHT,, : AY(Z/p"7)* — detwa/p™
induces a surjective map
AHT!, : AY(Z/p"Z)% — det w'pod /pn =77
(resp. AIHT), : AY(Z/p"Z)?9 — det w}od /pn=29 if p = 2).
Lemma 4.32. Let n > ng. We have a commutative diagram

6*,mod
Kpny1 KP pnt+1KP

T

*,mnod *
6KPYHKP GprnKP

— 6%

where the vertical maps are finite. Moreover, h* det wi°? = det w'3°? and h*AIHT,, (f;) =

ATHT,, (fi) € (&3 1, detwod [p"~7°T) (resp. € HO(GR™ 1, detwhod /pn=29)

ifp=2).

Proof. We first observe that Im(f*Z,, — Og+
Kp,‘n,-%—le

5 * * * *
have maps BLz, &% p X &1med Sk, ..ix» = BLz,, 6% . k» = BLL, &% o
p,n

) = Zp41. It follows that we
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The map BLz, ., &% . x»r = BLz, 6% g is therefore finite, and so is the map
h: G%T:ile — 6;{”0?{? We have a surJectlve map h* det wp°¢ — det w°¢ of in-

vertible sheaves. This map is therefore an isomorphism. The last compatibility fol-
lows from the property that f*AIHT,,(f;) = AYHT,1(f;) € H* (&% KpomssKro det wa/p").
’ O

We can define similarly 6;{7”}% for K, C K, ,,- The ideal Z,, pulls back to

an ideal Tg, of &} s, and we let ") = NBLz, (6% »). If K = K, for
n > ng, we recover the previous deﬁn1t1on

We finally let &%, mod — Jim,, G}moip where the inverse limit is taken in the
category of p-adic formal schemes. This inverse limit exists because the transition
morphisms are affine. In the limit we have a map AYHT : A9229 — det w°? whose

linearization is surjective. It follows that we have a morphism wgp : 6;(2""1 —
P™—!. Let X1, -, X, be the homogeneous coordinates on P*~!. For all 1 <4 < r,
let &I; be the formal open subscheme defined by the condition X; # 0. Let U; be
its generic fiber.

Proposition 4.33. (1) The formal scheme G}’TOd is integral perfectoid and
its generic fiber is the perfectoid space S, .

(2) The Hodge-Tate map factors through a map wpr : &% mOd — §Lq,, and it
induces the Hodge-Tate period map wgr : Sjp — FEG# of section [{.4.9
on the generic fiber.

(3) For all 1 < i < r, we have that 771}1T(Z/{Z-) is a good open affinoid subset of
Skep-

Proof. See [PS16], thm 1.18. This relies on the main theorems of [Schij]. O

Remark 4.34. For n large enough, the open subsets 771_{1T (U;) come from open subsets

(UK, < Sk, xv- One can define ([Schlbl, p. 72) a formal model &} Hﬁp

by gluing the formal schemes Spf H° (7% (U;) x ﬁ;K »)- We will not use this

p,n?

formal model.

We can perform similar constructions with the toroidal compactification at level
K, C Kjn,- Namely, the ideal Zx  pulls back to an ideal Jk, of (‘53?1@ 5 We

tor,mod __ tor . tOT mod
denote by GKPKP7Z = NBLJKP GKPKP’Z. We have natural morphisms (‘SK ey
d
G*,mo
K,Kp"

Remark 4.35. The space 63? ;(",)Odz is not exactly the space considered in [PS16].
Namely, in that reference, we considered further blow ups in order to make the
sheaf denoted w’7°? in loc cit (the subsheaf of w4 generated by the image of the
Hodge-Tate perlod map) locally free.

tor,mod __ 1. tor,mod
Welet Sy = limy, GK kv Where the inverse limit is taken in the category
of p-adic formal schemes. This inverse limit exists because the transition morphisms
are affine.

Proposition 4.36. The formal scheme &' is integral perfectoid and its generic

tor
fiber s Sy .

Proof. This follows from almost verbatim from [PS16], section A.12; taking into
account remark [4.39)] [
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We now let U — FLg,, be a quasi-compact open subset. Our goal is to define
formal models for 755 (U) and (7495.) =~ (U). .

We first need a formal model for &. By [L90], thm. 1.6, there exists an ideal Z
of 03¢, , and an open subscheme 4 of NBLz(F£¢ ;) such that the generic fiber of
isU.

We can define 6'}?;7;0;} — 6}?&‘1 which is a formal model for (7i5)~1(U) —
T (U) as follows. The ideal Z pulls back to ideals Z; and Z of G?Z’g(’d and

G}Zmd respectively. We now wish to consider the normalized blow up of Gt]??g')d

and G}}Zmd at 77 and Z, respectively. We actually show that the ideals come from
finite level, perform the normalized blow-up at a finite level, and then pass to the
limit.

Lemma 4.37. The ideal 7y and Iy are pull back of ideals Iy k, and I3k, of
Gi?:”;(n;é and 6}’::}1@ for K, small enough.

Proof. Tt suffices to prove the claim for Z,. We need to prove that Z, is generated by
K, ,-invariant sections for n large enough. First observe that the ideal 7 contains

p® for some integer s. Over each standard affine 4l;, we have Z(8L;) = (s1,4,- -+ , Sk.i)-
We can find sections s ;- ,s;; € Ho(ﬁﬁé(ui),ﬁ;;(p) such that s, = s;;

mod p° and 521 comes from some finite level K, by proposition m (3). Thus,
the s ; generate Z» over the image of T (Us) in Siepnkr O

We can therefore consider
or,mod
NBLz, .., (6% %)
and
,mod
NBLIz,Kp (6;{1,KP)
for K, small enough.
We let NBLz, (61,%°) = limk, NBLz, . (87%0%) and NBLz, (837'%) =
limg, NBLz, , (8370 5)-
We have maps
NBLz, (83,2°%) — NBLz, (637°%) — NBLz(FLc,.)-

We let (‘57}?27;(;‘1{ and (‘5}’2’% be the preimages of 4. These open formal subschemes

tor,mod *,mod
come from open formal subschemes &2 and &7 of
p K,K? 3,4 KpyKP sl

NBLz, ., (8% %0 5)
and
*,mod
NBLI2,KP (GKP,,IKP)
for large enough K, (the equations defining ${ are defined at finite level).

The following theorem shows that the spaces 6’}?; Kp s 6’}?;}7{”@0’% and 6’}?:’}?,?33

admit the usual description in terms of certain formal charts. The case of Gt[g K%
is available in the literature. The other cases are deduced from the case of 6’}?: KP,5
by tracing down what happens with the various normalized blow ups at the level of
formal charts. This is possible because the Hodge-Tate period map behaves nicely
for degenerations of abelian varieties, since the Hodge-Tate period morphism for
étale and multiplicative p-divisible group is trivial.
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Theorem 4.38. (1) Let K = K,K? with K, C GSpy,(Zy). We have a de-

(2)

3)

(4)

composition G%ZKP,E = [Ip Zr (®) into locally closed formal subschemes,

indexed by certain cusp label representatives P.
—— Zk(?)
The formal completion GtI?ZK,,,Z admits the following canonical de-

scription:
e There is a tower of p-adic formal schemes:

Sk (Qo, Do) — Sk, (Qe, Do) = Sky(Gan, Do p)

where Sk, (Qa, Da) — Sk, (Qo, Da) is a torsor under a torus Ex (),
and Sk, (Go n, Do 1) is an integral model of a lower dimensional Siegel
variety.
In the situation that K is the principal level N congruence subgroup,
Sks(Ga.n, Do) carries a full level N structure, and Sk, (Qg, Do) —
Sks(Gan, Do) is an abelian scheme torsor. It parametrizes semi-
abelian schemes 0 — T — G — A — 0 (together with certain level
structure) where A is the universal abelian scheme over Sk, (Ga.h, Do p)
and T is a split torus of rank g — dim A.

o There is a twisted torus embedding Sk, (Qa, Do) = Sk (Qa, Do, X(P))
depending on X.

o There is an arithmetic group Ag(®) acting on X*(Ex(®P)) and on

Sk (Qe, Do) = Sk, (Qa, Do, X(P)).

We have a A (®)-invariant closed subscheme Zy, (Qs, Dy, E(P)) —

Ske (Qc}, D, E(CI)))

o There is a finite morphism Sk, (Go n, Do) = &%

o There is a series of morphisms:

Zr,(Qo, Do, X(®)) = Sk, (Qp, Do) = Sky(Gan, Do,p).

o We have a canonical isomorphism Zg (®) = A (P)\Zxk, (Qa, De, X(P)).
e We have a canonical isomorphism

——Zk(P)

Sl = Ag(®)\(Sky (Qa, Do, £(P))

For small enough K,

Zkg (Qe Do, X(P))

— Zx(®)

o theideal Jy, restricted to G?TE " is the pull back of an ideal Jr, o
0f Sk (Ga.n, Do ).

o Let ZR2"(Qa, Do, %(®)) = NBLy, . Zk, (Qa, Do, X(®)) and Zi*(¢)
Ak (O\Z7°NQq, Dy, X(®)). We have a decomposition 6??;’;{",,0,% =
e 27 (2).

o Let S’rKngd(G@,h,Dq>7h) = NBLJKP@ (SKq) (G<I>,h7D<I>,h))' We have a ﬁ—
nite morphism SR (Ge n, Do n) — 6;(:}?%

o Let S7°NQq, Do, X(P)) = NBLyy +Sks(Qa, Do, X(®)). We have a

canonical isomorphism

Zped(@)

Tore — Z7°Y(Qe,Do, 2(P))
&l ~ Ak (®)\(S72%(Qa, Dy, B(®)) *

For all small enough K,
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o mod
o The ideal I, g, restricted to 6§?T’Zm0dZK w is the pull back of an
ideal ILKp":b Of S%gd(G.@’h, D@yh),
o We have a decomposition 63?:}7(";)‘77’12# = [1p Z7°%(®)y where Z72°4(P)y
is an open subset of NBLz, ;. (Zmed(P)).
e There is an open subset S?gd(G@h, Ds n)u ofNBLILKp,q)(S%‘;}d(C?,I)’h7 Ds 1)

such that we have a finite morphism S%gd(Ggh,D@’h)u — 6}(’;"[?‘1%7&.

e There exists an open subset ST (Qe, Do, 5(P))u of NBLz, \ & (ST Qq, Do, X(P)))

and an open subset Z}?gd(Q@ Dg,%(P))y ofNBLIl’Kp,(I> (Z%gd(Q@’ Dg,%(D)))
such that we have a canonical isomorphism

—— 2Py

. — 270" (Qu, Da B(®))u
S ~ Ag(®)\(S7eH(Qa, Do, S(®))y

Remark 4.39. The main observation needed to prove this theorem is the property
that the ideals Jk, and 7; i, come from ideals Jk, ¢ and Z; i, o on each formal
chart (first item in (3) and (4)). This is reminiscent of the concept of well positioned
subset or subscheme of [LS18]|, def. 2.2.1.

Proof. The first two items follow from [Lan17], [MP19] or [PS16] (for principal level

structures). The point (3), follows from [PS16], section A.12. It remains to check
—— ZR°U(®)

the point (4). The key property is that the ideal Z; g, restricted to Gt[?g"wd

is the pull back of an ideal Z k, ¢ of S%gd(Gq),h, Dg p,). The rest follows easily. We

argue as follows. Let ® be a cusp label at some finite level K, K?. We can consider

the completion of 63?:,”750‘1 at (the inverse image of) Z}?poji(p(fb). Then we have a
t/\dZ}?:?{P(‘I’)
map G20 — 8784 (Go,n, Do.n) where S79%(Go p, Do 1) is a perfectoid
’ D P
formal scheme attached to a Siegel Shimura datum of lower dimension. Moreover,
we have a factorization of the Hodge-Tate period map as follows (compare with

[CS19], coro. 4.2.2):

d THT
Sk (Gon, Don) —>8L6s nc,,,

The sheaf of ideals 7 of F& restricts to a sheaf of ideals Zg of §€¢,, ,, uq, , - We

- Z?O%p (‘I’)
deduce that at infinite level, the sheaf Z; restricted to 6’}?;’"50(1 ’ is the pull
back of a sheaf of ideals 7; ¢ on S'K”Zd(G¢,h, Dg ). We can then prove that 75 ¢
comes from finite level as in lemma O

Theorem 4.40. Consider the map 7 : th{);gbpo%u — 6;(:;?‘511 Then we have that

Rim, O gtormoa (—nD) =0 for all i >0 and n > 1.

KpKP 2,4

Proof. The proof of theorem [£.6] transposes verbatim, given theorem [£.38| O
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4.4.5. The Hodge case. We fix an embedding (G, X) < (GSp,,, H7 ) of a Hodge
type Shimura datum into a Siegel Shimura datum. Let V' be a 2g-dimensional vector
space over QQ, equipped with a symplectic pairing so that G' < GSp,, — GL(V).
We can view G — GL(V) as the group stabilizing a finite number of tensors
{sa} € V® (where V® = @y nez. VO™ @ (VV)®"). The group GSp,, will be
denoted by G in this section. All the objects corresponding to this group will carry
a”in general.

Over Sk, kx» we have a pro-étale K,-torsor represented by the tower of Shimura
varieties limg; Sk x». By pushout along the map K, — G(Q,) we get a G(Qj)-
torsor.

One can give a more “modular” description of this torsor using the closed embed-
ding Sx < S %» Where S & is a Siegel Shimura variety (over F) and the embedding
is the one induced by (G, X) < (GSp,,, ’H;t) for a suitable compact open subgroup

K. The tensors {5} can be used to produce sections {sq, € HO(Sg, Hi (4, Q,)®)}.
More precisely, one first produces tensors {s, g € H*(Sk (C),H;(4,Q)®)} using the
complex uniformization of Sk (C). They give tensors {s, , € H*(Sk(C),H;(4,Q,)%)}.
Lemma 2.3.2 of [CS17] proves that these tensors are defined over E. Therefore, we
can consider the torsor of isomorphisms V ®g Q, — H1(A,Q,), preserving all the
tensors sq p-

There is also the M, -torsor Mgr over Sk. We recall its description. The ten-
sors {s,} can be used to produce sections {sa,ar € H(Sk,H1.ar(A)®)}. One first
define the P,ftd—torsor Pir, to be the the torsor of isomorphisms V ®q Os,, —
H; qr(A) matching the filtration on V' correponding to Pjtd with the Hodge fil-
tration, and preserving the tensors s, qr. By pushout along Pjtd — M,,, we have

std
Mgg = Par x5 M,,.

Remark 4.41. The closed immersion Sg < S & extends to a closed immersion
Mgg < Mag where Mgg is the M- “de Rham” torsor over Sj.

By pull back to the analytic space Si* we get a G*"*(Qy)-torsor Go7, ., as well as
a My"-torsor Mgp.

In section 2.3 of [CS17] the authors define two other pro-étale torsors over S¥*:
Py and Mpp, under the groups P;" and respectively M{™. These definitions
extend those given in the Siegel case (see section and use the tensors sq p.
Moreover, Pg. xTi" gon = gan xG(@) gan and Mo = P xPi" Man. By
[CS17], prop. 2.3.9, there is a canonical identification of torsors MG and M%,

4.4.6. Perfectoid Hodge type Shimura varietes. By [Schlf], there is a perfectoid
space Siip ~ limg, Sih g . Since the torsor GJ7%; | becomes trivial over Sg7,, we
obtain a Hodge-Tate period map ([CS17], thm 2.1.3): 7 : S¥ — FLg,, which
is G(Qp)-equivariant.

A key property is that the pull back of the M- torsor g“"/UPﬁn — FLaq,u via
mhr 18 M and this is canonically identified with the pull back via g7, — SE” icp
of Mg%.

Moreover, the relation with the Siegel datum is expressed by the following dia-
gram, where the horizontal maps are closed immersions:
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4.4.7. Compactifications in the Hodge case. For any compact open K C G(Ay), we
have the minimal compactification S}, and there is a finite surjective map Sy, — S*?
where S is defined before [Sch15], thm. IV. 1.1. This is the schematic image of
the morphism Sj — S;-( where S‘;-( is the minimal compactification of the Shimura
variety for G and K is a small enough compact open subgroup of G (Ay) such that
KNG(Af) = K. By [Schi5], thm. TV. 1.1 there is a perfectoid space St ™~
limg, S% and there is a map 7y : SL — FLg,,. Strictly speaking the map

K KP
constructed in [Sch15], took values in f£~ o Since FLg < FLg 5 is Zariski

closed and the map is known to factors through FLg,, over the Zariski dense open
subset Sif; by [CS17], thm 2.1.3, we deduce that we have a map mur @ Sy
FLg -

The tower {SX— R
a G(Qy)-action and the map w7 is G(Qp)-equivariant. Moreover, the map myr
is affine in the sense that there exists an affinoid covering 7 Lg ,, = U;V; such each
7 (Vi) is a good affinoid perfectoid open subset of S}, (see definition .

We also know that there is a perfectoid space Si, = limg, S;(,? K, (this last

}k, carries a G(Qp)-action, the space St therefore inherits

inverse limit is taken in the category of diamonds) by [BS19], thm. 1.16. We
therefore have a G(Q,)-equivariant map S§, — St It is not known whether
Sicr ~ Im Sjp e In general.

By [Lan20], for a cofinal subset of cone decompositions ¥, we have a perfectoid

space St s, ~ lim Si2 k,,x- More precisely, for each such cone decomposition X,

there exists a cone decomposition ¥ and a closed immersion of perfectoid spaces
Sih s = S;?;’ 5 Let us call call these cone decompositions perfect cone decompo-
sitions because they give rise to perfectoid toroidal compactifications.

tor

Remark 4.42. We did not prove that there is a perfectoid space Sif s ~ lim S} K,,s
for any cone decomposition ¥. It seems likely that one could reproduce the argu-
ment of [PS16] in the Hodge case, using the explicit description of the boundary of
the integral toroidal compactifications given in [MP19].

For a perfect cone decomposition ¥, we have a series of maps S s — Sjp —
Sx— and we therefore get a map 777 : S v — FLGy-

The relation to the Siegel Shimura varieties is given by the following diagram
where all horizontal maps are closed immersions:
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tor Stor
Sk Y SKP )
*
Kp

* *
S Sk

FLay — FLe

Usmg the map mioT. we can define a canonical extension of the torsors P¢% and

b to Si2 Kr 5 by 51mp1y by pulling back the universal P;;"-torsor over FLg,, and
pushing out along the map P;" — M{™. There is also the torsor Mgy over St‘”
tor

which is pulled back from the map S s, — Ste K, "rcv,y- The following proposition is
corollary 5.2 of [EH19].

Proposition 4.43 ([EH19]). The torsors M$ and MY}, X sten, Sir s are canon-
ically isomorphic.

Proof. Let us denote by M the restriction to S s of the torsor Men = M
deﬁned over the Siegel perfectoid Shimura variety Sy ’r 5 By construction, M is a

i"-torsor. The two torsors M7 and Mgp, are M“"—reductlons of this torsor.
They coincide over §¥} by [CSI?] prop 2.3.9. But ./\/l ' (resp. MY%) is equal to
the Zariski closure of /\/l Hrlsen (vesp. Mgk|sen ) in M . Therefore, these torsors
have to coincide everywhere. ([

Remark 4.44. The isomorphism of torsors is Hecke equivariant.

4.4.8. Integral models in the Hodge case. We need to consider formal models. This
section is entirely parallel to section Let K = K, K? with K = K NG(Ay).
Suppose that K, € G(Zp). We can define S, kv, Sk » and 63?:pr2 as the
normalizations of & ., @}( and é‘}?ri in Sk, kv, S, g» and S, 5 respectively.

Similarly, for K, small enough, we define 6;{'}?1, (G} [;np"dz as the normalizations

of 6* 04 and Gt;;"wd in S x» and Sy, 5 respectively. Alternatively, these
can also be constructed as normalized blow ups of &, and &Y Ky kv, for the
1deals~ Tk, and Jk, which are the pull back of the ideals IKP and Jr & from 6}(
and th’r

We let & mret = lim K, 6§<Z’j”§;ﬁ where the inverse limit is taken in the category of
p-adic formal schemes. This inverse limit exists because the transition morphisms

are affine. In the limit we have a map G}, ymod _, (Sl mod and therefore a map

* mod
Tar s SR = § .

*, mod

Proposition 4.45. The Hodge-Tate map factors through a map wgr : 6% —
326',#
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Proof. One first checks that the space 6%2”[ (the complement of the boundary
in 6};”“‘) is integral perfectoid and its generic fiber is the quasi-compact open
perfectoid Shimura variety Sk». This follows from the Siegel case, using that
Skvr — Sy is a Zariski closed immersion. Therefore the factorization of the
period morphism through §£¢,, holds over the Zariski dense subspace &mod and

thus everywhere. [
Remark 4.46. We do not know if G}de is integral perfectoid.

tor,mod __ 1. tor,mod . o els .
We let & Kry = limg, & K, KP,% where the inverse limit is taken in the category
of p-adic formal schemes. This inverse limit exists because the transition morphisms
are affine.

Proposition 4.47. Assume that ¥ is perfect. The formal scheme 6$Z’T£Od is
integral perfectoid and its generic fiber is S ..

Proof. This follows from the Siegel case. O
Remark 4.48. We do not know if 6?2’)@0’1 is integral perfectoid for all ¥.

We now let U — FLg, be a quasi-compact open subset. It is induced by an
open subset U of FLg ;. Our goal is to define formal models for Tpr(U) and
(wigr) (W),

There exists an ideal Z of ﬁggé and an open subscheme Y of NBLz(F£

. Tka
such that the generic fiber of il is U.

*,mod tor,mod . .
For K, small enough, we define & Ky K7 80 S K, KP4 88 the normalizations of

é};";fd and étfgr’imgd in 7 (U) and (795.) =1 (U) respectively. Alternatively, these
' o *,mod

can also be constructed as suitable opens in normalized blow ups of & K, Kr and

Gt;;:;(';oé at the ideals 7 x, and T x, which are the pull back of the ideals 7, z

and Z, g, from é}ém()d and égf"im()d.

Theorem 4.49. (1) Let K = K,K? with K, C G(Z,). We have a decomposi-
tion 6’}?;}@72 = [1p Zk (®) into locally closed formal subschemes, indexed
by certain cusp label representatives ®.

e Zx(®)

(2) The formal completion thgzKp_’E admits the following canonical de-
scription:
e There is a tower of p-adic formal schemes:

Sk (Qa, Do) = Sk, (Qas Do) — Sky(Gapn, Do p)

where Sk, (Qa, Da) — Sky (Qo, Da) is a torsor under a torus Ex (®),
and Sk, (Ga n, Do 1) is an integral model of a lower dimensional Shimura
variety.

o There is a twisted torus embedding Sk, (Qa, Do) = Sk4(Qa, Do, X(P))
depending on Y.

e There is an arithmetic group Ag(®) acting on X*(Ex(®)) and on
Sks(Qa, Do) — Sk, (Qa, Da, (D).

o We have a Ak (®)-invariant closed subscheme Zk,(Qo, Do, X(P)) —
Ska (Q‘i’a Dy, Z((I)))

o There is a finite morphism Sk, (Gon, Do n) = G%.

é,p.é)
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o There is a series of morphisms:

Zk,(Qa, Dy, X(P)) = Sk, (Qg, Ds) = Sky(Gan, Dan).-
o We have a canonical isomorphism Z (®) = Ag (P)\Zk, (Qs, Do, X(P)).
e We have a canonical isomorphism

— Zr(®) Zrg(Qe, Do, 2(P))

&l = Ar(®)\(Sks (Qa, Do, B(®))
(3) For small enough K,
— Zk(®)

o the ideal Jk, restricted to thgf"z * 1s the pull back of an ideal Ik,

0f Sk (Gao,n, Do p).
o Let Z32%(Qa, Do, X(®)) = NBLyy o Zic, (Qo, Do, 2(®)) and Z3°%(¢) =

Ak (P\ZE (Qa, Do, %(P)). We have a decomposition 63?:;5(12 =
[y Z7°4(®).

o Let SR(Gon, Don) = NBLy, o(Sky(Gon, Don)). We have a fi-
nite morphism S?;d(Gq))h, Dy p) — 6};";‘1%

o Let SE0%(Qa, Do, X(®)) = NBLy, Sk, (Qa, Da, X(®)). We have a
canonical isomorphism

).

— ZpN(®)

CHEE ~ A ()\ (SR (Qa, Do, B(®))
(4) For all small enough K,

Z%2(Qa,Da, Z(P))

— ZpeY(2
o The ideal I, g, restricted to thgr’zm()d o is the pull back of an
ideal 71 i, & of S%gd(G¢7h, Dy p,).
e We have a decomposition GtKO:’?ﬂO’dE)u = [1p Z7°% @)y where Z2°4(D)y
is an open subset of NBLz, (Zmod(P)).
e There is an open subset S’Kngd(GqJ,h, Dg 1)y ofNBLILKP,(I,(S}’(‘gd(G@’h, Dg 1)
such that we have a finite morphism S%gd(anh,D@,h)u — GQZLI?:K
e There exists an open subset ST (Qa, Do, X(®))yu of NBLz, \c & (ST Qa, Dy, X(®)))
and an open, subset Z7°H(Qq, Dy, X(®) )y of NBLz, ;. o (Z3°Y(Qo, Do, (D))
such that we have a canonical isomorphism

—— Zpel@)y

— Z7°YQa,Da,2(P))y
i ~ A (®)\ (SR (Qa, Da, B(2))y
Proof. The first two items follow from [MP19]. The point (3) and the point (4)
follow from the analogous statement in theorem O

Theorem 4.50. Consider the map 7 : 6';?:’;20’%’“ — 6;(’:1[?’?,’“. Then we have that
R'7m,Ogtormoa (—mD) =0 for alli >0 and n > 1.

KpKP,=,u
Proof. The proof of theorem [4.6] transposes verbatim, given theorem O

4.4.9. Abelian type Shimura varieties. We now extend part of the picture to abelian
type Shimura varieties (G, X) under the mild assumption that Z(G)° is split by a
CM field.

We first deal with the case of tori. So let (T, X) be a Shimura datum with 7" a
torus split by a CM field. There is a perfectoid space Sk» ~ limg, Sk, x». This
perfectoid space is actually a finite union of adic spectra of perfectoid fields. The
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flag variety 7L, is a point, and the Hodge-Tate period map is the projection to
this point. The T"-torsor Tyr over Sk, k» pulls back to a T%"-tosor Tyr on the
adic space Sg, k-

Lemma 4.51. The pull back of the torsor Tar to Sk» is canonically trivial.

Proof. We reduce to the case that T'=T°. Then the Shimura variety parametrizes
a CM motive M and this becomes a consequence of the comparison theorem de
Rham-étale for CM motives. See [Lov1T7|, prop. 3.1.8. O

Remark 4.52. Of course the trivialization is Hecke-equivariant.

We now consider an abelian Shimura datum (G, X). This means that there is a
Hodge type Shimura datum (G;, X7) such that the associated connected Shimura
datum (G%4, XT) and (G9?¢, X;") are isomorphic and we have a central isogeny
Gl — G.

There is actually a nice way to connect the datum (G, X) and (G, X1) according
to [LovlT7], section 4.6 . Let us fix a field E which contains the reflex fields of both
Shimura datum. One can construct a diagram of Shimura data

(B17XBl) - (B,XB)

| i

(G1,X1) (G, X)

where B; — G and B — G are epimorphisms, inducing isomorphisms B{¢" ~
Gier, Bder ~ G and the map By — B is a central isogeny.

Actually B, = Gy X gab Resg /@Gy, for a suitable map Resg,Gm — G‘fb in-
duced by the co-character ug,. We let T'= Resgp,gGy,. Moreover, the connected
Shimura datum (Bii‘”’,Xgl) and (G{°", X;") are isomorphic, as well as the con-
nected Shimura datum (B%", X}) and (G4, X1).

Since we are going to deal with several Shimura varieties in this paragraph, we
change a bit our notation and the Shimura variety attached to a datum (G, X) and
compact open K is S(G, X)) rather than Sk, we also write Myr(G, X) rather
than Myg, etc.

Let us first state a couple of classical results. We choose connected components
of Xgl, XE, Xf and Xt compatibly with our morphisms of Shimura datum. This
allows us to identify the set of geometric connected component of a Shimura variety
S(H,Xpg)Kk with HQ)\H(Ay)/K (for H € {G,G1,B, B1}). We let S°(H, Xy)
be the connected component corresponding to the class of 1 (we allow ourselves to
extend the base field). We adopt similar definitions for the minimal and toroidal
compactification.

Theorem 4.53. The following points are satisfied:

(1) Let f : By — Gi. The towers of connected component of the Shimura
variety limg SO(Bl,XBI)f_1K and limg S°(G1, X1)x are canonically iso-
morphic. The same holds for the minimal compactifications and the toroidal
compactifications.

(2) Let K be a compact open subgroup of Bi1(Ay) and X be a cone decompo-
sition. We have morphisms m : S*"(B1,Xp, ) ks — S*"(G1,X,) K,
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and mo : S (B, X, )k — S(T,Xr1)K, (for suitable compact open sub-
groups K1 and Ko and cone decomposition ¥1). The torsor Mar(B1, Xp,)
over St (B, XB,)k,Kv,x 15 the contracted product 71 Mar(G1, X1) X prbee
73 Mar(T, Xr).

(3) Letg: By — G. Let K be a compact open subgroup of G1(Ay). The geomet-
ric connected component of the Shimura variety S°(G, X) is a quotient of
a geometric connected component of a Shimura variety S°(By, XB,)g1(k)
by a finite group A(K). The same holds true for the minimal and toroidal
compactification.

(4) LetX be a cone decomposition. The torsor Mar(G, X) over S*"°(G, X))k x
is the quotient by A(K) of the torsor

M. .
Mar(B1,X1) x "B MNG
over S*"0(By, Xp, ) -1k,

Proof. For the first point, we have a map S°(By, Xp, ) ;-1 — S°(G1, X1)k and
we can check that it becomes an isomorphism after taking the limit over K by
reducing to the statement over the complex numbers. This follows from com-
plex uniformization, given that the connected Shimura datum are the same. For
the second point, using the various functorialities of Shimura varieties, we clearly
have a map of torsors Myr(B1, Xp,) — 71 Mar(G1, X1) X pgobe 73 Mag(T, X7) and
any map of torsors is an isomorphism. For the third statement, we have a map
SO(B1,XB,)g-1(x) = S°(G,X)k by functoriality. To check that this is a finite
étale map, we may use complex uniformization. The last point is again a conse-
quence of the various functorial properties of Shimura varieties. O

In this paper, we will handle abelian type Shimura varities and construct several
torsors over their toroidal compactifications following the strategy:

Strategqy 4.54. (1) Extend all torsors from (G1,X1) to (B1,Xp,) using what

we know on tori and the identity MS —= MJ_ X pabe Te.

1
(2) Descend the torsors from (By, X7) to (G, X) by pushing out along the map
B{ — G° and take the quotient by a finite group.

A subtle point is that one must also check that the torsors statisfy the required
equivariant properties giving the Hecke action. We insist that the stability under
these extra structure does not follow from the above construction plan. In order to
check that we have these extra structures, we also need to construct the perfectoid
Shimura varieties in the abelian case, the Hodge-Tate period map, and prove several
compatibilities. We do not need to work with perfectoid toroidal compactifications
because one can check the various stabilities on the complement of the boundary.
That this is possible is a consequence of the following lemma:

Lemma 4.55. Let G be a locally of finite type group over Spa(F,Or). Let G° — G
be a quasi-compact open subgroup. Let X be a finite type adic space over Spa(F, Of)
and let U — X be a Zariski dense open. Let T — X be a G-torsor. Let T and T
be two Go-reduction of this torsor. Assume that Tily = T2ly. Then To = Ti.

Proof. We may assume that all torsors are trivial over X'. We see that there is
an element g € G(X) which realizes an isomorphism from 7; to 72. Moreover,
by assumption, g € Go(Ud). We need to prove that g € Go(X). Consider the
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map g : X — G. We claim that g7 1(Gg) = X. Note that g=!(Gy) is quasi-
compact and contains U. Let z € X\ ¢g7'(Go). We want to prove that some
generization of z belongs to g~(Gy). Let {V;} be a decreasing sequence of quasi-
compact neighborhoods of z such that N;V; is the set of all generizations of z.
Assume that N;V; N g=*(Go) = 0. Since g~1(Gy) is compact in the constructible
topology, we deduce that there is i such that V;Ng=1(Gg) = (). Therefore, V;NU = ()
On the other hand, U is Zariski dense. A contradiction. It follows that g—'(Go)
contains all maximal generizations of points of X' and is constructible. By [Hub93],
coro. 4.3, X = g~ 1(Go). O

Remark 4.56. We admit that our treatment of abelian type Shimura varieties is
a little ad hoc. The reason is that the following results are not yet available: the
existence of nice and well described integral models for the compactifications, and
the existence of perfectoid toroidal compactifications.

Remark 4.57. Perfectoid (minimal compactifications of) abelian type Shimura va-
rieties have been constructed in [HJ20]. Since we also need to construct the Hodge-
Tate period map and prove several compatibilities, we give a complete argument.
The argument is very similar to [HJ20] in the sense that this is a reduction to the
Hodge case.

We work until the end of this paragraph over the algebraically closed field C ~
C,. We first briefly recall how to reconstruct a Shimura variety from its connected
Shimura variety following [Del79], section 2.1. Let (G, X) be a Shimura datum.
We adopt the standard notations: G?¥(Q)* is the intersection of G*(Q) with
the neutral component of G*(R), and G(Q),, G%"(Q), are the inverse images
of G*(Q)* via the natural morphisms G%"(Q) — G(Q) — G%4(Q). The center
Z(G) of G is simply denoted by Z unless some confusion may arise.

The inverse system limg S(G, X)x = S(G, X) has a right action of the group

A(G) = G(Ay)/Z(Q) *q(q), G**(Q)". Here Z(Q) is the closure of Z(Q) in G(Ay).

Remark 4.58. If Z, = {1}, then Z(Q) = Z(Q). If the morphism G(Q) — G*(Q)

is surjective (for example, if Z(G) is a split torus), then A(G) = G(Af)/Z(Q).

There is a canonical bijection mo(S(G, X)) = G(Q)+\G(Ay) of right A(G)-
profinite sets where G(Q)4 is the closure of G(Q)4 in G(Ayf). This is also the
completion of G(Q)4 for topology with basis of open of 1 given by the congruence
subgroups of G(Q) .

Let us pick 1 € G(Q)+\G(Af) and let SY(G,X) — S(G, X) be the connected
component corresponding to 1. This is the tower of connected Shimura varieties.
The stabilizor of S°(G, X) for the action of A(G) is A°(G) = G(Q), /Z(Q) *¢(),

G*(Q)T and we have the formula:

S(G,X) =[5%G, X) x A(G)]/A°(G)

for the action (s, g).h = (sh,h~1g). One important observation is that S°(G, X)
depends only on the connected Shimura datum (G, X ) and the group A°(G) de-
pends also only on G%". More precisely, we have that A%(G) = G4(Q) . *Gder (Q) 4
G4 (Q)* and A°(G) is therefore the completion of G%4(Q)T with respect to the

topology with basis of open of 1 the images of congruence subgroups of G4 (Q) .
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We have that S°(G, X) = limg S°(G, X)/K where the limit runs over the com-
pact open subgroups of G4"(Q),, and (S°(G, X)/K)(C) = Tx\X™* where 'y =
Gier(Q), N K.

Of course, there is also a simpler formula: S(G, X) = [S°(G, X)xG(A;)]/G(Q)+
but the disadvantage of this formula is that G(Q)y depends on G ! Nonetheless,
if we consider the de Rham torsor Myr(G, X) over S(G, X), it does not carry an
action A(G), but only a G(Ay)-action. If we let M{,(G, X) be its restriction over
S%(G, X), then we have the reconstruction formula: Myr(G, X) = [M35(G, X) x
G(Af)]/G(Q)+. We thus see that the reconstruction formula for the de Rham
torsor (with all its functorialities) from the connected component is slightly more
delicate. We also observe that MY, (G, X) has a reduction of group structure to a
M ﬁ’d”—torsor, but the equivariant structure depends on the M -torsor.

Remark 4.59. There is also a reconstruction formula for the principal G°-bundle,
which uses a group Agr(G) which fits in an exact sequence:

0— G°— Agr(G) — A(G) — 0.
We will not use this, but remark that this formula uses and depends on G°.

All this picture extends to the minimal compactification (except the last part
concerning the de Rham torsor) since a Shimura variety and its minimal compactifi-
cation have the same connected components and group actions extend by normality
of the minimal compactifications.

We now go back to our Hodge datum (G4, X;) and we fix an embedding in a
Siegel datum (G, X ). Attached to this fixed embedding, for any compact open K
we have the minimal compactificaton S*(G1, X1)k together with a finite surjective
map S*(G1, X1)x where S*(G1, X1)5 is the schematic image of S*(G1, X1)x —
5*(G, X)  for all small enough K with KNG(Af) = K. Let us denote S” (G, X;) =
limg S*(G1, X1)%- For the Siegel datum (G, X ), we have that A(G) = G(A;)/Z(Q).
We deduce that the closed subgroup A(G) of A(G) acts on S™ (G4, X1) and 5*(G1, X1)
in a compatible way. We also deduce that the Hodge-Tate period map: $*(G1, X1) —
S (G, X)) — FLG, py 18 A(Gh)-equivariant (by reduction to the Siegel case).
Remark that the A(G1)-action on FLg, ,, factors through the map A(G:i) —
GiY(Af) = GI(Qp).

We are now ready to extend things to (By, X, ). First, we have that S*(By, Xp,) =
[S*0(Gy, X1) < A(B1)]/A%(G1)]. We may also define §™ (B, X5,) =[S (G, X1)x
A(B1)]/A°(G1)]. By taking K-invariants, we define S™ (B, Xp,)/K = S*(B1, X, )%

Our first lemma is:

Lemma 4.60. There is a perfectoid space S*(B1, Xp, )77 ~ limg, S*(B1, X, )W
and a perfectoid space S*(By, Xp,)kr = limg, S*9(By, Xp, VK, K-
Proof. We prove the first statement. We see that K, acts on the scheme S*(B1, Xp, )57-

It acts with finitely many orbits on the connected components. We choose repre-
sentatives for the orbit, which are all of the form $*°(By, XB, )y, 7w for suitable

elements k; € B1(Ay). Let S(k;) be the stabilizor of the connected component
S*9(B1, X, ), 7w+ i Kp. This is a closed subgroup of K,. We deduce that

S*(B1, X, )iz = UilS*°(B1, X, ) 5wt ¥ Kpl/S(ki). We now want to define
S*(B1, X, )zw = UilS*°(B1, X, ), 5op— X Kpl/S(ki). To check that this is well
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defined, we remark that as an adic space (forgetting the action) each such space is
the product $*°(By, X, e, 7wk X (Kp/S(k;i)) of a perfectoid space (by lemma
and the results of with a profinite set. This is therefore a perfectoid space.
Checking that S*(B1, Xp, )z7 ~ limk, 8*(B1, X, ) %7 is now an easy exercise
using again We deduce that S*(B1, X, )kr = limg, S*9(By, XB, )k, kv by
[BS19], thm. 1.16. O

We can now construct the Hodge-Tate period map
THT 8*(31, XBl)KP — S*(Bl, XBl)ﬁ — ]:ACBI’MBI
by just composing the maps S*(B1, X, )z7 = S*(G1, X1)57 = FLG1 i = FLB s, -

Lemma 4.61. The Hodge-Tate period map is B1(Qp)-equivariant and Hecke equi-
variant away from p. The map S*(B1, Xp, )iz — FLB, up, 18 affine.

Proof. We may pass to the limit over K, and consider g*(Bl, Xp,) = g*’O(Gl, X1)x
A(By)]/AY(Gy)] — FLB, yp, - Since the map g*’O(Gl, X1) = FLB, pp, 18 A%(Gy)-

equivariant, we obtain by extension a A(Bj)-equivariant map: 3*(Bl,X B,) —
FLB, up, - The affine property follows from the Hodge case (G1, X1). O

We may now compare the Hodge-Tate and de Rham torsors.

Proposition 4.62. Consider the perfectoid space S (B1, Xp,)k» which is the
complement of the boundary in 8*(B1,Xp,)kr . Then there is a canonical iso-
morphism of M -torsors between My (pulled back via S (B1, X, )kr —
.7-"1.331,”31) and MG} (pulled back via S°"(By, Xp,)kr — S*"(B1,XB,)K,Kkv)-
This isomorphism if B1(Q))-equivariant and Hecke equivariant.

Proof. The canonical isomorphism just follows from proposition ?? and [£.51] given

theorem [£.53] O

We now consider the descent from (Bj, Xp,) to (G,X). We have a map f :
B; — G inducing an isogeny B¢ — Gder.

Lemma 4.63. (1) We have a continuous surjective map A°(By) — A°(G)

with kernel a finite group A.

(2) We have an étale morphism S°(By, Xp,) — S°(G, X) with group A,

(3) For any neat compact open subgroup K € G (Ay), we have a finite étale
map:

SO(By, Xp,)/f 1K) = $9(G, X) /K

with group A(K) = (G*"(Q)+ N K)/(B{*"(Q)+ N f~1(K)).

(4) A =limg A(K) and the map A(K') — A(K) is injective if K' C K are
neat.

Proof. We let Cong(B;) be the set of congruence subgroups of B{*"(Q), and
Cong(G) be the set of congruence subgroups of G%"(Q,). We claim that the
map f : B (Q)t — G (Q)* induces a map f~! : Cong(G) — Cong(B;). In-
deed, let K C G%"(As) be a compact open subgroup, then f~!(K) is compact
open in B (Ay) and f~HG¥"(Q)t N K) = B{"(Q)* N f~1K. Since the maps
B{er(Qg) — G9¢m(Qy) are local isomorphisms for all prime numbers ¢, we deduce
that the subset f~!(Cong(G)) is cofinal in Cong(By). If T' € Cong(B1), then f(T')
is an arithmetic subgroup of G%"(Q), but not necessarily a congruence subgroup!
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For any I" € Cong(G), the group f(f~*(T)) is a finite index, normal subgroup of
I. Let K C G%"(Ay). Welet 'y = T'NK and A(K) = I'x/f(f*(Tk)). Let
g : G — G be the natural isogeny. We observe that for any sufficiently small
I' € Cong(B;) or I € Cong(G), themap fog:I' — G*Q)* or f: T — G4(Q)*
is injective. Indeed, remark that the kernel of G¥"(Q); — G*(Q)* is a finite
group, and Npecong(q)l' = {1}. The groups g o f(Cong(B1)) and f(Cong(G)) are
the basis of open neighborhoods of 1 for two topologies 7(B;) and 7(G) on G4(Q) ..
We know that A%(B;) and A°(G) are the completion of G%¢(Q)* for the topologies
7(By) and 7(G) respectively. Therefore, A°(B1) = limrecong(p,) G*(Q)*/T and
A%G) = limrecongqy G*(Q)T/T. By the Mittag-Leffler criterion the sequence

0 —=1limA(K) - lim GQ)*/f Tk — limA°(G)/Tx —0
K FH () T

is exact and and writes 0 - A — A%(B;) — A%G) — 0. The point 3 follows
by noting that S°(Biy, Xp,)/f 1 (K) — S°(G, X)/K has complex uniformization
FTITR\XT — I'g\ X and the second point follows by passing to the limit. It is
easy to check that if K’ C K are neat, A(K') — A(K). Therefore, A is a finite
group. ([l

We are now ready to descend everything from (By, Xp,) to (G, X). First, we
have that S*0(G, X) = S*O(By, Xp,)/A and we may also define 5°°(G, X) =
S%(By, X5,)/A. We have S*(G, X) = [S*°(G, X) x A(G)]/A°(G). We may also
define 5" (G, X) = [g*’O(G,X) x A(@)]/A°(G). By taking K-invariants, we define
S1(G, X)/K = 8*(G, X)%

Theorem 4.64. Let (G, X) be an abelian Shimura datum as above.

(1) There is a perfectoid space S*(G, X))z ~ limg, S*(G,X)m and a per-
fectoid space S*(G, X )k» = limg, S*7O(G,X)Kpr.

(2) We have a Hodge-Tate period map mur : S*(G,X)kr — S*(G, X))z —
FLq,, which is G(Qp)-equivariant and Hecke equivariant. The map S*(G, X )77 —
FLaq, is affine.

(3) There is a canonical isomorphism of MG" -torsors between My (pulled
back via S (G, X )kr — FLq,,) and M5 (pulled back via S (G, X ) g» —
SY(G, X )k, kv ). This isomorphism if G(Qp)-equivariant and Hecke equi-
variant.

Proof. For the first point, we observe that the group A(KP) = limg, A(K,KP)
acts trivially on the flag variety. Since w7 was affinoid for (By, Xp, ), we are thus
in a position to apply lemma W and lemma to deduce that S*9(G, X)IT,, is
perfectoid. We may now extend the result from S*%(G, X )7 to S*(G, X )% as in
the proof of lemma [£.60} ' ’

Passing to the limit over K, we have a Hodge-Tate period map g*’O(Bl, Xp,)/A =
?’O(C{X) — FLau = FLB, pp, which is A(G) equivariant. We deduce that
there is a A(G)-equivariant Hodge-Tate period map S*(G7 X) = FLg,. The
representability of limg, S*°(G, X)k, k» follows from [BS19], thm. 1.16.

For the last point, we first pass to the limit over all K to turn the Hecke ac-

tion into a G(Ay)-action. We see that the two torsors are canonically isomorphic
over §0(G, X) by descent from S%°(By, Xp,) and proposition We now
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need to check that the G(Q)y+ action match. Granting the isomorphism of the
torsors, we see that the difference between the two G(Q)-actions is given by a
continuous map G(Q); — M £(890(G, X)). This map is semi-linear with respect
to the action of G(Q)4 on H(S*°(G, X), Osano(c,x))- It therefore gives a class
in H(G(Q)4, M5(8*™°(G, X))). We wan to show that this class is trivial. It is
certainly trivial when restricted to Im(B;(Q)+ — G(Q)+) =T'. We have the short
exact sequence of pointed sets in non-abelian cohomology :
1= HY(G(Q)+/T, (M (§*°(G, X))") = HY(G(Q)+, M (S™(G, X))

— HI(T, M (8"%(G, X))
We claim that H(S*™%(G, X), Osano(g,x))" = Cp, and therefore that
(M (8™™°(G, X)" = M(Cy).

It suffices to check that H°(S%"%(By, Xp,), ﬁSa,n,O(Bl)XBl))Bl(Q)-F = C,. To prove
this, first observe that the invariant are functions on some finite level connected
Shimura variety by [Schl3al, coro. 6.19, and then use Zariski density of Hecke
orbits. It follows that the cohomology class is actually given by a group homo-
morphism G(Q)4 — M (C,), trivial on T'. By continuity, it suffices to check that
this group homomorphism is trivial on G(Q). In order to conclude, we can con-
sider special Shimura varieties (H, Xy) — (G, X). By functoriality, we get that
the pull back of the two torsors is canonically isomorphic with their H(Af)-action
over S(H, Xyr) by lemma Since G(Q)+ is generated by the G(Q)+ N H(Q)
where (H, X ) runs over all special Shimura varieties by [Har85], lemma 3.13.1, we

conclude that the map G(Q)+ — M (C,) is trivial.

(]

4.5. Affiness of the truncated Hodge-Tate period map. In most of this pa-
per, we work on finite level Shimura varieties rather than perfectoid Shimura vari-
eties. For this reason we introduce some truncated Hodge-Tate period map.

Let (G,X) be an abelian Shimura datum. Let K = K,K? C G(Ayf) be a
compact open subgroup. The group K, acts on FLg,,. We form the quotient
space FLg,,./K,, equipped with the quotient topology from the surjective map
1k, : FLay = FLau/Ky. We merely view FLg /K, as a topological space. We
adopt some definitions. We say that an open U C FLg,,/K, is affinoid if ng (U)
is affinoid. If V. C U C FLg /K, are open we say that V is a rational subset
of U if W}i(V) is a rational subset of Wl}i(U). We let the residue field of a point
x € FLg /K, be the residue field of any lift of this point to FLg,,. To illustrate
all these definitions, we have the following lemma:

Lemma 4.65. Any point v € FLq /K, with finite residue field over Q, (i.e. a
classical point in the sense of rigid analytic geometry) has a basis of neighborhoods
consisting of affinoids {U,}n>1 with the property that U,y1 C U, is a rational
subset.

Proof. Since G splits over F', it admits a reductive a model over Op. We let G be
the (quasi-compact) adic space attached to the p-adic completion of this reductive
model. The group G admits a filtration by normal open affinoid subgroups G,, which
form a basis of neighborhood of the identity (take G,, the subgroup of elements which
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reduce to 1 modulo p™). Let y € FLg,, be a lift of . Then yG,, — FLg,, is an
affinoid for any n > 1 (this is a closed tube centered at the point y, this is also
where we use that x has finite residue field over Q). We now consider the group
GnK, C G. The connected component of the identity of this group is G,,, and
the quotient G, K, /G, is a finite group. Then we find that yG, K, = Hiel ykiGn
for a finite set I and elements k; € K,,, and is therefore an affinoid which is /-
invariant. The {yG, K, /K, },>1 form a basis of open neighborhoods of z. Moreover,
yGnKp C yG,_1K, is a rational subset because yk;G, C yk;G,—1 is a rational
subset. (]

The main result of this section is the following:
Theorem 4.66. There is a continuous map:
TuTK, : S}t — FLG ./ Kp

which is equivariant for the action of the Hecke algebra C°(K\G(Ay)/K,Z) by
correspondences.

Moreover, any point x € FLq /K, with finite residue field over Q, (i.e. a
classical point in the sense of rigid analytic geometry) has an affinoid neighborhood
U such that for any rational subset V-C U, (rur,k,) (V) is affinoid.

By theorem {4.64f there is a map 7g : S;Tp — FLg,, which is equivariant for the
action of the G(Qp). For any point € FLg ,, there is an affinoid neighborhood
U of z such that m;;.(U) is affinoid. Moreover, w5 (U) = limg, 755 (U) x, where
for K, small enough, wﬁ}(U) K, < is affinoid. We call an open affinoid in

S*
KyKP
FLg,, with these properties a very good affinoid. Clearly, a rational subset of a
very good affinoid is a very good affinoid.
We can define truncated Hodge-Tate period maps:

THT,K, * S;{pr — Si}pr — fﬁG,u/Kp-

Lemma 4.67. The map w1 K, s continuous.

Proof. We have a continuous map (of topological spaces) limK;D Sk — 81*(7 —
P

FLg,y- For all normal subgroup K, C K, the map S}‘(I,)Kp — Si kv I8 surjective

and the target carries the quotient topology ([Han19], theorem 1.1). The continuity

of the map of the lemma follows. O

Lemma 4.68. Let V C FLg,, be a very good affinoid invariant under a compact
open subgroup K,. Let V be its image in FLq ,/Kp. Then wﬁ%’Kp (V) C 81*<pr
s affinoid.

Proof. Tt is part of the definition that 7, (V') is the pullback of an affinoid 751 (V) K, C

Sﬁ for some KIQ C K,, a normal compact open subgroup. We can further pull
P ~
back WBIT(V)K; to an affinoid U C SI*(;K,,. The space Sj k., is the categorical

quotient of Sk, y» by K/K), and the image of U in Sk, k» 1s indeed affinoid. [
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Proof of Theorem [{.66, The continuity of the map is lemma[d.67] Let z € FLq /K,
with finite residue field over Q,. Let y be a lift of x in FLg ,. For n large
enough, 2G,, — FLgq,, is a good affinoid (where G, is the subgroup of elements
which reduce to 1 modulo p” as in lemma . We form the group G, K,.
Then yG,K, = [l;c; vkiG, for a finite set I and elements k; € K,. Moreover,
yki:Gn = yGnk; is a very good affinoid (because the property of being a very good
affinoid is preserved under G(Q,)-action). A finite disjoint union of very good affi-
noids is a very good affinoid. We can apply lemma @ to yGnK,. The image of
yGnKp in FLg ./ K, provides the open neighborhood U of « as in the theorem. Fi-
nally, since any rational subset of a very good affinoid is again a very good affinoid,
a second application of lemma, proves the last point. O

THT,K.
tor P

We also adopt the notation mip f S?;’KP’E =Sk, ke — FLau/Kp.

4.6. Reduction of the group structure of the torsor M¢%. The group G is
defined over Q,. We have chosen a finite extension F' of @@, which splits G. We
have also fixed a representative of the cocharacter u over I’ and let P, and M, be
the corresponding parabolic and Levi subgroups of G. We will soon assume that G
is quasi-split over Q,. When this is the case we assume that P, contains a Borel
B defined over Q,. We take a reductive model for G defined over Spec Op. By
abuse of notation, we keep denoting this model by G. We also have models for
P, and M, over Spec Op. On the analytic side, we have the (non-quasi-compact)
groups G, Pi", M" all considered over Spa(F, Or), and there is an embedding
G(Qp) — G*". Because we have fixed an integral model for G, we also have the
quasi-compact groups G — G, Py, < Pi", M, — MJ".

The goal of this section is to prove that using the Hodge-Tate period morphism,
we can produce some finer structure on the torsor MG%. These result generalize
those obtained in [AIP15], prop. 4.3.1 for example. These refined structure will
allow us to p-adically interpolate automorphic vector bundles.

4.6.1. Preparations. We first consider a Hodge datum (G, X) and let ¥ be a perfect
cone decomposition. We start by giving a detailed description of the torsor arising
from the map:

tor . tor
7THT . SKP,E — ]:ﬁ(;gu.

Let S — Si& 5, be a map from a perfectoid space S. By composing with 757,

we get a map S — FLg,, which can be described as follows. Over S, we have a
map P < G xS, from the Pj"-torsor P to the trivial G*"-torsor, which is
equivariant for the natural morphism of groups P;" — G".

There is an étale cover S — S such that the torsor P&2, x g S becomes trivial
and adquires a section gg € ga"(S ), unique up to left multiplication by elements

of P;"(S) so that we get a commutative diagram of torsors:

Pon xg S ——= G x S

"

(Pam x S).gg —= G x S
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Over S x5 5, there is a section hg, g € P"(S x5 S) such that hg, g.pigg =
P395-

The class hg, g is a 1-cocycle which describes the original torsor Py . Chang-
ing gs by left multiplication by an element of Pﬁ"(g) will change hg, g by a
coboundary.

The image of g5 € FLg,,.(S) descends to give a point in FLg,(S): the mor-
phism S — FLg,, we started with.

The group G*" acts on the right on FLq . Concretely this action sends gg to
g5-9- This action does not affect the construction of the torsor P#%. wich is indeed
G%"-equivariant.

4.6.2. Integral structure. Let (G, X) be an abelian datum. Recall that M, is (a
quasi-compact) open subgroup of M. The following proposition can be inter-
preted as the existence of an integral structure on the torsors Mg% or M.

Proposition 4.69. Let K, C G(Q,)NG(OF). The étale torsor M3} = MGPp over
S}%Kp,z has a reduction of structure group to an étale Mj,-torsor Mar = Mur.

Remark 4.70. In the Siegel case, the torsor M3} is (ignoring the center) the torsor
of trivializations of the vector bundle w4, the conormal sheaf of the universal semi-
abelian scheme over St K5 (well defined up to prime to p-isogeny by our choice
of level structure). A possible integral structure is obtained by declaring that an
invariant differential form is integral if it extends to an invariant differential form
on an integral model of the universal semi-abelian scheme. However, the integral
structure we consider here is different. Namely, we declare that a differential form
is integral if it is in the span of the image of the integral Tate module for the
Hodge-Tate period map. By [FarlI], Theorem 2, section 5.3.2. we can explicitly
bound the difference between both integral structures.

Proof. We first consider the Hodge case and take a perfect cone decomposition 3.
We work over 5?5,2- Let S — S}é’;,z be a map from a perfectoid space. We first
explain how to define the torsor Mg over S (in a functorial way).

The map S — F~Lg,, is described by an element g5 € G**(S) for some étale
cover S — S. We are free to change gg by left multiplication by an element of
Pﬁ"(g) Thus, up to passing to some further cover of S, we may actually assume

that gg € G(S) (because FLg, = P,\G = PI"\G"), and this new element is

well defined up to multiplication by an element of P,(S). The torsor associated is
defined by the cocycle p3gs.(pigg) ™" = hgy o5 € Pu(S xs5) CP(S x5 5). We
therefore have produced a reduction of the torsor P4 to a torsor Pgr under the

group P,,. We can take the pushout under the map P, — M, (which amounts to
projecting hg, .5 in M, (S xs S)) to get the desired torsor M.

We now proceed to descend from 3}?5,2 to S?;,KP,Z' We have an étale torsor
HT XSige s

S}?QE. We claim that this open descends to an open subset of M%. The map

HT Xster, S}é’{;,z — M identifies the topological space |[M$J| with the quo-

#r — Siik,s and we have defined an open subset Mpyr C

tient of Mt X gtor S425 .| for the action of K,,. We have an identification between
K,2 s

Kp-invariant open subsets of M, Xgtor. S s and open subsets of M. The

only thing to check is therefore that M g is indeed invariant under the action of K.
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We go back to considering a map S — S s, described by an element g5 € G (S).

Under right multiplication by k& € K, we get a new element gzk € Q(S’) (it is
crucial here that k € K, C G(OF)) and the corresponding reduction of the torsor
described by the element p3ggk.(pigs.k) ™t = p3g5.(pTgs) " doesn’t depend on k.

We need to prove that the action map M{" x My — My x Mpy (which is
an isomorphism), induces an isomorphism M, x Mypr — Mpup X Mygp. In other
words, we need to prove that the two open subsets M, x Mgy and Myp x Mgt

tor

identify via the action map. This can be checked after pull back to Si¢} s, and this is
true. Finally, the morphism Mpyr — S}?TE is smooth, and surjective on geometric
points. Therefore, there are sections étale-locally and M g is an étale torsor.

We remark that we may now change the cone decomposition and use pull back
to define the torsor on a non perfect cone decomposition.

We now do the extension to the abelian case using the strategy [£.54] We consider

a diagram of Shimura datum:

(B1,XB,) — (B, XB)

| l

(G1,X1) (G, X)

We may assume that the various morphisms between the groups G, By, B, G over
Q extend to morphisms over Op. We first go from G; to B;. We have a map
T StOT(BhXBl)K,g — StOT(Gl,Xl)KI,gl and a map 7y StOT(BhXBl)K,g —
S(T, Xr)k,. For suitable compact open subgroups. We can push-out the K3 -
torsor given by the tower of Shimura varieties along the map K5, — T7° (where
T is the quasi-compact group attached to T — Spec Op), to get a torsor Tyr.
The product 77 Mg X Mgb, TaT gives a M, Bl—torsor. We can then descend from

(B1,Xp,) to (G,X). We consider a connected component S™9(G, X) g y. We
have a finite flat map S*"°(By, Xp,),~1x s — S*"(G, X) k5. We consider the

pushout Mg XM‘;BI Mﬁ o and we claim that this torsor descends. Note that
away from the boundary, we can give a direct construction (using the Hodge-Tate
period map as above). The descent data and all the functorialities extend by lemma
4.55] O

Remark 4.71. The above argument uses crucially that we know that M, descends
from S} 5 to S5, because pro-¢tale descent is not effective in general.

For k € X*(T¢)Mw7, the sheaf V, is modeled on the representation V, of
Mg" defined over F'. Recall that V; is defined as the module of sections f(m) €
HO(Mman, Omgn) such that f(mb) = —wo,nr(b)f(m) for b € B N Mj". Using
that

M /(BT A M) = M /[ (BAM,)
we find that this is also the module of sections f(m) € H%(M,,, Oprq,) such that
f(mb) = —wo ark(b) f(m) for b e BNM,,.

We can define an Op-submodule V. C V, by considering sections f(m) €
HO(M,,, ﬁj{,lu) such that f(mb) = —wo n,x(b)f(m). Since H*(M,,, ﬁ/t(“) is open
and bounded in H'(M,,, € ‘M, ), we deduce that V. F is a lattice in Vj;, stable under
the action of M,,.
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Corollary 4.72. For all k € X*(T)Mw the locally free sheaf V. over Si%; has
an integral structure VI in the sense of definition .

Proof. We consider the map g : Mgr — SE%. We let VI be the subsheaf of
g*ﬁj\',lm of sections f(m) which satisfy f(mb) = —wo amk(b)f(m). 0

4.6.3. Further reductions of the group structure. We assume that K, = K ,,,» p» for
m' >V € Zso and m’ > 0 (see section . This is a compact open subgroup of
G(Qp) with an Iwahori decomposition. For any w € MY we let K} w,m, be the
projection of wK,w™* NP, to M,.

We will describe this group. We can define Ny, o n, = Kpw,n, N Un, and
Npwm, = Kpwn, NUn,, where we let By, be the Borel subgroup of M, which
is the image of B in M, EMH the opposite Borel, and Uy, (resp. m) be the
unipotent radical of By, (resp. Buy,). We also recall that Ty = Ker(T(Op) —
T(Op/=” Op)NT(Q,) =T NK,.

Proposition 4.73. For any w € MW, the group Ky w1, is a subgroup of the Iwa-
hori subgroup of M,,(Or). Moreover, it admits an Iwahori decomposition. Namely,
the product map:

71 =T
Npw,m, X wlyw™" X Npw m, = Kpwm,

is an isomorphism.

When G is unramified, M,, is defined over Q,, w is Gal(F/Q,)-invariant, and
K, = K, 1,0 is the Iwahori subgroup of G(Zy), then Ky o w1, is the Iwahori subgroup
of M,,(Zy).

Proof. Let U and U be respectively the unipotent radicals of B and B. We have the
Iwahori decomposition K, = N, x Ty (Z,)x N, where N, = K,NU is U(Q,)NU (OF)
and Np =K,N UcC U(Qp) is the subgroup of elements reducing to 1 modulo o™
It is useful to give a more precise version of this decomposition. We let ® be the
set of roots (defined over F). We have ® = &1, [[®,, [[®TM[[@M, where
@y = @F, [P, is the set of roots in M. We also let &9 = ®/Gal(F/Q,) and have
Oy =7 [P, (because G is quasi-split).

For all apg € ®¢, we let Uy, — G be the corresponding unipotent group. For
all @ € ® we also denote by U, — G, the one parameter subgroup. We have
Uao XSpec @, Spec F' = Haeé,a'—mo Ua Xspec 0 Spec F'. We consider the product
map (in any order of the factors):

[] Va0 (@) x T(Qy) = G(Qy)-

@o

This maps induces a bijection between K, and the set of elements ((nag)aoedy,t)
which satisfy: 74,,t € G(Op), o, =1 mod @™ if g € 5 andt =1 mod w"".
We get that wK,w~ N P, identifies (via the product map) with the set of elements
(Wnaew ™) aged, € WU (Qp)w ™ wtw™ € wT(Q,)w™") such that:

® Ny, t € G(OF),

® Ny, =1 mod p™’ if ag € @,

et=1 modp",

® Ny, €U, = Ker(UaO(Qp) NG(Of) — HQEM,%,,M’QHQO Ua((’)p)).
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We let U/, = Im (U}, — [Hocw-—10 0500 Ua(OF)). We deduce that K, . a1, is
in bijection (via the product map) with the elements ((wna,w™")ased, € WUL w™ wtw™! €
wTyw™") such that n,, =1 mod @™ if ag € ®;. The fact that any element of
K} w,m, writes in this way follows from the previous discussion. The injectivity of
the product map is a general fact.

We now observe that w € MW and therefore ®}, C w(®*) and &3, C w(®™).
We deduce that w= 1@y N @~ = w™1®;, and w1 @y N+ = w1d},.

It follows that if ag € O, wUY w™" C Up, (OF) and if ag € @y, wU w™! C
UM# (OF). Therefore, we deduce that K n, = Npw n, X wlyw™! x vaw,Mu‘
By the condition that 74, =1 mod @™ if ay € &5, we deduce that Ky wom, 18
a subgroup of the Iwahori of M, (OF).

Finally, if G' is unramified, and M, is defined over Q,, the partition ® =
O 1@y, [12HM ] @M descends to a partition &g = CID(J{’M 12 11 M1, M.
If w is rational, then it acts on ®y. Assume that K, = K 1,0. The description of
K, w1, simplifies and we find that U} = {1} if ag ¢ w™ '@ ps, U = Uq, (Zp) if
o € w g pr. It follows that K . ar, is the Iwahori of M, (Z,).

(I

Ezample 4.74. The group K, a1, may be a little strange and need not be open.
Let us consider the following example. We assume that Gq, is Resq , /g, GL2, with
standard diagonal torus Tp, and upper triangular borel Bg,. We let K, = K} 1.
We identify GQp2 = GL2 x GLy. We assume that p is defined over Q2 and is
given by the cocharacter t — diag(t,1) x diag(1,1) of T ,. We deduce that P, is
Bq,, x GLz, and that M), is Ty , x GL2. We finally observe that K, NP, is B(Zp)
and therefore K, ,, is the image of B(Z,) in T(Qp2) x GL2(Qp2).

For all m,n € Qxg, we let g}m be the subgroup of G of elements which reduce

to U modulo p™*+¢ for all € > 0 and to U modulo p" (see section [3.3.3). We let
Ml C M,, be the group of elements which reduce to U, modulo p™Te for all

,m,m

€ >0 and to HM,L modulo p”.

Lemma 4.75. Let w € MW and let K, = Ky iy with m’ € Zq and b’ € Zxg.
Let m,n > 0 and assume that 0 < m —n < m' — 1. Then Ky w,m, normalizes

1
M -

Proof. By lemma K, normalizes G} . Moreover, Im(wG}, ,w=' NP, —
MIL) = M}L,m,n'
(I

1

It follows from this lemma that K a1, M, 1, 0,

is a subgroup of M,,.

Proposition 4.76. Letw € MW and let K, = Kp ' p withm' € Z~o andm/ > V.
Letm,n > 0 and assume that 0 < m—n < m/—1. Over (ﬂ}?§~7Kp)’1(]Cw7k[7n,nKp) C

S;(O;K,,,E7 the torsor Myt has a reduction to an étale torsor MyT mn K, under

1,c
Hymm, et

the group K, \, M

Proof. We first do the Hodge case. The proof is very similar to the proof of proposi-

tion We observe that |Cy i [mnKp = PY"\Pe"wG), K. Since K, normalizes
g

K, = K,G}, ,, is a group. It follows that

1
gm,n? m,n

1Cw k[mnEp = (Pﬁ” N prQ}nynwfl)\prg;%nwfl.w
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We first construct the torsor My, » as an open subset of
Mur Xster, (777) " (1 Cus ke lmn K ),
and prove it is Kp-invariant to descend it to an open subset of
Mur %sien (1177 x,) " (Cuelman Kp)-

Let S — (7%5) " (Cw.k[mnKp) be a map from a perfectoid space S. The
torsor Pyr is described as follows: there is a cover S — S and an element
g5 € G(S) such that hsy .5 = P595-(P1gg)™" € Pu(S x5 S5) is a 1-cocycle de-
scribing the torsor. By assumption, we may assume gz € wg#?nKP, so that
hgy.g € Pul(S x5 8) Nwg}l, ,Kyw™ and its image in M,, describes a reduction
METmmn i, of Muar X gter, () 1 (Cw k[m.n Kp) to a Kp,w,M“M}L,myn—torsor.
One checks easily that this torsor is Kp-invariant and therefore descends to a torsor
over (ng‘,l(p)_l(]cw,k[mpr)'

The extension to the abelian case proceeds exactly as in the proof of proposition
We may use section to make sure that the subset |Cy g [m nK, of the
flag variety doesn’t change when we consider the different groups Gi, B1, G. (]

Proposition 4.77. Letw € MW and let K, = Kp ' » withm' € Z~o andm/ > V.
Let KZ’, = Kpmrpr withm” >m' and m"” > V" > V. Let m,n > 0 and assume
that 0 <m—-n<m/ —1. Letr,s >0 withr>m,s>mand 0 <r—s<m’ — 1.
There is a commutative diagram:

MET,rs K/ MuTmmn, K,

| |

(772([)5‘,}(1’))_1 (]Cw’k [T,SK{D) - (Wg%,f(p)_l (]Cw,k [m,nKp)

1

The top horizontal map is equivariant for the map K;)’w’MMMH’T’S

- Kp;vauM}L,m,n‘
Proof. This follows from the construction of the torsors. (|

We have a map M;ll,nn — M, » where M, ,, is the sub-group of M, of elements
reducing to 1 modulo p”. Let K, = K, s p» with m’ > 0, m’ > b’ and let m,n > 0
be such that 0 < m —n < m’ — 1. Over (1i7f g )~ (JCw,kln,nKp), we define the

pushout:

1
KP«U’JWMMMJL,H Kp

Murnx, = MuTnn K, X M, My

It is sometimes more convenient to work with this torsor because the group M,, ,,
is affinoid.

Proposition 4.78. Assume that (G, X) is a Hodge-type Shimura datum. Let K, =
Kpmr - For any affinoid open Spa(R, R*) — (77 g )~ (|Cuw k[nn Kp) which we

assume to be pregood, there exists KZ’) C K, such that over Spa(R,R™) XSE?;KP,Z

tor ; A
SK},)K,,,Z the torsor Mur n K, s trivial.

Remark 4.79. It will be important for certain vanishing theorems that we are able
to prove the triviality of the torsor after a finite flat cover for pregood affinoid
opens.



82 GEORGE BOXER AND VINCENT PILLONI

Proof. Let us consider a decreasing sequence of compacts K, with K, = K,
and NgK,, = {1}. Let Spa(Ry, Rf) = Spa(R,R*t) x St SR kv Let

=
Spa(Reo, RE) = lim Spa(Ry, ;) be an affinoid open of Sih s We first observe
that the torsor M |spa(r, r+) is a Stein space, which can be written as an increas-
ing union of quasi-compact affinoid subsets:

Mrr|spar,r+) = Uiso(Mr)i-

Over Spa(Rs, RY) we observe that the the torsor My, Kk, is trivial. Indeed,
this torsor is pulled back from the following torsor (over the flag variety):

(Up, N prg7lw71)\prgnw71 — (P, N prgnwfl)\prgnwfl

which is trivial because of the Iwahori decomposition of the group wK,G,w=!. It
follows that M g7 n K, X Spa(Re, RY) is affinoid, and is a rational open subset of
(M4 % Spa(Reo, RL) for i large enough.

We deduce that Mg, K, ¥ Spa(RbR,j) is a rational subset of (M%4); x
Spa(Ry, R:) for k large enough (by approximating the equations defining Mg, 1, X
Spa(Rs, RY) ). Therefore, M1 0.k, x Spa(Ry, R) = Spa(T, T") where (T,T)
is an (Rk,Rz) algebra topologically of finite type. Moreover, there is a section
T+® Rf RY — R} . We now prove that this section can be approximated to a sec-

tion T & RY RZ‘, — R}, for k' large enough. By |EIK73|, theorem 7, there is a finite

type R; -algebra A, such that A[1/p] is smooth over R} [1/p], and whose p-adic com-
pletion is isomorphic to T+. By [EIk73], theorem 2, there exists integers ng,r > 0
with the property that for any n > ng, for any map of Rk"'—algebras fA— RZ‘, /p"
there is a map f : A — Rkt with the property that f mod p"~" = f mod p"~"
(the ideal denoted Hp of the reference contains p" for a large enough integer h,
because A[1/p] is smooth over R} [1/p]). Let n = ng + r. We consider the section
s: A — RL. Its reduction mod p" factors through s mod p™: A — R,i', /p™ for K/
large enough and therefore we find a lift to a section §: A — R:,. (]

Remark 4.80. We ask the following question: Let & be an affinoid adic space and
let H be an affinoid group over S. Let T — S be a H-torsor for the étale topology.
Is 7 affinoid over & ?

4.6.4. Maps between torsors. We consider for the moment the following abstract
situation. We assume that we have two analytic groups K — G. For i € {1,2},
we let IC; be K-torsors over an adic space X'. We let G; be their push-out via
the map K — G. Let a: G; — G2 be a map of G-torsors over X'. Over any cover
U — X which trivializes both K; and Ks, we can represent the map « by an element
g € G(U), well defined up to right and left multiplication by (/). We shall say
that the map « is locally represented (over U) by KgK. When K is clear from the
context, we also say for simplicity that the map is locally represented by g.

Let (G, X) be a Hodge datum. Let t € G(Q,). Let K,K? be a compact open
subgroup. For suitable choices of polyhedral cone decomposition, we have a corre-
spondence:
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KP(K NtKpt—1),5"

ST T

tor tor
S
KrK, X KPKP,E/

We get an associated maps of pro-Kummer-étale right torsors:

*an *xran
%) pet P1 pet

|

pggpet p)lkgpet
which by definition is locally represented by K,tK,. We also deduce a map of

étale right torsors:

* an an
ps My ——= pi My

]

psMur piMur

Let w € MW and let K, = K,y with m’ > 0 and & > 0. Let m,n > 0
tor

and assume that 0 < m —n < m/ —1. Over pgl((ﬁHTK ) (1Cw ki Kp)) N
P (795 1 ) (1Cw klmnKp)), we have a map of étale right torsors:

THT,K,
Py MYy PiMr
pPsMur pPiMur
PsMHET mn K, PIMHuT m K,

Proposition 4.81. Let w € MW .
Let t € T(Qp). The map ps MGy — pt MYy restricted to

pz_l ((772?% Kp)_l(]cw,k[mpr)) N pl_l ((Wf‘%“ K,,)_l(]cw,k[m,nKp))
is locally represented by
P’w M, M}L m nwtw—lKP,w,MuMl,m,n'

Proof. Locally for the pro-Kummer-étale topology we have sections x2 € p5Gpet
and z; € pjGpe:- Note that z; and zo are well defined up to translation by K,

There is an isomorphism:

p2 pet > pl pet

| !

QTQG(QP) — gflG(Qp)
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where the bottom map is zeg — x1tg. Therefore, the map p3G;5, — piGye; is

locally represented by ¢. We now get by pushforward to G*" a diagram:

P3Gper XG(@,) 9" —= PiGpet Xa(q,) 9"

| !

t
mZQan 1 gan

The torsors p3G,., and piG,7, arise by pushforward from torsors piPg and

p5 P&y and we can locally find a diagram for trivializations x4 and z/:

* an * an
P3Py —= piPhr

]

ry Pyt ——= 2y P"
We pick w € MW and we work locally over

-1 — —1 -1
) ((Wf*?”erp) 1(]Cw,k[m,nKp))mp1 ((ﬂ%l{p) (]Cw,k[m,nKp)) < ?;(Kpmmpt—l),z”-
Concretely, this means that zo = zhwhy and 1 = xjwhy for h; € Q,%l_’nKp and
the bottom map is described by
2hp = Tohy 'w Tl p s xithy fw T p = 2 whithy fw ™ p.

This forces whythy 'w=" € Py
By pushforward to M%%. we get:

* an * an
bPoMygr —=DP1Mpar

]

where x5 and ) are now viewed as sections of ps My m 0, k, and pfMuyT mn K,
and the bottom map is
xhm s ot (whithy fw=1)m
where (whithy "w=1) is the image of (whithy 'w™') via the map Pit— ME™. By
lemma (whithy 'w™) € Ky w g, Muwtw ™ Ky 0, MY, ..
([l

Lemma 4.82. For anyt € T(Q,), we have that
Im(wK,Gp, LK pGr, sw ™ NP — M) = Ky ar, Mo, ywtw™ Ky ar, M3, .
Proof. We will prove that (prg}n7nthg;7nw*1) NP =

((wKPg}n,nwil) n Pzn)wtwil((prg}n,nwil) N Psn)

Any element in k € wK,G,, , w™" writes uniquely [], .4 ko (for any fixed ordering
of the roots). Let

kwtw 'k € (wK,G, wilwtwflepg}nmw*l) nPy"

m,n
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with k= Hae<1>+u<1>;1 ka Ha€®—>M ko and k= Haefb—=M k:x Hae@*U@z@ klo‘ A nec-
essary and sufficient condition that kwtw 'k’ € Py is that E'wtw k" € P
where k" = Hae<1>;4 ko and k" = HQE¢X4 K. But K'wtw k" € Uﬁzn x T and
necessarily, k" = k" = 1. |

We now check that proposition [£.81] continues to hold in the abelian case.

Proposition 4.83. Let (G, X) be an abelian datum. Let w € MW. Lett € T(Q,).
The map ps MY — pi MYy restricted to

p2_1 ((772%",}(,,)71(]Cw,k[mpr)) N pl_l ((WE;,KP)71(]Cw,k[m,nKp))

is locally represented by

c 1,c —17-c 1,c
prw-,MuMlhm1"wtw Kp,wyM,l,M#,m-,n :

Proof. 1t suffices to prove the statement over Sg x, by lemma Over S xc
we can reproduce the argument given in the Hodge case.

5. OVERCONVERGENT COHOMOLOGIES AND THE SPECTRAL SEQUENCE

Our goal in this section is to introduce a spectral sequence which computes
classical finite slope cohomology in terms of the finite slope parts of certain over-
convergent cohomologies indexed by w € M. Moreover we will prove a classicality
theorem comparing the small slope part of classical cohomology in regular weight
with the small slope part of a single overconvergent cohomology for a w determined
by the weight. We will also prove for possibly non regular weights a vanishing
theorem for the classical cohomology.

5.1. Correspondences and cohomology with support. We begin by discussing
the action of a cohomological correspondence on the cohomology with support of
a sheaf. Let (F,Op) be a non-archimedean local field and let X be an adic space
locally of finite type over Spa(F,Op). Let

C
AN
X X

be a correspondence, where C is locally of finite type and p; and py are morphisms
of adic spaces.

5.1.1. Action of the correspondences on subsets of X. Let P(X') be the set of subsets
of X. Let us denote by T : P(X) — P(X) the map which takes B € P(X) to
p2(py1)(B) and T* : P(X) — P(X) the map which takes B € P(X) to p1(p; *)(B).

Lemma 5.1. Assume that py is finite flat (see [Hub96|, section 1.3 and 1.4). The
map Tt sends closed subsets to closed subsets and open subsets to open subsets.

Proof. Let Z be a closed subset of X. Then py ' Z is a closed subset of C and T*(2)
is closed by properness. Let 4/ C X be an open subset. Then p,* (i) is open in C
and T*(U) is open since finite flat morphisms are open ([Hub96], lemma 1.7.9). O
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5.1.2. Action of the correspondence on a sheaf. Let F be a sheaf of &y-modules.
Let U C X be an open subset of X and let Z C X be a closed subset. We assume
that T'(U) is open and that p; is finite flat. We also assume that we have a map
T : p5F — p3.#. We can define a map

T : Rl zarey(TMU), F) = Rl 7o zyru U, F)

as the following composite:

Qa, — * b — *
RE zaruy (TU), F) — Rrpgl(ZmT(u))(pz NTM)),ps7) = RE v zymprt ) (py ' (U), p5.F)

c — d
- Rrpgl(z)npfl(u) (p1 1(u)’p;y) = Rl're(zyru (U, F),

where:
e a is a pull back map along p, {(T(U)) — T(U),
e b is a pull back map along pl_l(Z/l) — pz_l(T(Z/I)). Notice that pgl(Z N
TU) NpytU) =py ' (Z2) Npy H(U),
e cis given by the map T : p5.% — p1.%Z,
e dis given by the trace map of lemma Notice that p; (py ' (Z2)Np7 L (U)) C
THZ)NU.

Remark 5.2. We observe that in the definition of the correspondence, the map
p5F — piF is only used in a neighborhood of

Py (Z) Npy (W)
Indeed, let V be a neighborhood of p;*(Z) Np; ' (U) in C, then we have

RT, 1 (zympr @y (P1 U 05 F) = RT 1 500100y (Vo 91 F)
fori=1,2.

5.2. The finite slope part. We briefly recall the spectral theory of compact op-
erators over a non-archimedean field.

5.2.1. Slope decomposition. Let F' be a non archimedean field extension of Q,. The
valuation v on F' is normalized by v(p) = 1. Let M be a vector space over F
and let T' be an endomorphism of the vector space M. Let h € Q. A h-slope
decomposition of M with respect to T is a direct sum decomposition of F-vector
spaces M = M<h @ M>" such that:

(1) M=" and M>" are stable under the action of T'.

(2) M=" is finite dimensional over F.

(3) All the eigenvalues (in an algebraic closure of F) of T acting on M<" are
of valuation less or equal to h.

(4) For any polynomial @ with roots of valuation strictly greater than h, the
restriction of Q*(T') to M>" is an invertible endomorphism. Here Q* is the
reciprocal of @.

By [Urb11], coro. 2.3.3, if such a slope decomposition exists, it is unique. If M has
h-slope decomposition for all h € QQ, we simply say that M has slope decomposition.
In this situation we can obviously define submodules M=" and M <" of M for all
h e Q. We let M7 = U, M=" be the union of all the slope < h factors of M and
we call it the finite slope part of M with respect to T
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5.2.2. Compact operators. Let F' be a non archimedean field extension of Q,. Let
M € Ban(F') and let T be a compact endomorphism of K. Then by [Ser62], M has
a slope decomposition with respect to T. More generally, let M® € Ob(KP™%I(F))
and let 7' € Endp(gan(r))(M*®) be a compact operator. By fixing a compact repre-
sentative T of T', we can define, for all h € Q, a direct factor M* <" € Ob(KP"f (F))
of M*, called the slope less than h part of M*®. This does not depend on the choice
of T. We let M*7fs = colithOM"Sh be the finite slope part of M*.

5.2.3. Action of an algebra. Let T+ be a monoid (with neutral element) and T+ C
T be a sub-monoid (possibly without neutral element), such that 7T. 7T+ C T+,
We also assume that for any ¢,# € TV, there exists n € N, ¢ € T'F such that
t" = t't". Let M*® € Ob(KP°I(F)). We assume that we have an algebra action
Z|TT] <= End(M?*), such that the ideal Z[T+*] acts by potent compact operators.
For this later property to hold, it actually suffices that a single element ¢t € T+
acts compactly.

Lemma 5.3. For any t,t' € TT acting compactly on M*®, the corresponding finite
slope parts M**=15 and M** —1 are canonically quasi-isomorphic.

Proof. We reduce to the case that M*® is an object M of Ban(F). We have M =
Mt=Fs @ Mt=>°5 and M = M?~Fs @& M?~°° the decompositions of M into the
direct sum of the finite slope part where t (resp. t) is invertible and the infinite
slope part where t (resp. t') is topologically nilpotent. There exists n € N, ¢/ € T+
such that t" = #'t”. We deduce that M* /5 C M'~/* and M*=>5 C M?—°os,
Exchanging the roles of ¢ and ¢’ we deduce the lemma. (Il

In view of this lemma, we use the notation M®/* to mean M®*!~f* for any
compact operator t € T+,

5.2.4. Projective limits of Banach spaces. We briefly explain how the theory ex-

tends to the case where the complex M*® € Ob(KP™I(F)) is replaced by an object

“lim; " M? € Ob(Proy(KP™7(F))). Therefore, we let T be a compact operator of

“lim; " M? € Ob(Proyn(KP™I(F))). By lemma T induces canonically a compact

endomorphism 7; of M for i large enough and there are factorization diagrams:
Tit1

. .
Mi-‘rl Mi+1

.

Mp —— M?

For any h € Q, we deduce that M i'_;fh — M?="is a quasi-isomorphism. We can
therefore define (“lim, " M2)<" = lim; M=" € Ob(KPe"/ (F)) and (“lim; " M2)/s =
colimy, ((“lim; ” M2)<h).

Granting these facts, all the material developed in section[5.2.1]and section [5.2.3|
applies in the more general setting of objects of Proy(KCP"%7 (F)).

5.3. A formal analytic continuation result. In this section we prove a result
which will identify the finite slope part of different cohomologies. This can be seen
as an (abstract) generalization of [Buz03|, thm. 5.2. We recall the setting. Let X
be an adic space locally of finite type over Spa(F,Op), and p1,ps : C — X is a
correspondence. We assume that p; is finite flat. We also let % be a projective



88 GEORGE BOXER AND VINCENT PILLONI

Banach sheaf (see definition and we assume that the map 7" : p5.F — pj.F is
compact (see definition . In this part 5| of the article, we will only consider the
Case where % is a projective coherent sheaf. In this particular setting, any map
p5F — piF is compact.

5.3.1. The diamond of a correspondence. We now make the further assumption
that T(Z) C Z and T'(U) C U. We can build the following diamond:

RFZQM U, </

R+

R zynr (T(U

R zAp) (T (zyu, F)

and the composition of the top and lower triangle res o cores and cores o res
are equal. We can define an endomorphism of RI'zry (U, F), Rl zap@) (T'(U), F),
Rz zyru (U, F) and R e zynre) (T'(U), F) by composing T with the restriction
and corestriction maps. We call this endomorphism 7' by abuse of notation.

Proposition 5.4. Assume that all the complexes appearing are objects of Proy(KP"%I (F))
and that T is potent compact. After applying the finite slope projector, all the maps
in the resulting diamond

Rl zqu (U
RT zp e (T'( RT 7 zynu(U, F)fs
R 72y (T(

are quasi-isomorphisms.

Proof. This follows from the following elementary result. Let {M;};cz/nz be abelian
groups and let f; : M; — M; 11 be maps. If for all i € Z/nZ, the map f;_10f;_o
fi : M; — M; is an isomorphism, then all the maps f; are isomorphisms. O

Remark 5.5. The operator T is potent compact if the map “restriction-corestriction”
obtained by composing the top or low arrows of the diamond RI'7:(zyqy (U, F) —
Rz (T(U),.F) is compact (see lemma for a criterium).

As a corollary, we note the following fact:

Corollary 5.6. Under the hypothesis of proposition let U and Z' be open
and closed subsets, such that TUYNZ CU C U andUNTHZ) C Z2' C Z.
Assume also that RU z/qqy (U, F) is an object of Pron(KP™I(F)). Then the oper-
ator T is well defined and potent compact on R ziqy (U, F) and the finite slope
part of Rl ziquer (U, F) is canonically quasi-isomorphic to the finite slope part of
Rl zru (U, F).
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Proof. Under our assumptions, we have restriction-corestriction maps:
R zrrur (U') = R zomgprmvrny UNT(U)) — R zar@y (TUNU' F) = RT zarw) (TU), F)

and
RTre 2y (U, F) = Rl re 2y (U, F) = Rl zmr (U, F).

We can build the following diagram:

RPZ/ﬁM’ (ulv ﬁ)

T

RT z vz (TU), F) T R (20U, F)

and T is therefore well defined and potent compact on Rz (U, .-F). We deduce
that RLz/qy (U, F)/* is quasi-isomorphic to RI zArw) (T(U), F)!* which is in
turn quasi-isomorphic to R zry (U, F)¥5. ]

5.3.2. The infinite diamond. It is interesting to iterate the operator T'. We now
work under the stronger assumption that p; and py are finite flat. These assump-
tions imply that for any n > 0, the n-th iterate C(™) of the correspondence C comes
with two finite flat projections p , and pa .

Remark 5.7. Later we will apply this material to toroidal compactifications of
Shimura varieties. We therefore have to work under slightly more general assump-
tions. Namely, it is not possible in general to find cone decompositions such that all
the maps between compactifications of Hecke correspondences are finite flat. Nev-
ertheless, by allowing suitable changes of the cone decompositions, we can always
assume that a given map is finite flat. Moreover, the composition of compactified
Hecke correspondences and their action on the cohomology has been explained in
detail in section [£.:2.2] Therefore, for the clarity of the exposition, we will keep the
assumption that p; and po are finite flat here.

We let U, = T™(U) and Z, = (T")"(Z). We assume that T'(U) C U and
T'(Z) C Z. The sequences {Up, }m>0 and {Z, },>0 are therefore decreasing.
We can then construct diamonds as above for all n,m > 0:

RIz, u,, U, F)

/ TM

Rz, s,y Ui, F Rz, ., ru,, (U, F)

RFZn+1 MU 41 (um+1 ’

and we can add them to get an infinite diamond diagram looking like:
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(1) R zny (U, F)

res cores

Rl zryy (Ur, F) Rl z, ny (U, F)

res cores res cores

Rz, Uz, F) Rz, nuy Un, F) Rl z,nu (U, F)

We assume that all the objects of the above diagram belong to Proy(KP"%7 (F)).
We now make the further assumption that there exists (mg,no) such that one
morphism “restriction-corestriction” obtained by composing the top or low arrows
of a diamond RT'z, ,rut,,, Ume, F) = Rl 2z, ctty, 1 Umg+1,F) is compact.

For any m,n with m,n > 0 and (m,n) # (0,0), we can define an endomorphism
Tom : Rz, Uy F) — Rz, ~u,, (U, %) by composing T, res and cores in a
suitable order. We abuse notation and denote this operator by T'. The operator T is
potent compact because some power of it will factor over the compact “restriction-
corestriction” map above. In any case, we can speak of the finite slope direct factor
of Rannum (um, 9) for T.

Theorem 5.8. On the finite slope part, all the morphisms of the infinite diamond
are quasi-isomorphisms.

Proof. This follows from proposition O

Corollary 5.9. Under the hypothesis of theorem|5.8, assume that there is m,n, s €
Z>o such that (TH)"*$(Z)NT™U) C Z' C (TH)™(Z) is a closed subset and
TS U) N (TH™(Z) Cc U’ < T™U). Assume moreover that RU ziqyy (U, F) is
an object of Pron(KP™I (F)). Then the operator T* is well defined and potent com-
pact on R ziqyr (U, F) and the finite slope part of RT ziqye (U, F) is canonically
quasi-isomorphic to the finite slope part of RI' zryy (U, F).

Proof. This follows from corollary O

5.4. Overconvergent cohomologies. Let (G, X) be an abelian datum such that
G, is quasi split. Let w € MV, For a choice of + or — and a weight x €
X*(T¢)Mu+ we want to define a finite slope overconvergent cohomology R, (K7, k)
and the cuspidal counterpart RT,,(KP?, x,cusp)™¥* by taking cohomologies with
suitable support conditions of neighborhoods of the inverse image of P, \P,wk),
w € MW by the Hodge-Tate period map, and applying a finite slope projector.
We will also define variants RT,,(K?, k, x)*7% and RT,(KP, k, X, cusp)™/* where
X : T(Z,) — F* is a finite order character.

+,fs
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5.4.1. First definition. For a level K, = K, ;v p with m’ > b >0 and m’ > 0 and
a weight k € X*(T¢)MwF, we define:

RL,,(KP Ky, k) "7* := R (raer. )71(]%,“036)((77};’;,()—1(]Xw_yk[),vﬁ)+>f5.

Implicit in this definition is that this cohomology is an object of Proy(KP™ (F))
and that ’H me p &Cts on it in a way that ’H e p ACts by potent compact operators
(this will be proved below in Theorem

Similarly for a weight x € X*(T¢) ”*Jr, we define:

RIy, (KK, )77 = RE (rier =100l o) (T8 1,) ™ (Vi k)5 Vi) 77

HT,Kp

Again implicit in this definition is that this cohomology is an object of Proy (KPP (F))
and that ’H / p Acts on it in a way that ’H b acts by potent compact operators
(this will also be proved below in Theorem

We have similar definitions for cuspidal cohomology.

5.4.2. Ezxistence of finite slope cohomology.

Theorem 5.10. Let K, = K, vy for some m’ > b > 0 with m' > 0, and fix
we MW and k € X*(T¢)Mu-T.

(1) There is an action of’y'-[+ mrp O R (reor 1) (Cu, k[oﬁ)(( }?}K )V (X wk])s Vi)
for which 7—[ e p GCTS via compact opemtors The same statement holds for
RP(rter )= 1(]c/u,,k[0,a)(( T 1,) " (1 Xwkl), Ve(=D)).

(2) There is an action of Hy pur yy 0T RF(,H.to% )*1(1011,,1«[5,0)(( }1‘;} K, ) (Y k), Vi)
for which H;;;m,b acts via compact operators. The same statement holds for
R (rtor 3 =1(1Cunlo o) (THT 16,) ™ (Y [), Vi (= D))

Proof. We only prove point 1 for non cuspidal cohomology. The rest of the argument
is very similar and left to the reader.

Let U = (nigp e, )" (1 Xwkl) and Z = (nfgh i, )7 (Ywi[). By lemma
[321] we have . "

REunz (U Ve) = Rl (migr )10 4, (@27 1,) T (1 Xw k) Vi)

Now if T' is the Hecke operator Ky, m/ ytKp ms ] for any ¢ € T+, we have T'(U) C
U and Tt(Z) C Z by lemma @ and hence there is an action of ’Hm,’b on
RT'ynz(U,V,) via the construction explained at the beginning of Section That
this action defines an action of the Hecke algebra ’H;m,’ , follows from the discussion
of section

Now suppose that T is associated to t € T+, In order to simplify notations, we
choose ¢ such that min(¢) = inf,cq+ v(a(t)) > 1. In order to show the action of T'
is potent compact, it suffices to show that the “restriction-corestriction” map

RTvnri(2)(U, Vi) = Rl rynz(T(U), Vi)

is compact. We need to check the assumptions of lemma [2:24]
We will be done if we can find a quasi-compact open subset U’ such that T'(U) N
Z C U’ and U’ C U, and closed subset Z1, Zs, with quasi—comiact complement,

such that UNTY(Z) C Zy, Z1 C Zy and Zy C Z. By lemma [3.29, we have:
un Tt(Z) = (W%‘r’? K o )_1 (]Cw,k[o,TKp,m’,b)
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and
T(U) nz g (W;?;,Kp,m/,b)il (]Ow,k[l,ﬁKp,m’,b)
We first find U. By lemma [3.21
(ﬂ-g’;’,K, ’ b)il(]cw,k[o,—ooKp,m’,b) g U.

p,m/,

It follows that T(U)NZ C U. We now observe that | Xy, r[= Up] Xy k[n where
] X k[n is the (quasi-compact) tube of radius |p'/™|. This is a covering of | X, x|
by quasi-compact open with the property that | X, x[n C]Xuw klnt1. We deduce
that | Xy k[= U|Xw k[nKpm b is a covering with the same properties (note that
each | X, x[nKp m p is a finite union of translates of | Xy, x[»). Let us put U, =
(wt}%’K ) (1 Xw k[ Kpm ). Then U = U,U,, each U, is quasi-compact and

p,m/ b

U, C Uy,y1. Since T(U) N Z is closed, it is compact in the constructible topology,
and there is n such that T(U) N Z C U,,. We may take U’ = U,.
We now proceed to find Z;. By lemma

(773%“,1{ )_1 (]Cw,k[fOO,O) - (W;?;“,Kpﬁmlyb)_l(]Yw,k[)~

p,m/ b

We let Z; = (W%})%,Kp‘mub)_1(Us<%]cw’k[6,st,m”b)' We now find Z,. We first ob-
serve that U, 1]Cu k5, SJCY[S] X[, and that [ X37[ = sp~H(X}Y) C]Yy.k[. Since
| XW[Kp m p is a finite union of translates of | X}”[, we can take

Zy = (T, 00 ,) " (XE B ).

p,m’.b

O

5.4.3. Change of support condition. It is important to us that the cohomology
RFw(Kpr,K;)i’f 5 can actually be realized as the finite slope part of cohomol-
ogy groups with different support conditions. The following definition is motivated
by Lemma and the discussion of Section [5.3] especially Corollary [5.9] We start
by fixing an element ¢ € T+ such that min(¢) > 1. We let C' = max(¢).

Definition 5.11. Let m’ > b > 0 with m' > 0. A (+,w, Kp . p)-allowed support
is a pair (U, Z) where:
(1) U is an open subset of S;?;Kp,m/,bﬂ which is a finite union of quasi-Stein
open subsets.
(2) Z is a closed subset of S%ZK,),m/,b,E whose complement is a finite union of

quasi-Stein open subsets.
(3) There exists m,n,s € Z>o such that:

(i1, 0 ) " 1Cu ki 5K pam 5N Cuo ko s Kpomr ) € 2 € (11, )7 (Cuilo.cnBpam b),

p,m’.,b

(77, 0 y) " 1Cu ks 5K pm o0 CueloBpmr ) CU S (Wi s, )7 (10w klom,—1Kpmb)-
Letm/ > b>0 withm' > 0. A (—,w, Kp . p)-allowed support is a pair (U, Z)
where:
(1) U is an open subset of Sk, | .5 Which is a finite union of quasi-Stein
p,m’,b?
open subsets.
(2) Z is a closed subset of Sigr, | . whose complement is a finite union of
pom b
quasi-Stein open subsets.
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(3) There exists m,n,s € Z>o such that:

(w5 k) 1Cw ks 0 Kpam 6N Cuw k5.0 Kpm b) € 2 € (migh i ) (1Cw kom0 Kpm ),

p,m’,b p,m/,b

(w5 k. ) 1Cw k0 Kpm 6N Cuw i[5y o Kpmrn) SUC (7 i, ) (1Cw k1,00 Kpm b)-

p,m’ b p,m’ b

Ezample 5.12. For any m’ > b > 0 with m’ > 0 and any s > 0, the pair

U= (tigrx, ) (Curls—1Kpmp), 2= (w7 )7 (CuwklssKpmp)
is a (+,w, K m p)-allowed support and the pair

U= (71'3%«[( m! b) (] kl-1sKpmip), 2= (773%“1( )_1(]Cw,k[§,6Kp7m’,b)
is a (—, w, Kp s p)-allowed support.

Theorem 5.13. Let m’ > b > 0 with m’ > 0, and fir w € MW and k €
X*(TC)M“’+.

(1) Let (U, 2Z) be a (+,w, Kp m p)-allowed support condition. Then RT zqy (U, Vi)
and R zqy (U, V. (=D)) are objects of Pron(KP™(F)) and carry a canon-
ically defined, potent compact action of T®. Moreover there are canonical
isomorphisms

REy(KPKp i, 6) P 7 ~ RT 20U, V)T 1
and
R (KPKp i b, &y cusp) D7 ~ RU z (U, Vi (— D)) T 7.

(2) Let (U, Z) be a(—,w, Kpm p)-allowed support condition. Then RT zqy (U, Vi)
and R zqy (U, V. (—=D)) are objects of Pron(KP"I(F)) and carry a canon-
ically defined, potent compact action of T®. Moreover there are canonical
isomorphisms

ROy (KPKp s b, £) 7% = ROz (U, V)T~ 7°
and
RT o (KP Ky g, i, cusp) ~* ~ ROz (U, Vo (- D)) T 72

Proof. We will only prove the first point for non cuspidal cohomology. It follows
from lemma that RT zry (U, V) is an object of Proy(KP™7 (F)).
For the rest of the statement we will use the infinite diamond construction of sec-

tion and corollary Form,n € Zxo welet Un, = (Ti7 ¢, )~ YT (1 Xwk]))
and Z, = (7, )T ([Yw,k[)). Since we have already checked in the
proof of theorem @ that the “restriction-corestriction” map

RI'yynz, (Uo, Vi) = Rl'u,nz, (Ut, Vi)

is compact, it follows that the conclusion of corollary [5.9 hold.
By lemma [3.29) we have:

UnNZnys S (757 K, )_1(]Cw,k[m,ﬁKp,m’,bm]Cw,k[o,pr,m',b)

Unts N Zn S (7p K, m,,b)_l(]Cw,k[m+s,6Kp,m’,bﬂ]Cw,k[o,ﬁKp,m/,b)
(mir, K, )71(]CU),k[mC,—1Kp,m’,b) C Un
(i, 0 )  (CurlomcKpmp) S Zn.
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It follows from corollary that if (U, Z) is a (4, w, Kpm p)-allowed support
condition, then RT'ynz (U, V,;) carries a canonical action of T and we have canonical
quasi-isomorphisms

Rlynz (U, V)T % ~ RUpynz (U, V)T ~ RO (KP Ky 3, k)T
O

5.4.4. Change of level. Now we investigate how the finite slope cohomologies RI",, (K7 K, k) fs
and R, (KPK,, Kk, cusp)™/* vary with the level K.

Theorem 5.14. (1) For all w € MW and all m" >m' > b >0 with m’ > 0,
the pullback map

R (KP Ky, §) 75 = R (KP K s g, ) T
and the trace map
R (KP Ky iy k) 9% = Ry (KP K s, 1) 7 °

are quasi-isomorphisms, compatible with the action of Q[T'(Qp)/Ts], and
the same statements are true for cuspidal cohomology.
(2) For allw € MW and all m’ > b > b >0 with m’ > 0, the pullback map

R (KP Ky, )75 — (R (KP Ky 1, 1) %) o/ T
and the trace map
(R (KP Kyt b, 1) )T/ T 5 RT W (KP K gt 1) 7

are quasi-isomorphisms, compatible with the action of Q[T(Q,)/Ts], and
the same statements are true for cuspidal cohomology.

Proof. This follows from lemma [1.17] O

As a result of the theorem, we can let RT,(K?, x, x)®/* and RT,(K?, &, x, cusp)*7*
denote RTy, (KP K,y b, £) 575 [x] and Ry, (KP K, K, cusp) /4[] for any m/ >
b > cond(x) with m’ > 0, as these spaces have been canonically identified.

5.5. The spectral sequence associated with the Bruhat stratification. Re-

call that there is a length function ¢ : MW — [0,d] where d = dim FL = dim S

with the property that {(w) = dim C,,. We let ¢4 (w) = ¢(w) and {_(w) = d—{(w).
The main result of this section is the following theorem:

Theorem 5.15. Let k € X*(T¢)Met be a weight and let x : T(Z,) — F* be
a finite order charater. For a choice of + or —, there is a ’H;tm »-equivariant
spectral sequence EP4(KP k,x)T converging to classical finite slope cohomology

HPH(KP s, x)5 7S, such that

Ell)’q(va K, X)i = ®w€MW,éi(w):pHﬁz+q(Kp7 R, X)i’fs'
There are also spectral sequences EP4(KP k, x, cusp)®
such that

converging to HPT4 (KP, K, X, cusp)i’fs

Ezlg’q(va Ky Xs Cusp)i = @MGMW,Ei(w):pHﬁJJFq(va Ky X Cusp)idcs'
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5.5.1. Construction of a filtration. We consider the following two stratifications of
the special fiber of the flag variety F'L;, the first one is by open subsets:

{FLET = Ug(w)>rCu,k Yo<r<d
and the second one is by closed subsets:

<d—r
{FL;"" = Upwy<d—rCuw,k Yo<r<d-

We then define ]FL,?T[ = Z and ]FL,%d_T[ := Z,~. This gives two filtrations
FL=ZFy>ZFf> - 2Zy >Z7, =10
by closed subspaces invariant under Iw.

Now let K, = Kpmp for some m > b > 0 with m > 0. We can consider the
pullback of these filtrations by 727 , to get two filtrations S, = zEozEo
--D Zfit D Zjﬂ = ) by closed subspaces.

For any weight x, we can consider the associated spectral sequence (see section

2.3):
HP e (8K, Vi) = HPTI(SEES, V).

+ ot
Zp /20

By definition,

* Stor V) =
Z;r/Z;Ll( KPK,» fi)

tor —1
?w;?;,xp _1(]Ue(mzpcw[ﬂ]Uuw)sprD((ﬂHT’KP) ([ Vew)<p Cul)s Vio)-
and
ST ORAE
* t —1
H(W;%{Kp)71(]Uz(m)Sd—pr[O]an)zd—pcw[)((W[?%’Kp) (] Uf(w)Zd*p Cu D’ VH)

We also have a cuspidal version
HUW o (SK's, Vu(=D)) = HPH(SS, V(= D)).

/25,
We relate the E; pages of these spectral sequences to the overconvergent coho-
mologies considered in the previous section.

Lemma 5.16. For all p,

er;r/z;+1 (S;?Z:K,,,za Vi) =
Duwemw, é(w):pRF(ﬂg’;pr)—1(]X,w,k[nm)((Wfr%,xp)_l(]Xw,k[), Vi)
RFZ,;/Z;+1 (S;?ng,za Vi) =
Duwemw, Z(w):d—pRF(ﬂ—;ﬂ;ﬁKp)—l(]Yw,k[mm)((ﬂ-g')g“,Kp)il(]Yw,va VH)
We have similar results for cuspidal cohomology.
Proof. We have
] Uty >p Cuwl N Ugwy<p Cwl = Uu,e(w)=p] Yo,k [N] X & |

and

| Urwy<d—p Cuwl N Ugw)>d—p Cuwl = U (wy=d—p)| Yo,k [ N ] X & ]
by lemma [3:20] The conclusion follows from lemma 2.1] O
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Lemma 5.17. For a choice of + or —, Him’b acts on RFZZ}/Z,?H(S?;KP,Z’V“)’
and the spectral sequence

HE (8K, Vi) = HPTU(SE's, Vi)

zF /Zpi+1
1 H;myb-equivam’ant. The same result holds for cuspidal cohomology.
Proof. Easy and left to the reader. O

5.5.2. Proof of Theorem [5.15 For a choice of £, we have constructed a spectral
sequence

H;}q/zpiﬂ (S5, Vi) = HPTU(SE, V).

The Hecke algebra 'Hpim , acts on this spectral sequence and it makes sense to take
the finite slope part by lemma Applying the finite slope projector, we obtain
the spectral sequence of the theorem.

5.5.3. Cousin complexes. We now extract from the spectral sequence certain com-
plexes that play a prominent role, in particular in view of conjecture [5.20] We
let Cous(KP, k,x)T be the complex EI"O(K”, K, X)T (wd! is the longest element of
Mw):

HY g (K7 5,057 = @yenrw ey =1 By (K7, 5,057 —

EBwEMW,Zi(w):ZH?U (K;D, R, X):bfs — Hfgé‘/f/]d(Kp7 R, X):bfs
and we let Cous(KP, k, x, cusp)® be the complex EI’O(K”, K, X, cusp)®:

+,fs

H?d/wé” (KP, Kk, X, cusp) — GBUJEMW’Q(w):lHllu(Kp7 Ky X, cusp)i’fs —

®wEMW,Ki(w)=2H12u(Kpa Ky X5 Cusp):l:,fs — H?UéVI/[d(Kp7 Ky X5 CUSp)iyfs

5.6. Cohomological vanishing. The following vanishing theorem is crucial in
order to study the spectral sequence.

Theorem 5.18. The cohomology complex R (KP, k, X, cusp)™/*

[0, £+ (w)].

Proof. We only give the argument for the + case, as the — case follows with minor
modifications. Let b be the conductor of x. We can realize RT,(K?, x, cusp)+/*
as the y-isotypic part of the finite slope part of

has amplitude

RF(W};;YKW s )7 0Cw ke 1K s skl K it 1) ((WE;,prm/’b)il (JCuw ks, 1 Kpm b), V(= D))

for any s > 0 and m’ > b, m’ > 0 by example and theorem
We fix s large enough so that WE;(]Cw,k[sys_l) is quasi-Stein in the minimal
compactification. We also fix m’ = s. To simplify notations, we let K, = Kp 1/ .
We observe that under these assumptions, |Cy k[s,—1 KpN]Cuw [ﬁiKP =|Cy ks sKp
by lemma [3.19] and therefore the above cohomology writes

RT (ntor  y-1(C0 nlonkr) (T8, 10,) " (1Cu i ls,s-1Kp), Vi (= D))

HT,Kp
We shall prove that
RF(w;g;TKP)—1(]cw,k[s,§Kp)((775?9,1(,,)71(]Cw,k[s,s—le)a Vi(=D))

has cohomological amplitude [0, ¢4 (w)].



HIGHER COLEMAN THEORY (VERSION 18/11/20) 97

Le K, be the principal level m’ congruence subgroup. Since

RF(w}j}pr)*1(]0“,,16[3,;1(,0)((773%“,1(1,)_1(]Cuak[s,sfle),VN(_D)) =
RI(Kp/ K}, RE (rer ) 1(0Cuilos k) (T 1) T (1Cukls,s-1K5p), Vi (=D)))
It will suffice to prove that

RE (rior )10 o sk (T5071,) T (1Cu i [s,5-1Kp), Vi (= D))

HT,K,
has cohomological amplitude in [0, {4 (w)].
Since |Cy k[s5Kp is a finite disjoint union of translates of {|Cy, k[ssk:} for ele-
ments ki, -, k, by lemma [3.18 we are left to prove that

R (rtor =100y alosske) (THT k7)™ ([Cukls,s=1k0), Vi (= D))

’
HT,K],

for 1 <4 < n has cohomological amplitude in [0, ¢4 (w)]. Also, using the action of
K, we may assume that k; = 1. The cohomology fits in a triangle:

RF(W;;;YK, )71(]Cw,k[s,§)((ﬂ—g;,l{;)_l(]Cw’k[5,5*1)7 Vi(=D)) —
RF((T"%%“,KI’))_l(]Cw,k[S,s—l)a Vﬁ(_D)) —

or — +1

RE (7577, 1,) " (1Cuw k.61 \ [Cu kls5), Ve(=D)) =
Since i s (JCuw.k[s,s—1) is quasi-Stein in the minimal compactification Sk,
2484 P

we have (by theorem [4.6))
RO((777 1) ™! (1Cuk[s.s=1), Vi (= D)) = RD (W ey (10w k[s,5-1), (75.5) 4 Vi (= D))

is concentrated in degree 0.
We will now prove that 75 s (JCuw ke [s,5-1\]Cuw k[s.5) admits a covering by £, (w)
rp
acyclic spaces. This will show that

RF((W;%",K;)71(]Cw,k[s,S—l \ ]Cw,k[S,§)7 Vﬁ(*D)) =

RE(777, iy (1Cw ke ls.s—1 \1Cu kls5): (Trcr iy )4 Vi (= D))

has only cohomology in degree 0 to ¢4 (w) — 1 and the theorem will follow.
We recall from corollary [3:12 the isomorphism:

H Z/[a X H Z/[S — ]Cwﬁk[]-'g
ac(w=1e—-M)Nd+ ac(w=1e—M)Nd—
(Ua)acw-16-M wHua
(o9
Let us fix coordinates 1 + u, on each of the one parameter groups. For these
coordinates, the equation of |Cy k[s,s—1\]Cuw.k[s 3 is:
o Va € (w o= M)yn ot ju,| < [p*71,
o Vac (wld=M)nd—, e >0, |ua| < |p*t9,
e Jac (w = M)YNd* Jv >0, |ua| > [p*7Y|.
Since #(w =t M) N &+ = {(w) = {4 (w), we deduce that |Cy k[s.s—1 \ ]Cw klss
is indeed covered by ¢(w) acyclic spaces and the same holds for its pre-image by
7THT,Kz/,~ O
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Proposition 5.19. For the spectral sequence EP4(KP, k,x, cusp)® converging to
HPH(KP K, X, cusp)™/ we have EYY(KP Kk, x, cusp)* = 0 if ¢ > 0. In particular
Proof. This follows from theorem [5.18] The spectral sequence pictures as follows
(wd is the longest element of ¥ W), where the top horizontal line is the Cousin
complex:

H [ (KP, 5, x, cusp) /s HZ (KP, k5, x, cusp) T /¢

0 1 +,fs
Id/wd HL (KP, &, x, cusp)®7*

OweMw oy (wy=1 OweMw oy (wy=2

® HY, (KP, r,x, cusp)®/* ® )—oHL (KP, m,x, cusp) ™/

weMW, ey (w)=1 weMW, ey (w

0 N
EBwE]MW,[j:(’w):2HW<Kp‘H’X’Cusp) Ie

O

We now conjecture the opposite vanishing threorem for the non-cuspidal coho-
mology:

Conjecture 5.20. The cohomology complex RT, (KP, k, x)™* has amplitude [{+ (w), d].
In particular, if the Shimura variety is compact, the spectral sequence is concentrated

in the indices (p, q) with ¢ = 0 and the cousin complex Cous(KP, k,x)* (see section
Computes RE(KP %205

See proposition [5.25 and corollary for a partial confirmation of this conjec-
ture. Here is a proof of the conjecture for compact Shimura varieties of dimension
<2

Proposition 5.21. Conjecture holds when £+ (w) < 1, and also when {4,y =
d if the Shimura variety is compact. In particular[5.20 holds for compact Shimura
varieties of dimension < 2.

Proof. The case ¢4 (w) = 0 is vacuous and the case ¢4 (w) = 1 follows from the
more general observation that when ¢4 (w) > 0, H) (K? k,x)®7* = 0, as this is
computed as the space of sections of a vector bundle supported on a proper closed
subset of each irreducible component.

When the Shimura variety is compact and /1 (w) = d, R, (K?, k, x)™F* is
computed as the finite slope part of the cohomology with compact support of a
vector bundle on a smooth affinoid, and hence vanishes below degree d by theorem
2.52 ([

5.7. Duality. In this section we investigate Serre duality on overconvergent coho-
mologies. It turns out that combining a weak form of duality with theorem [5.18] we
can obtain some partial results towards conjecture [5.20]

Theorem 5.22. For all w € MW, there is a pairing:
() s Y (K, 5y X cusp) ™7 x HEHK, —2ppe — wo ki, X )T = F
This pairing induces a pairing between the spectral sequences:
(Vpar : BPUKP 5, x, cusp)® x BESPU(KP, —2p,. — wo ki, x )T = F
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On the abutment of the spectral sequence the pairing (,)pq.00 i induced by the
perfect Serre duality pairing:

HPH9(KP, k, X, cusp)™7/* x HI7P=9(KP, —2p,. — Wo, MK, x HF/s S F
Proof. We construct the pairing
(,): H;(Kp, Ky X, cusp)+’fs X Hzfi(Kp, —2Pne — wOJ\/[/-i,X*l)*’fS — F.

Let b be the conductor of Y. We can realize RI',,(KP?, k, X, cusp)™/* as the x-
isotypic part of the finite slope part of

Rrgr 3 10Cunlenty ) (@801, )™ (Cuilect K ), Ve(=D))

for any s > 0 and m' > b, m’ > s. by example and theorem
We can realize RTy,(KP, —2ppn. —wo K, X 1) /% as the xy~L-isotypic part of the
finite slope part of

RF(T‘—};{)JT"‘K b)_l(]cwak[ﬁ,s—le,m/,b)((71-3_(1);7KP-m/7b)71(]Ow7k[_173_1vaml7b)’ V—QPnc—wo,Mﬁ)'
P, )

’
,m

We have a cup-product by proposition |2.3]

] t —1
2”??,%7“/7,7)71(}CUf=k[sEKp,m’,b) ((WI?;,Kpﬂm,,yb) (}Cw,k [s,flK ’m’,b)v VH(_D)) x
d—1i t —1
H(W{?’?,Kp,m/,b)il(]cwrk [m,s—le,m/,b) ((ﬂ-}?gijp,m/,b) (}Cw7k [_173_1Kp1m/7b)’ V_Qpnc_'w(),M"Q)

- Hzlﬂ'tor ’ b)il(]cw,k[ sK /’b)((71';?5—,71(%"1/,17)71(]Cch[s,s_lK 7”leb7v_2pnc(_D))

HT.K, s+1,58p,m

and there is a trace map (by theorem [2.32)):

H?w;g;)Kp ) (Cu ks ook, )T (1Cw ks s -1 Kp e 1), V-2p,,.(=D)) = F.

. . . . . . +
This pairing intertwines the actions of % ., , and H ., ..

(but painful) to check that the induced pairing
<7> : H:u(Kpa Ry X5 cusp)—i_’fs X Hfu_i(Kp, _2pnc - U)O,MKJ, X_l)_’fs — F

It is straightforward

is independent of choices.
The rest of the theorem follows from the functoriality of the trace map.

We make the following conjecture:
Conjecture 5.23. The pairing
() s Y (K, 5y x5 cusp) 7S x HE YK, —2ppe — wo ki, X )T = F

is mon degenerate. (Equivalently it induces perfect pairings between the finite di-
mensional generalized eigenspaces for Z[T*]).

Remark 5.24. Conjecture [5.23] implies conjecture [5.200 We also note that this
conjecture holds for compact Shimura varieties when £ (w) = 0 by theorem [2.32]

(5).
The following proposition is a partial confirmation of conjecture [5.20]

Proposition 5.25. For the spectral sequence EP9(KP, k, x)* converging to HPYI(KP |k, x) s
we have ERI(KP, k, x)* = GrP (HPY9(KP, k, )5 75) =0 if p > p + q.
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Proof. We have a perfect pairing HPT9(KP, k, x )& x HIP=4(KP, —2p,,.—wo pmk, X, cusp) T/ —
F'. Because we have a pairing at the level of the spectral sequences degenerating to
this pairing, we deduce that

FilP  HPH(KP, ks, x) 5 C (FIYPHYPI(KP, —2p,0 — wo nrk, X cusp)”S)L

We know by proposition that Fil* PHIP=9(KP, —2p,,.—wo,nrk, X1, cusp) F/s =
HYP=4(KP, —2pp. — wo pk, X, cusp) T/ for d —p < d — p — q and therefore,
FilP P HPH2(KP ki, x)E 75 = 0 for p > p+ q. O

The following corollary illustrates the importance of the Cousin complex:

Corollary 5.26. If the Shimura variety is compact, for the spectral sequence EP9(KP, s, x)*
converging to HP+I(KP k,x)57/* we have ERI(KP k,x)* = 0 if ¢ # 0. In partic-
ular, for all i, H (KP, k,x)™f* is a subquotient of H'(Cous(K?, Kk, x)*).

5.8. Interior cohomology. For non compact Shimura varieties, we can introduce
the interior cohomology:

H (K7, 5, )57 1= Im(H (K?, &, x, cusp)£7* — Hi(K?, 1, x)=7).

We can also consider some “interior” version of the Cousin complex. We first let
Cous(KP, k,x)*" be the complex:

HZJ(])W/Id(va K, X)i7f87v — GBwEMW,Zi(w)zulle;iu_l(va K, X)i,fs,\/ —

GBwEA{W,Zi(w):deH;jU_Q(va K, X)i,fs,\/ — H?d/WdW (Kpu K, X)i7f87v

where H (KP, k, x)®/%V is the vector space of linear forms L € Homp(H (KP, x,x) 57V, F)
such that for there exists h € Q with L(H? (KP, k,x)*>") = 0. We define similarly
Cous(Kp, k, X, cusp)£7sV.

By the pairing of theorem [5.22] we have maps

Cous(K?, k, X, cusp)™ — Cous(KP, —2ppe — wo vk, X )TV

and
Cous(K?, k,x)* = Cous(KP, —2p,, — wo ark, X, cusp) T
We conjecture (conjecture|5.23) that these maps are isomorphisms of complexes.
We define the interior Cousin complex
Cous(KP, k,x)* =
Im(Cous(Kp, K, X cusp)t — Cous(Kp, —2pne — wo rrk, X cusp):F’v).

Forallw € MW, let H, (K?, k, x)&f* = Im (H, (K?, K, x, cusp)® — H (K, —2ppc—
wo, MK, X cusp)I’V).

By definition, Cous(K?, k, x)* is concentrated in degrees in the interval [0, d]
+,fs

and its degree i object is @y emw, i, (w)=i = ﬁ;(Kp, Ky X)
Corollary 5.27. We have the formula:
HY (K, 5, )57 = Im(BR (K7, K, X, cusp)™ = BP0 (KP, =2pne—wo,nrk, X, cusp) TY).

In particular, for all 1, ﬁi(K”, K, X) 575 is a subquotient of H(Cous(KP, k,x)T).
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Proof. The spectral sequence EP9(KP, k, x, cusp)® converges to HPT9(KP, k, x, cusp) 7%,
The spectral sequence EP4(KP, —2p,,.—wo amk, X1, cusp) T converges to HPT9(KP, —2p,,.—
wo pk, XL, cusp) T/ = HPHI(KP, i, )57V, We have for all r € Z, maps

EZF (K K, X cusp)® — BIPTT(KP ~2pne — wo ki, X cusp) TV

and it follows from proposition that when r > 0, B P~ (KP —2p,,. —
wo, K, X1, cusp) TV = 0. We deduce that there is a map: EEC(KP, k, x, cusp)® —
HP(KP, K, x)™ /4. Since when r < 0, EEF™~"(KP, k,x, cusp)™ = 0 it follows that
the image of ERC(KP, K, x, cusp)t — HP(K?, k, )57 is ﬁp(Kp, K, x) TS, O

5.9. Lower bounds on slopes. In this section we will write (—, —) for the usual
pairing X, (T) x X*(T) — Z. We denote by T the maximal Q,-split subtorus of T'.
We have a relative root system ®; C X*(T%) with a choice of positive and simple
roots Ag C <I>jlr C ®4. Because G/Q, is quasi-split, restriction from T to T? defines
a surjective map r : ® — ®,4, which restricts to a surjective map r : A — Ay (the
fibers of r are exactly the Galois orbits of absolute roots.)

We have on X*(T')r a partial order < where A < X if and only if ' — A € R>oA.
We have on X*(T%)g a partial order < where A < X if and only if ' — \ € R>oAq.
We extend the symbol < to the case that one or both sides are in X*(T)g, in
which case we apply the restriction map X*(T) — X*(T?) (so in particular for
AN € X*H(T), A X X implies A < X, but not necessarily conversely.)

Recall that we have monoids T+ and T~ in T(Q,). In section we defined a
valuation morphism v : T(Q,) — X, (T%) ® Q, whose image is a lattice, and whose
kernel is the maximal compact subgroup of 7'(Q,) which we denoted by T'(Z,). For
A€ X*(T)r and t € T(Q,) we will abusively write v(A(t)) for (v(¢), A). The partial
order < has another characterization that we frequently use:

Lemma 5.28. Let A\, N € X*(T%g. Then A < X if and only if v(A(t)) < v(N (1))
forallt e TT.

Given a homomorphism A : T(Q,) — FX, the composition with the valuation
v: F" — R factors through a morphism v(T(Qp)) = T(Q,)/T(Z,) — R. This
extends by linearity to a R-linear map X, (7)r — R and thus defines an element
of X*(T')r, which we will denote by v(A) and call the slope of A\. Unravelling the
definition we have (v(A),v(t)) = v(A(t)).

If we start instead with a monoid homomorphism T — FX7 we also define the
slope v(A) of A by first extending A to a group homomorphism 7(Q,) — F” (recall
that 7(Q,) is generated by the monoids 7).

We now formulate a general conjectural lower bound on the slopes of R, (KP?, &, x)*/*
and RT, (KP, k, X, cusp)™/*

Conjecture 5.29. Fizw € MW, k € X*(T)Mut and x : T(Z,) — F* of finite
order.
(1) For any character X of Tt on RT,(K?, k, x) " /% or RT,(KP?, K, X, cusp) t+7*
we have v(X\) > w™lwo (K + p) + p.
(2) For any character X\ of T~ on RU,, (KP, K, x)~7% or RT, (KP, k, X, cusp) ~/*
we have v(\) < w (K + p) — p.

Remark 5.30. We can spell out the meaning of these inequalities. The inequality
v(A) > wlwg ar (5 + p) + p means that for all t € T+ (and corresponding v(t) €
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X*(Td)a), we have

V(A1) = (v(t),w™ wo (K + p) + p).

The inequality v(A) < w™1(k + p) — p means that for all ¢ € T~ and (and corre-
sponding v(t) € X, (T%)y), we have

v(A(t) = (v(t),w™ (5 + p) — p)-

Remark 5.31. We recall that for any w € W we have p+wp, p—wp € X*(T)" (even
if p is not itself in X*(7).) It follows that for all t € T we have (¢, p+w ™ wo pp) €
Z>o and for all t € T~ we have —(t, p — w™'p) € Z>o.

Remark 5.32. The bounds of Conjecture [5.29| are compatible with duality in the
sense that they are exchanged upon replacing ¢ by t=! and x by —2p,. — wo p5-

On the right hand side of the inequality of conjecture we have w™lwg ps(k+
p) + p and w=(k + p) — p. Each of these expressions can be separated into
(w™lwo pk) + (wlwe prp + p) and (wlk) + (w™lp — p) where the first term
depends on k and is related to the action of the Hecke correspondences on the
sheaf, while the second term is independent of x and is related to the geometry of
the correspondence (and in particular to the ramification of integral models of the
correspondence). The second term is the more delicate to study.

The main result of this section is a bound which is slightly weaker than the
conjecture (and concerns only the first term).

Theorem 5.33. Fizw € MW, k € X*(T)Mwt, and x : T(Z,) — F* of finite
order.
(1) For any character X of Tt on RT,(KP, 1, x) /% or RT W (K?, K, X, cusp) T7*
we have v(A\) > w™twg a5
(2) For any character A\ of T~ on RT,(KP, 1, x)™/* or RT W (KP, K, X, cusp) ~F*
we have v(\) < w k.

5.9.1. Proof of theorem . Let k € X*(T¢)Mu+. The definition of the sheaf V,
is given in [f.T.T| with the help of the torsor M3 and modeled on the highest weight
representation V. By corollary the sheaf V,, has an integral structure VI (in
the sense of definition 7 constructed with the help of the M ,-torsor M4g (see
proposition and modeled on the submodule V. C V.

Lemma 5.34. Let K, = Kp v p form’ >b>0 and m’ > 0.
(1) Lett € T*. For all n > 1, the isomorphism piV,. — piV,. induces a map
psVE — pler®wonmprpt o
pz_l ((W%’;,Kp)_l(wgnKp)) N pl_l ((W;(I);,Kp)_l(wgnKp))-

(2) Lett € T~. For all n > 1, the isomorphism p5V, — piV. induces a map
psVE — plermpept on
Py (T k) (WG k) N o7 (T ke, )~ (WGn Kp)).-
Proof. We prove the first point. We have a map ¢ : ps M3} — piMGR, which is
locally represented by wt by proposition
Therefore, we have an isomorphism ¢* : pjV,, — p5V, which is locally given by
t* f(zhm) = f(zjwtm) for trivializations x| and zf of pfMyr and psMgyg. The
map p3V, — piV, of the lemma is the inverse of the map ¢*.
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This map is locally isomorphic to the map

Ve — Vi
v o= (wt)

which has eigenvectors of valuation ((wwv(t))™!,v) where v ranges through the
weights of V.. Since t € T%* and w € MW, it follows that wv(t) € X*(T)(g[‘“+
so that (wv(t))™! € X*(T)g‘“_. The lowest weight of V; is wg apx and there-
fore, pl(we) ™ wo k) Y+ C (wt) "1V, We deduce that p{(wv() ™" woar) prypt
t*pfVE from which we deduce that p3VI — plwv®wons) e+ The proof of
the second point is almost identical, it is enough to observe that now (wv(t))~! €

X, (T)g‘“+ and that « is the highest weight of V}.. Details are left to the reader. [

Lemma 5.35. Let w € MW, k € X*(T¢), and h € Q.

(1) Let (U, 2) be a (+,w, Kp mp)-allowed support condition. Assume further
that U is a quasi-compact open and that the complement of Z is quasi-
compact. The image of Hi, (U, V) in H: (KP,k)T</* is an open and
bounded submodule.

(2) Let (U, Z) be a (—,w, Kp mrp)-allowed support condition. Assume further
that U is a quasi-compact open and that the complement of Z is quasi-
compact. The image of Hi, (U, V) in H: (KP,k)™</* is an open and
bounded submodule.

Proof. We only treat the first item since the second one follows with minor modi-
fications. We can represent the cohomology RI'yynz (U, V,) by an explicit complex
of Banach modules C*®. We choose an affinoid covering {; of &/ and consider the
Cech complex ' (U1, Vi) which computes RI'(U, V,;). Next we take an affinoid cov-
ering Uy of U N Z° refining the covering t; N Z° and consider the Cech complex

C(42, V) which computes RI'(U N Z¢,V,;). Finally, we represent the cohomology
Rlunz(U,V,) by

C* = Cone(C’(ill, Vi) — Cv'(ilmvm))[*l]-
We also consider the subcomplex of open and bounded submodules of C*:
C™* = Cone(C(4U1, V) — C(Us, V) [-1].

Any sufficiently regular element 7' of T*+ lifts to a compact endomorphism T
of C* and we can consider the direct “slope less or equal than h” factor C'*<F
of C*. This is a perfect complex of F-vector spaces, whose cohomology groups
compute H (KP, k)" =", Denote the projection of C*+* in C*=" by C**=h_ This
is a perfect complex of Op-modules and the image of H(C**<h) in H!(C*<h) =
H: (KP?, k)T =" is therefore an open and bounded submodule. Therefore, for any
h, the image of H'(C*+*) in H! (KP,k)*<" is open and bounded. Passing to the
limit over h, we deduce that the image of H*(C**) in H (K?, k)*7/* is open and
bounded. To prove the lemma, it suffices to show that the map

HY(CT*) = Hjnz(U, V)

has kernel and cokernel of bounded torsion. Using the Cech to cohomology spectral
sequence, this follows from lemma [2:30] O
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Proof of Theorem[5.33 We only prove the + case. The — case follows with minor
modifications. We let t € T, and let T = [K, s ptKpmrp]. We take (U, Z)
as in lemma [5.35|We find by using lemma [5.34] that we have an endomorphism
p= w0 MW T RTyyn 2 (U, V) = RTynz(U, V). It follows from lemma
that p— (@) wo.mM%) T preserves an open and bounded submodule in H?, (K?, k) -/
for all 4. For any character of A of T+ on H (K?, x)*/%, this implies that v(\(t)) >
(wv(t), wo amk). The theorem is thus proven. O

5.10. Comparisons with slope bounds on classical cohomology.

5.10.1. Some combinatorics. Let k € X*(T¢)Mw*. We first attach to x certain
subsets of the Weyl group. We let W (k)" = {w € W, wwo p(k+p) = wo m(k+p)}-
We let W (k)™ = {w € W,w(k+p) = +p}. Welet C(r)" = {w € W,w  wo ar(k+
p) € X*(T)g} and C(k)™ = {w € W,w ! (k + p) € X*(T)§}

Proposition 5.36. (1) The set C(k)* is a left principal homogeneous space
under W (k)*.
(2) C(r)* CMW.
(3) K+ p is regular if and only if C(k)* is reduced to a single element.
(4) We have W (k)T = wo W (k) wo,m and C(k)T = wo mC (k) wp.
(5) We have C(k)* = C(—womk — 2pne) T

Proof. Left multiplication defines an action of W (k)* on C(k)*. Given a weight \ €
X*(T)~, we have wA > X for all w € W. Tt follows that if w, w’ € C(k)*, w(w')~! €
W (x)%. The elements of ¥ are characterized among W by the property that
wX*(T)T C X*(T)Mw*. Since -+ p is M,,-dominant and regular, the second point
follows. The remaining points are evident. (Il

We now give some more explanations concerning the meaning of these sets and
the connection with infinitesimal characters. The element —w™lwg pr(k + p) €
X*(T)6 is independent of w € C(k)™, and we denote it by v + p for v € X*(T).

Proposition 5.37 ([Har90al, prop. 3.1.4). The character v + p is the dominant
representative of the infinitesimal character of the automorphic representations con-
tributing to the cohomology of the sheaves V,, or V,.(—=D) over Si's,(C).

Remark 5.38. The infinitesimal character of the automorphic representations con-
tributing to the cohomology of the Serre dual sheaves V_ y;x—2p,. a0d V_wg 11x—2p,. (—D)
is —v — p. Its dominant representative is therefore —wov + p.

It is important to record the formulas that allow us to switch between the infin-
itesimal character and the weight:

v = —w twon(k+p)—p, Ywe C(rk)T
k = —womw(v+p)—p, YweCOk)T

v o= —wow (k+p)—p, Yw € C(k)~

Kk = —wwo(v+p)—p, YweC(k)™.

We also introduce the notation £iin (£) = ming,eco(e)+ f4 (W) = mingeo ) - £- (w)
and liax(K) = Maxyeo(e)+ f4 (W) = Max,cow)- £—(w). Here the equalities follow
from the fact that for w € MW, €, (wopwwo) = d — €y (w) = £_(w). More-
over Umin(k) = lmax(x) if and only if k + p is regular. We note that we expect
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the automorphic vector bundle V, to have interesting cohomology in the range
Mmin(”)a EmaX(”)] .

Theorem 5.39. Let m be an automorphic representation contributing to the coho-
mology of the sheaves V,; or V(= D) over Si2'(C). Assume that T« is (essentially)
tempered. Then 7 can contribute to the cohomology in the range [min(K), bmax(K)].

Proof. This follows from a combination of results of Blasius-Harris-Ramakrishnan,
Mirkovich, Schmid and Williams. See [Har90al, thm. 3.4 and thm. 3.5. |

5.10.2. Slope bounds on classical coherent cohomology. In light of the spectral se-
quences of section [5.5] conjecture [5.29] suggests the following conjectural slope
bound for classical cohomology:

Conjecture 5.40. Let k € X*(T)MwT and let x : T(Z,) — F* be a finite order
character. Let v = —w ™ Ywg p(k + p) — p for any w € C(k)*. For any eigen-
system \ : T+ — F- occurring in the classical cohomologies RT(KP, k, x) 5% or
RI(KP, K, x, cusp) ™%, we have:

(1) In the + case, v(\) > —v.

(2) In the — case, v(\) < —wgv.

Remark 5.41. The + and — statements are in fact equivalent, in view of the discus-
sion of section and in particular the isomorphism between the Jacquet modules
for U and U given by wy.

Proposition 5.42. Conjecture|5.29 implies conjecture|5.10.%.

Proof. We treat the non cuspidal + case, the others are identical. By the spectral
sequence of section A occurs in R,/ (KP, k, X)*"f‘s for some w’ € MW, and
hence by conjecture [5.29 we have

s(A) > w’fleVM(l-i +p)+p=—(wt

where the last inequality follows from lemma below, using that v+p € X *(T)ﬁ{ .
|

w)-v>—v

We are not able to prove completely, however we will see that it holds when
k + p is regular in theorem [5.44] in the next section, and we will eventually use
p-adic interpolation to prove it for interior cohomology in theorem [6.48] and so in
particular it holds for compact Shimura varieties.

We now explain the relation of this conjecture with other known and conjectured
slope bounds on classical cohomology.

5.10.3. Slope bounds on Betti cohomology. Let v € X*(T)*. Let W, be the cor-
responding irreducible representation of G with highest weight v defined over F.
Over Sk (C), we can construct a local system W,/ attached to W)Y and we can
consider the Betti cohomology groups H*(Sx (C), W,/) and H(Sk (C), W)).

Proposition 5.43. Assume that K = KPK,, with K, = Ky . Let v e X*(T)*.
For any eigensystem X : TT — F* for the action of H;tm , on H*(Sk(C), WY )£ S
or H(Sk(C), W,Y)i’fs, we have:

(1) v(A\) > —v in the + case,
(2) v(A) < —wgv in the — case.
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Proof. This is a straightforward adaptation of [Lafll], prop. 3.1 which considers
the case where K, is hyperspecial in an unramified group G. Recall that G splits
over F. The representation W,/ admits a lattice W, which is stable under the
action of G(Op) and admits a weight decomposition with respect to the action of
T. For any t € T, we have that t(W)"") C (—v)(¢t)W,/>" and for any t € T,
we have that t(W V) C (—wov)(#)W Y, as —v and —wov are the lowest and
highest weights of W,Y. The lattice W,V gives an Op-local system WV such that
WY @0, F =W,/. The image of H*(Sk(C), W,V) in H*(Sk(C),W,/) (resp. of
H(Sk(C),W;rY) in Hi(Sk(C),W))) is a lattice L (resp. L.). For any t € T", we
find that [K,tK,|(L) C (—v)(t)L and [KptK,|(L:) € (—v)(t)L.. For any t € T,
we find that [K,tK,](L) C (—woev)(t)L and [K,tKp](L.) C (—wov)(t)Le. O

Using this proposition, we can prove conjecture[5.10.2| when the weight is regular.

Corollary 5.44. Conjecture[5.10.9 holds when k + p is G-regular.

Proof. Since k + p is G regular, there is a unique v € X*(T)" and a unique v € W
such that —k — p = v(v + p). By the definition we have C(k)™ = {wp pv} and
C(k)™ = {vwp}.

By the degeneration of Faltings’s dual BGG spectral sequences (see for exam-
ple [Har90a] section 4, [HZ01] Cor. 4.2.3), @, crmyy H W) (KP —w/wo (v + p) —
p, X)7¢ embeds Hecke-equivariantly in H'(Sk (C), Wy) and @, c iy H— W) (kP
p) — p, X, cusp)H/* embeds Hecke-equivariantly in H (S (C), W)). The estimate
follows from proposition [5.43 (]

5.10.4. Connection with [FP19]. We also want to explain that conjecture is
also compatible with conjecture 4.5 of [FP19] at spherical level (inspired by [Lafl1])
which is a translation of the Katz-Mazur inequality on the cohomology of algebraic
varieties to the automorphic setting.

Let I' be the Galois group of F'/Q,, acting on X*(T'). The projection X*(T)g —
X*(T%)g induces an isomorphism X*(T)E — X*(T%)g, an inverse is given by A —
\%I Y oer o\ for A € X*(T%)g and A being any lift of A to X*(T)g.

We can therefore identify X*(T%)r as a subspace of X*(T)g and the partial
order on X*(T%)g is the one induced by the partial order on X*(T)g. This is the
point of view adopted in [FP19].

We will assume that Gg, is of the form Resy g, Go where L is a finite extension
of Q, and Gy is an unramified reductive group over L. In [FP19], the group Ggq,
was assumed to be unramified, but the same conjecture can be made in this level
of generality, and is interesting for applications. We assume that K, C G(Q,) =
Go(L) is a hyperspecial subgroup of Go(L) We consider the classical cohomol-
ogy RI(SE g 5y Vi) or RI(SE i 50, Vie(—=D)). We let co(x) € X*(T)* be the
dominant representative of —x — p which is the infinitesimal character of automor-
phic representations contributing to RT'(S¥ ., v, Vi) or RI(SR" ks 53, Vie(—D)).
Let H(G(Q,), K,) be the spherical Hecke algebra. Recall that T is the maxi-
mal split subtorus of T. Let T, be a maximal torus of Gy. We can assume that
T = Resp/q,To- Let T¢ be the maximal split sub-torus of Tp. Then T¢ is natu-
rally defined over Q, and the diagonal map T < Resp g, T < T indentifies T
and T9. We let W be the sub-group of the (geometric) Weyl group of Gy which
stabilizes T¢. We fix an element p% € F (this is always possible if we enlarge F).

—w'wo(v+
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We have the Satake isomorphism:
S H(G(Qy), K,) @z F — FIX,(TH)W0

and to any A : H(G(Qp), K,) — F, we can attach an semi-simple o-conjugacy class
c e (X*TH) @ F*)/Wg = LGy(F)* /o — conj, where “Go(F) = Go % Z is the
Langlands group of Gy. This is the semi-direct product of the dual group Go by
the free group Z generated by o. The action of o on G is the one induced by the
Frobenius which is a generator of the Galois group of the unramified extension of
L which splits Gg. In particular, if Gy is split, this action is trivial.

Recall the valuation map v : F* — R. Applying the valuation to ¢ gives the
element Newt, (c) € X*(T{r/W{ = X*(To)L /W = X* (Tt = (X*(To)g)T.

We also remark that T(Q,)/T(Z,) = To(L)/To(OL) = X.(T¢) via the map
A € X, (T¢) — M) where wy, is a uniformizing element in L. We have also
defined a valuation map v : T(Q,)/T(Z,) — X+(T?) ® Q. We therefore get a map
v Xo(Tg) = Xo(T?) ® Q. This map is given by multiplication by v(wwy) (via the
identification X, (T{) = X, (T?)).

We have the following conjecture (which is [FP19], conj. 4.5 in the unramified
case):

Conjecture 5.45. For any t € X, (T¢)i, we have
1
(t, Newt,(c)) < (v(t), —woﬁ Z 0.00(K)).

Remark 5.46. If L is unramified, X, (T¢) is canonically identified with X, (7%) via
the valuation map v, and the above identity simply writes: Newt,(¢) < —wo‘%l > oer 0-00(K)
in X, (T).

We can reformulate this conjecture in another way. Any element t € X, (T¢)"
gives a c-equivariant representation of Gy (of highest weight ¢) and therefore a
representation of FGy.

Lemma 5.47. The conjecture holds if and only if, for anyt € X (T)T viewed
as a dominant character of the Langlands group, and with associated highest weight
representation Vi, we have that for any eigenvalue x of ¢ on V4,

v(x) 2 =(v(t), 00(K))-
Remark 5.48. We remark that —oo(k) is the anti-dominant representative of k + p.

Proof. Tt follows from lemma 3.6 of [FP19] that the conjecture is equivalent to the
statement that v(Tr(c|V;)) > (wo(v(t)), —weoo(k)) = (v(t), —oo(k)). Therefore,

the converse implication holds. Let us prove the direct implication. If there is
a unique eigenvalue of ¢ on V; with minimal valuation, we deduce that for any

eigenvalue z of ¢ on Vi, v(z) > v(Tr(c|V;)). Otherwise, let x1,--- ,x; be the i-th
eigenvalues of minimal valuation. Then one considers the representation A*V; and
we find iv(z1) = v(Tr(c x o|AV})) > i(v(t), —oo(k)). O

Before we state our main compatibility, we need to recall certain relations be-
tween the spherical and Iwahori Hecke algebras. We have the spherical Hecke
algebra H(G, Kp,) and the Iwahori Hecke algebra H(G, K, 1,0). These are alge-
bras for the convolution product for a Haar measure normalized by vol(K,) = 1
(respectively vol(Kp1,0) = 1). We have also introduced a subalgebra 7—[;1’0 of
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H(G,Kp1,0), isomorphic to Z[T], and generated by the elements [K), 1 0tKp 1,0]
with t € T'T.
We now consider the twisted embedding

FIX (T = H(G, Kp10) @z F

which sends t € T/T(Z,) = X, (T{)* to ¢~ P [K, 1 otK, 1] where ¢ is the
cardinal of Op,/w;, and pg is half the sum of the positive roots in Go. All the
operators ¢~ *)[K, 1 ot K, 1 0] are invertible in H(G, K, 1) ®z F and this map
extends to an embedding

FIXA(T)] < H(G, Kp1,0) @z F.

Moreover, F[X,(T¢)]"* is the center of (G, Kp1,0) @z F. Let ex, € H(G, Kp1,0)
be the idempotent equal to characteristic function of K, divided by the volume of
K. The natural isomorphism:

H(G,Kp) ® F — ek, (H(G, Kp1,0) @ Feg,
induces an isomorphism
H(G, Kp) @ F — e, F[ X, (Tgh]"
which is the Satake isomorphism.

Corollary 5.49. Let w be an irreducible smooth admissible representation of G(Q,)
defined over F. Assume that n%» # 0. Then 7%r is one dimensional. Let
c € (X*(TY) ® F*)/W§ be the semi-simple o-conjugacy class corresponding to
the action of H(G, K,) on w5r. Any eigensystem of F|X,(T¢)] acting on m&r.1.0
is given by a lift ¢ € X*(T{) @ F* of c.

Remark 5.50. In particular for any t € TT/T(Z,) = X, (T¢)", the eigenvalues of
g BP0 K, 1 ot K, 1 0] acting on wX»10 are among the eigenvalues of ¢ acting on the
representation V; of the Langlands dual group.

Definition 5.51. We say that a class in H,(Kp, k) "7 or H (K, k, cusp) ™7 is
classical if maps to a non zero class of the abutment of the spectral sequence of
theorem [5.13.

Let f be a classical eigenclass for the action of H;,Lo on H! (K,,x)"/* or
Hfu(]'(p7 K, cusp)Tf5. Then f gives an eigenclass f.; in a subquotient of Hi(&’ﬁé’;’,l’ng,27 Vi)
or H* (S?:,I,OKP1E’ V..(=D)). These classical cohomologies are H(G, K, 1 0)-modules
and admit Jordan-Holder filtrations, whose graded pieces are of the form mir.1.0 for
smooth irreducible admissible G(Q,)-representations 7 defined over F'. We say that
the classical eigenclass f is spherical if f.; belongs to a 7 which admits spherical
vectors. We let fe spn be a corresponding spherical vector.

Proposition 5.52. Let w € C(k)T. Let f be an eigenclass for the action ofH;LO
on H (K, k)t or H (K, K, cusp) P/, Assume that f is classical spherical with

associated spherical class fe spn- If conjecture 4.5 of [EP19] holds for the eigensys-
tem of fei,spn then conjecture[5.29 holds for the eigensystem of f.

Proof. Let c be the semi-simple conjugacy class arising from the spherical eigenclass.
Let A be the character of H, 1. For each tqg € TT/T(Z,) = X, (T¢)", we see
that A(tg)g~ ("9} is an eigenvalue for ¢ acting on V;,. It follows from lemma
that v(A(to)) — v(q){to, po) > (v(to), —0o(k)). Where via the valuation map
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v X (T¢) — X.(T9) ® Q, to maps to v(wy,)t, where we let ¢ be the element
corresponding to to via the isomorphism X, (T¢) = X, (T9). So this identity can
be re-written:

v(A(#)v(wr) = v(g){to, po) = v(@L)(t, =00 (k).
It remains to remark that v(q)v(wy)™ = [L : Qp] and that (¢, po)[L : Q] =
(t,p)- O

5.11. Slopes and small slope conditions. We will now define several “small
slope” conditions that will occur in this paper. The reason that there are so many
conditions is explained as follows. First we consider small slope condition on the
coherent cohomology in weight x, but also conditions on the Betti cohomology in
weight —wpv. Second, the conditions needed to obtain a vanishing theorem are
not exactly the same as those needed to obtain classicity theorems. For example,
on a Shimura set the vanishing theorem is trivial and does not require any slope
condition, but when one considers the theory of p-adic algebraic automorphic forms,
there is a slope condition to achieve classicity. Finally, in our setting there are two
types of control theorems. We have control theorems for cohomologies of classical
automorphic sheaves, but also control theorems for cohomologies valued in Banach
sheaves. All this explains the large variety of slope conditions we need. We begin
with the small slope condition and then turn to the strongly small slope condition
which we need to use because we were not able to prove conjecture [5.29

5.11.1. Small slope conditions.

Definition 5.53. Let A € X*(T%)g.
o Letv e X*(T) satisfy v+p e X*(T)g.
— We say A satisfies +, ss(v) if for allw € W with w - v # v,

A2 —w- .
— We say A satisfies —, ss(v) if for allw € W with w - v # v,
AL —w- (wov).
o Let k€ X*(T)M:+.
— We say X satisfies +,ssM (k) if for allw € MW \ C(k)™F,
A Z w™wo v (K + p) + p-
— We say \ satisfies —, ss™ (k) if for all w € MW\ C(k)~,
AZw Kk +p)—p.

o Let k € X*(T) and let w e MW.
— We say A satisfies +, sspw(K) if for allw' € Wi, w' # 1,

A 2w wo prw’ (k4 p) + p.
— We say A satisfies —, sspw(K) if for allw' € Wiy, w' # 1,
A Zw ' (k4 p) — p.
To orient the reader, we give a brief summary of how these conditions arise:

e The condition 4, ss™ (k) will appear in the “geometric” classicality theorem
relating classical cohomology and overconvergent cohomology, as well as
vanishing theorems for classical cohomology in section [5.12]
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o The condition =+, ssps,, (k) will arise in the second classicality theorem “at
the level of the sheaf” relating overconvergent and locally analytic coho-
mologies in algebraic weights in section [6.6]

e The condition +,ss(v) is the usual small slope condition that arises in
works on p-adic modular forms from the Betti perspective. We shall see in
proposition below that it is the combination of the other two condi-
tions.

We first observe that the + and — conditions are related by two symmetries:

Proposition 5.54. Let A € X*(T%)g.

(1) Let v € X*(T) satisfy v+ p € X*(T). Then the following are equivalent:
o )\ satisfies —, ss(v).
o wy(A) satisfies +, ss(v).
e —\ satisfies +, ss(—wov).
(2) Let k € X*(T)™*. Then the following are equivalent:
e \ satisfies —, ssM (k).
o wo(\) satisfies +, ssM (k).
e — )\ satisfies +, ssM(7w07M/<; —2pne)-
(3) Let k € X*(T)™* and let w € MW . Then the following are equivalent:
o \ satisfies —, sSprw(K).
o wo(N) satisfies +, 8501 wo. prwwo (K)-
o — )\ satisfies +, 85 m uw(—Wo, MK — 2Pne)-

The first symmetry is related to the fact that when we have a smooth, admissible
representation of G(Q,), the action of wy exchanges the + and — finite slope parts
(see section below.) The second symmetry is related to Poincare and Serre
duality.

Now we try to further explain the meaning of these small slope conditions and
make them more explicit. In view of the symmetries above we only consider the +
case. For v € X*(T) we introduce the notation W, = {fw e W |w - v = v}.

We will use the following standard lemma.

Lemma 5.55. Letv € X*(T)i —p and let w,w’ € W. Ifw < w' thenw'-v < w-v.

Proof. By the definition of the Bruhat order and induction, it suffices to treat the
case that w’' = s,w with o € ®* with [(w’) > [(w), which implies that w™ta € &
by [Hum90] 5.7. Then w’'-v = w-v — {a¥,w(v + p))a, and (aV,w(v + p)) =
{(w™ta)Y, v+ p) > 0. O

We now give some alternative characterizations of the condition +, ss(v).

Proposition 5.56. The following conditions on A € X*(T%)g are equivalent:

(1) X2 —w-v for allw e W\ W,, i.e X satisfies +,ss(v).

(2) M2 —sq -V for alla € A with s, &€ W,,.
Moreover if we additionally assume that A\ > —v then we have the further equivalent
condition:

(3) A=—v+> ,ca, Catt with

Ca < min (BY,v) + 1.

i
Ber—1(a),sggW,
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Proof. Clearly the first condition implies the second. For the converse, given w €
WA\W,, we have w > s, for some a € A, s, &€ W,, (write w as a reduced product of
simple reflections, not all the factors can fix v as w doesn’t.) Then —w-v > —s, v
by lemma [5.55| and so A 2 —s, - v implies A ? —w - v.

Under the hypothesis A > —v, the equivalence of the second and third conditions
is immediate from the formula —sg - v = —v + ((8Y,v) + 1)5. O

Now we consider the condition +, ss* (k). For k € X*(T) we can write —k—p =
v(v + p) for a unique v € X*(T) with v+ p € X*(T)%, and v € W uniquely
determined up to right multiplication by W,.

Proposition 5.57. Let k € X*(T)™*. Then with v and v as above, the following
conditions on A\ € X*(T%)g are equivalent:
(1) X # wlwor(k+p)+p for allw € MW\C(k)*F, i.e. X satisfies +, ssM (k).
(2) A —w-v forallwe (MW)=L.C(k)T\ W,,.
(3) A # =54 -V for all a € A with s, € (MW)~L.C(k)T\ W,.
Moreover if we additionally assume that A\ > —v then we have the further equivalent
condition:

(4) A=—v+> cn, Catx with

c (8Y,v) +1.

min
Ber=1(a),spe(MW)=1.C(r)F\W,
Proof. The second condition is a direct translation of the first: we have C(k)* =
wo,mvW,,, and we can write

w™ won (K + p) + p = (W™ woarv)o ™ (K + p) + p = — (W™ wo,arv) - v

and so the first condition is equivalent to A % —w - v for w € (MW) 1wy pv \ W,
which is equivalent to condition 2 because (MW)~lwg poW, = (MW)=1. W,.

The second condition clearly implies the third. For the converse, to argue as in
the proof of propositionwe need to show that for all w € W withw € (MW)~1.
C(k)* \ W,, we have w > s, with o € A and s, € (MW)~1.C(k)* \ W,. To do
this, suppose w = (w') " tw” with w’ € MW, w” € C(k)T, and let w = s; -+ -5, be a
reduced expression as a product of simple reflections. Choose k such that s & W,
but sgi1,-..,8, € Wy, (such a k exists as w € W,,.) Then

sp = (ws1 - sp_1) H(Wspy1 - sn) € MW)TE.C(r)T

using lemma below to see that w'sy ---s,_1 € MW. Moreover s, < w, and
sy & W, so we are done.

The equivalence of the third and fourth conditions is exactly as in proposition
O

Lemma 5.58. Let w,w' € MW and let w™'w' = s1--- S, be a reduced expression
as a product of simple roots. Then wsy ---s; € MW for all 1 <i < n.

Proof. We begin with the following claim: if « € ®, 8 € A, and v € W are such
that I(usg) > l(u) and u='a € &7, then (usg) la € ®~. Indeed, (usg) 'la =
sg(u=ta) € ®F would imply u~'(a) = —f, and hence uf € ®~, contradicting
l(usg) > l(u).

Applying the claim inductively we see that if € ®F, and (s1---s;) la € &7,
then (s1---s,) ta€ &,
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Now if wsy - -+ s; € MW, there exists f € Ay with (wsy---8;) 718 = (s1---8;) H(w™1B) €
®~. But w € MW implies w3 € ®*, and so from the above with a = w™'3 we
deduce (s1---s,) " Hw 1(8)) =w''(8) € &, and hence w’ ¢ MW. O

Now we turn to the conditions +, ssys., (k). Let £ € X*(T)* and let w € MW
We let v = wo, pyw and we let v be defined by the formula v(v + p) = —k — p. Note
that we have v+ p € X*(T)# if and only if w € C(k)T, which we have not assumed
for the moment.

Proposition 5.59. Let k € X*(T)™* and let w € W. Let v and v be as above.
The following conditions on A € X*(T%)r are equivalent:
(1) X # wlwopmw'(k + p) + p for all w' € Wy, w' # 1, d.e. X\ satisfies
+, $S0w(K)
(2) A # —(vtw'v) v for allw' € Wy, w' # 1.
(3) AN ¥ —(v7lsou) - v for all a € Ay

Proof. The equivalence of the first and second conditions is a direct translation.
For the equivalence of the second and third points, we introduce temporarily the
notation A\; <pr.w A2 if Ao — A1 € Ryow 1Ay for A, Ay € X*(T)g. Since w € MW
we have w™1A;; € &1 and hence A\ =M,w A2 implies Ay < A2 and hence A1 < As.
Now applying lemmafor the group M, we see that for v/ € X* (T)]g’M —pMm
and w’, w” € Wy with w’ < w” we have w’-v" <pr1 w” v/, hence (wo pyw”)-v" <pr1
(wo,mw”) - V', and hence (w™ wo prw”) - V' s (wlwo pw') - /. We apply this

with /' = v-v = =k —p € X*(T)z"™ — pur to deduce that for w' < w” we
have —(v™1w"v) - v > —(v~tw'v) - v, and hence the third condition implies the
second. O

Remark 5.60. Note that for w € Wy, (v"1wv) - v = v implies w = 1. Indeed, then
w - (—k — 2p) = —k — 2p or equivalently w(—k — ppr) = —k — par, and hence that
w =1, since k € X*(T)M-+.

Note that we have now expressed all the small slope conditions as A 2 —w - v as
w ranges over a certain subset of W. We may use this to compare them.

Proposition 5.61. Let k € X*(T)M:* and let w € C(k)T. Let v = wo pw and let
v be given by v(v+p) = —k—p so that v+p € X*(T)g. Then a slope A € X*(T%)g
satisfies +, ss(v) if and only if it satisfies both +,ssM (k) and +, $81.w(K).

Proof. We apply the characterizations of propositions Then it is
clear that +, ss(v) implies both +, ss™ (k) and +, ssps.. (k). For the other direction,

we need to show that for each o € A, then either s, € (MW)~1C(k)* or vs,v~! €
Whr.

We apply lemmamto w € MW and s,. If ws, € MW then s, = (wsy) w €
(MW*I)w. Otherwise there exists 5 € Ay so that sgw = ws, and hence VSqU L
w&}w%me € Why. O

Lemma 5.62. Let w € MW and a € A. Then either ws, € MW or ws, = Sgw
for pe Ay

Proof. If ws, € MW then there exists 8 € Ay with s (w1 (B)) = (wsq) " (B) €
®~. But w(B) € ®". Hence w™(B) = a, so wlsgw = s,, hence ws, =
S3W. g
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We can write ® = [], ®; where the ®; are simple root systems. Then ®); =
LL; ®ar,i where @55 = ®pr N Py We let &, = [, BiABay s ®; be the union of the
simple factors where M is a proper levi. Let A, = &, NA.

Proposition 5.63. Suppose that v € X*(T)*. Then the following conditions on a
slope X € X*(T4)& are equivalent.

(1) X satisfies +, ss™ (—wo pw(v + p) — p) for all w € MW.
(2) A2 —sq -V for alla € A.

Proof. We need to show that for « € A, we have a € Ay if and only if there is
w € MW so that wsaw™" & Wyy.

The later condition is equivalent to wa & @y for all w € W (since if we write
w = wyw™ then wa € &y implies wMa € D) but wa for w € W span Q®;
where ®; is the simple factor containing « and so the only way that we will have
wa € )y for all w e Wis if &; = @; 5. O

We call a slope A satisfying these equivalent conditions +, ss,(v). We define
—, 88p(v) in the obvious analogous way. These conditions will arise in connection
with vanishing theorems for Betti cohomology, deduced from vanishing theorems
for coherent cohomology via Faltings’ dual BGG spectral sequence.

5.11.2. The strongly small slope conditions. We now introduce some slightly stronger
versions of the small slope conditions of the last section. We need these because we
cannot prove the slope bounds of conjecture but only the weaker bounds of
theorem

Definition 5.64. Let A € X*(T%)g.

o Let k€ X*(T)MT.

— We say A satisfies +, sssM (k) if for allw € MW\ C(k)*,
AF w_lwo,M/f.
— We say \ satisfies —, sssM (k) if for allw € MW\ C(k)~,
AL w k.

o Let k€ X*(T) and let w € MW.

— We say A satisfies +, s8Sa (k) if for all w' € Wiy, w' # 1,
A% wwo ag (W (5 + p) — p).
— We say A satisfies —, sssaw (k) if for all w' € Wy, w' # 1,
AL w (W' (k + p) = p).

It is immediate from the definitions that A satisfies —, sss? (k) if and only if
wo(N) satisfies +, sss™ (k) and similarly X satisfies —, ssspr. (k) if and only if w(N)
satisfies +, $5501,wo yrww, (k). However the other symmetry related to duality does
not hold. Thus we will also consider the dual conditions:

e We say A satisfies £, sss™ (k)" if —\ satisfies F, sss™ (—wo a6 — 2pne).
e We say \ satisfies +, sssas., (k)Y if —X satisfies F, $88a7,uw(—wo, MK — 2pne)-

We introduce combinations of these conditions motivated by propositions [5.63] and

b6
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e We say that \ satisfies +, sss,, (v) if it satisfies +, sss™ (—wo pw(v+p) —
and +, ssSa7,0 (—wo,mw(v + p) — p). We say that X satisfies —, 555, (V)
it satisfies —, sssM (—wwo(v + p) — p) and —, s85p7.(—wwo(v + p) — p).

o We say that \ satisfies +, sss;,(v) if it satisfies +, sss™ (—wq prw(v+p) — p)
for all w € MW.

We also define the dual conditions in the obvious way.

p)
if

5.12. Small slopes, classicality and vanishing.

5.12.1. Coherent cohomology. Theorem and the definition of the small slope
condition implies the following vanishing.

Corollary 5.65. Let k € X*(T¢)Mut and let x : T(Z,) — F* be a finite order
character. Then

RFw (KP, K, X):I:,sssM(,{) _ RFw(Kp, %, X):ﬁ:,sssM(n) —0
for w ¢ C(k)*.

This implies that if we take the strongly small slope part of the spectral sequences
from finite slope overconvergent cohomology to finite slope classical cohomology of
Theorem all the terms for w ¢ C(k)* vanish. We immediately deduce our
first main classicality theorem.

Theorem 5.66. Let k € X*(T°)Mwt and assume that k + p is regular so that
C(k)* ={wy}. Let x : T(Z,) — F* be a finite order character. Then the spectral
sequences of Theorem [5.15 induces isomorphisms

R‘Fwi (va K, X)i’SSSM(K) ja RF(KP, K, X)i“gssM (k)
R, (K?, K, x, cusp) ™5 (" o RT(K?, &, x, cusp) £+ (9

Remark 5.67. Cases of this theorem for the degree 0 cohomology of PEL Shimura
varieties were already proven. See for example [Col96], [Kas06], [Pil11], [BPS16].

The following corollary gives a situation for which the interior Cousin complex
computes the classical interior cohomology.

Corollary 5.68. Let k € X*(T¢)Mw* and assume that k + p is reqular. Then
CO’ZLS(KP, K, X)i,sssM(ﬁ)dssM(n)v computes ﬁ*(K:D’ K, X)i,sssM (k),s8s™M (k)Y )

Proof. We have C(k)* = {w+}. We deduce that
m(}(p, K, X):I:,sssM(n),sssM(m)v _
Im(HfUi(“})(K”, Ky X, cusp)i’sssM(”“)’SSSM("i)v —
HEF () (K, —2pne — wo nrh, x 1, cusp) F535" (555 VY g )
which computes ﬁ*(Kp, K, X)j“S“M("””)’SSSM("”")v by theorem m O
We also deduce vanishing theorems for classical cohomology.

Theorem 5.69. Let k € X*(T°)Mwt and let x : T(Z,) — F* be a finite order
character.
(1) RI(KP, K, x, cusp)™**5" (%) and RF(K”,,'-@,x,cusp)jt’sssM("””)v are concen-
trated in degree [0, frax(K)].

Mo
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(2) RF(K”,KJ,X)LSSSM(“) and RF(K”,f{,x)i’sssM("')v are concentrated in de-
gree [min(k), d]. _

(3) ﬁZ(K”,/{,X,cusp)i’sssM(”) and H' (K?, f{,x,czwp)i’ss“;M(”“)v are concentrated
in degree [lmin(K), lmax(K)]-

Proof. The vanishing result for +, sss™ (k) follows from the spectral sequences of
theorem [5.15] and the vanishing results of propositions[5.19)and [5.25] The vanishing
for the dual condition 4, sss™ (k)Y follows by Serre duality. O

Remark 5.70. If we assume the conjecture then the strongly small slope con-
ditions in theorems [5.69 can be weakened to small slope condition. In theorem [6.49]
we will actually be able to prove the theorems for the small slope condition for the
interior cohomology only, using the eigenvariety.

Remark 5.71. In [Lanl6], an analog of theorem is proved without any small
slope condition, but with a regularity condition on the weights x and v instead.

Remark 5.72. The classical coherent cohomology can be computed in terms of
automorphic forms for G by the result of Su [Sul8|. Thus it may be possible to
reprove theorem with sufficient knowledge of automorphic forms on G.

5.12.2. Betti cohomology. Let v € X*(T°)*. We let W, be the corresponding
irreducible representation of G with highest weight v and W,/ be its contragrediant.
We have an associated local system W) over Sk (C).

Using Faltings’ dual BGG spectral sequence we deduce vanishing results for the
small slope parts of Betti cohomology.

Theorem 5.73. Let v € X*(T/Zs(G))™".
(1) Hi(Sk(C), WY)E5s500) and Hi(Sk (C), WY )E55500)" are concentrated in

degree [d, 2d].

(2) HL(Sk(C),WY)E5s5:() and Hi(Sk(C), WY)E55520)” s concentrated in
degree [0, d]. .

(3) H'(Sk(C),WY)E55500) and H' (S (C), WY )E55500)" are concentrated in
degree d.

Remark 5.74. If we assume the conjecture then the strongly small slope con-
ditions in [5.73| can be weakened to small slope condition. In theorem we will
actually be able to prove the theorems for the small slope condition for the interior
cohomology only, using the eigenvariety.

Remark 5.75. In [LanI6|, analogs of theorem are proved without any small
slope condition, but with a regularity condition on the weight v instead.

Remark 5.76. The classical Betti cohomology can be computed in terms of auto-
morphic forms for G by the results of Franke [Frad8]. Thus it may be possible to
reprove theorem [5.73 with sufficient knowledge of automorphic forms on G.

5.12.3. Small slope conditions, Jacquet modules. We now use these small slope con-
dition to define certain direct summands of smooth admissible representations and
apply this to the cohomology of the Shimura variety.

Proposition 5.77. Let m be a smooth admissible representation of G(Q)) and let
v € X*(T) satisfy v+ p € X*(T)g. Then the following are equivalent:
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(1) There exists m > b > 0 such that 7&pmeH55W) £,
(2) There exists m > b > 0 such that w&emo=55(0) £,
(3) (my) ) 0.
(4) ()W) # 0.

We have the same equivalent properties when the condition ss(v) replaced by
ssp(v), sssp(v), or ssM(k), sssM (k) for k € X*(T)M.
Proof. The equivalence of (1) with (3) and (2) with (4) is immediate from propo-
sition [£.:20] The equivalence of 3 and 4 follows from proposition and the
isomorphism between 7y and 7 given by wo. O

Definition 5.78. Let m be a smooth admissible representation of G(Qp), let v €
X*(T) satisfyv+p € X*(T)3 and let k € X*(T)M-+. We define m*") C 7 to be the
sum of all indecomposable summands of m which satisfy the equivalent conditions of
propositionfor ss(v). We define similarly 755 C 1 and 755" (%) C 1 as the
sum of all indecomposable summands of ™ which satisfy the equivalent conditions
of proposition for ssp(v) or ssM (k).

Remark 5.79. Tt is not necessarily true that any irreducible factor of 755(*) satisfies
the condition ss(v) and similarly for the condition ss,(v) or ss™ (k).

Remark 5.80. If 7 is irreducible, then 7%°(*) = 7 means that 7 admits an embedding
in (1 for a character ¢ : T(Q,) — @: with v(¢) satisfying +, ss(v). A similar
remark holds for the other slope conditions.

We now turn to the strongly small slope condition. Here we take the infimum of
the strongly small slope condition for a weight and the dual condition.
Definition 5.81. Let m be a smooth admissible representation of G(Qp) and let
v € X*(T) satisfy v+ p € X*(T)g and let k € X*(T)M+. We define n5°5) C
to be the sum of all indecomposable summands of m which satisfy either :

(1) There exists m > b > 0 such that we.m.o+:s550®) 3& 0.
(2) There exists m > b >0 such that 7lem.bF:555 0N #0.
We define 755 (%) C 1 to be the sum of all indecomposable summands of m
which satisfy either :
(1) There exists m > b > 0 such that Epmpotisss™ (k) # 0.
(2) There exists m > b > 0 such that 7 Epmptisss™ (1) #0.
With these definition in place, we can deduce (most of) theorems and

of the introduction (we will be able to use the small slope condition for interior
cohomology after we prove theorem [6.49) :

Theorem 5.82. For any k € X, (T)MwT,
(1) H'(KP, k)%™ (%) 45 concentrated in the range [lmin(K), lmax (K)],
(2) HY(KP, H,cusp)sssM(“) is concentrated in the range [0, bax(K)],
(3) Hi(K”,n)sssM("“) is concentrated in the range [lmin(k), d).
For any v € X, (T°)",
(1) ﬁz(Kp, Wy )55 W) s concentrated in the middle degree d,
(2) HL(KP, WY)*s50) s concentrated in the range [0,d],
' , ss50\W) 45 concentrated in the range |d,2d).
3) HY(KP, WY )ssse() d in th d,2d

Proof. This follows immediately from theorems [5.69 and [5.73] O
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5.13. De Rham and rigid cohomology. Let v € X*(T°)*. Let W) 5, V)
be the associated filtered vector bundle with integrable logarithmic connection
over Si';. Over Sk(C), the set of horizontal sections of the corresponding holo-
morphic vector bundle is the local system W,'. Let DR(W)) = W) BOgror

Lsor/r
to W) 4, V). Its cohomology will be denoted RLqr(S7’;, W)). We also consider
the sub-complex DR(W)/(—D)) and its cohomology will be denoted RT'gr, (S5, W)
where the supscript ¢ stands for compact support.

Faltings’ dual BGG complex for W)/ is a filtered complex BGG(W),/) in the cat-
egory of vector bundles with maps given by differential operators. See for example
[LP18] or [LLZI9], sect. 6.1. We have BGG(W,/)" = @yemw,p(w)=i V—wwo (v+p)—p-
We also have a subcomplex BGG(W)/(—D)) with

BGG(VV,Y(—D))z = @wemW,e(w):i]}_wwo(wp)_p(—D).
We have (see for example [LLZ19], thm. 6.1.10) :

(log(D)) be the filtered de Rham complex with logarithmic poles associated

Theorem 5.83. There is a filtered quasi-isomorphism BGG(W,) — DR(W),))
in the category of vector bundles over S}?)TE, with morphisms given by differential

operators. The stupid filtration on BGG(W)) induces is a spectral sequence
E{Lq = @wGMW,Z(w):qu(S?,TEa V—wwo(u-i-p)—p) = Hs};q(sfrg,rz, Wz\//)

degenerating at B1. There is a quasi-isomorphism BGG(W) (—=D)) — DR(W)/(—D)).
The stupid filtration on BGG(W)/ (—D)) induces a spectral sequence

E;f’q = EBweMW,Z(w)szq(Sﬁg,er Vfwwo(Ver)fp(_D)) = HZE?C(S;?TZv W;/)
degenerating at E.

Remark 5.84. Instead of using the stupid filtration on BGG(W,/) one can use the
filtration F corresponding to the Hodge filtration on DR(W)). The associated
graded of this filtration F' are complexes of automorphic vector bundles (featuring
those appearing as objects in BGG(W),/)), with trivial differential. The spectral se-
quence for the F-filtration is then the Hodge-to-de Rham spectral sequence. It also
degenrates at Fq. The difference between the Hodge-to-de Rham spectral sequence
and the stupid filtration spectral sequence is therefore basically a reindexing of the
terms.

We now pass to p-adic geometry. We can consider DR(W,/) and BGG(W),/) as
complex of vector bundles with maps given by differential operators over the adic
space S’y and the GAGA theorem ensures that RT'yr(Si’s;, W)/) is still computing
the algebraic de Rham cohomology groups. If K = K,K? if K, = K, 1, and
X : Ty(Z,) — F* is a character, we can define RTqr(KP, W), x)™/* as a direct
factor of the complex of RFdR(Sf(O:Kp_E, WY (see section. We can also define

RTur.(KP, W), x)57¢ as a direct factor of the complex of RTar, (S ko 5 W)

For any w € MW, we can also make sense of RTgg..,(K?, W), x)57* as in
section Namely, one just copies verbatim this section with the automorphic
sheaf V,; replaced by the complex of automorphic sheaves DR(W)/). Similarly, we
can define R 4g ¢ (KP, W)/, x)*/* by considering the cohomology of the complex
DR(W,(-D)).
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Remark 5.85. It would be interesting to study in depth the cohomologies
RFdR,w (Kp7 Wl\//7 X)ijs'

For example, are the cohomology groups finite dimensional F-vector spaces? In the
Siegel case, the cohomologies RTgp o, (KP, Wy, x)*/* and RT g ¢ (KP, W), x) 5/
for w € {Id,w}!'} are rigid cohomologies with support conditions of certain cov-
erings of the ordinary locus in the Shimura variety. Is this a general phenomena
(with the ordinary locus replaced by the Igusa variety corresponding to w)?

The following theorem is the direct analogue of theorem[5.15] The proof proceeds
in the exact same way.

Theorem 5.86. Let v € X*(T°)" be a weight and let x : T(Z,) — F* be a finite
order character. For a choice of + or —, there is a Him’b-equivariant spectral
sequence EDA(KP, W), X)T converging to classical finite slope de Rham cohomology
HZ;q(KP,W,Y,X)i’fS, such that

EGi 1 (K7 W0 = ©uemwies (wy=pHiri (K7 W0

There are also spectral sequences BR (KP, W)/, x)* converging to HZJEZC(KP WY, x)E e
such that

Es}%c,l(Kpa Wl/v X)i = @u)GMW,Ei (w):pHdR c, w(K;D va ):I:,fs'

It follows that we have two spectral sequences converging to the classical coho-
mology RT'yr(K?, WY, x)*/* (and the compactly supported one). The first one is
associated to the stupid filtration on the de Rham complex (and is basically the
Hodge-to-de Rham spectral sequence). The other one is the spectral sequence of
theorem [5.86] and it is really coming from the Bruhat stratification on the Flag
variety.

By comparing both spectral sequences on the stronly small slope part, we obtain
the following decomposition of the de Rham cohomology.

Theorem 5.87. For all v € X*(T°)", we have that :
(HgR(Kpa Wl\//7 )+ #osh V) @ Dw L(w)=p (Kp, —wwo(l/ =+ p) —p, X)Jr’sssb(l’)

pt+q=n
and that
(Hi R (KP WY X))~ ,5885 (V) @ Bt (w)=p HY(K?, —wwo (v + p) _p,X)—,sssb(v)
p+g=n
We have similarly:
(Hiip,o (K7 Wy )™ e @ Duw,t(w)=p HY(KP, —wwo(v+p)—p, X, cusp) 555 ¥)
ptq=n
and that
( SR,C(KP7W:,X))_’SS%(V) = @ @w’f—(w):PHq(va—wwo(V+P)—p,X,cusp)_’sssb(”).
p+g=n

Proof. We only prove the first displayed equation. The idea of the proof is that the
two spectral spectral sequences are in a certain sense opposite to each other on the
strongly small slope part, and therefore, not only do we have degeneration at Fj,
but also the induced filtration on cohomology is split.
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From theorem [5.66] and corollary [5.65] we have that

Hs;?w(vaW;YaX)Jﬁsssb(y) — Hﬁ-&-q—f—(w) (KP, —wo prw(v + p) — p, X)+,s38b(u)
Hp+q7Z7(W) (va 7’[1)0,]\/[’11}(1/ + p) - P X)JF’SSSI)(V)
For the spectral sequence of theorem [5.86, we deduce that
Ep,q (Kp W\/ )Jr,sssb(u) = ¢ H;D+q (Kp WV ):t,fs
dR,1 y PV s X weMW,L(w)=pgR,w s PV s X
= @weMW,z(w):pHerq*L(w)(Kpa —wo,mw(vV + p) — p, X)+’Sssb(y)
For the spectral sequence of theorem [5.83] we have

(B = ey B P, —wr (v + ) = poy) 55
= ELL(EP W) )W, for p' =d—p, p' +d =p+a.

The spectral sequence of theorem [5.83] degenerates at E, and we deduce that we
get two opposite filtrations on the cohomology. This gives the splitting. ([l

Remark 5.88. This theorem is reminiscent of complex Hodge theory, where one ob-
tains a splitting of the Hodge filtration given by harmonic C*-differential forms. In
the p-adic setting, the de Rham cohomology comes with additional structure (no-
tably a Frobenius on the Hyodo-Kato cohomology [HK94]). Is the above splitting
induced by these additional structure?

We conclude this section by constructing an interior Cousin bi-complex analogue
to the interior Cousin complex of section [5.8

We define Cous(K?, WY, x)* as the bi-complex concentrated in degrees in [0, d] x
[0,d], where for all (i,5) € Z x Z, we have :

=1

(Cous(Kp, W;/, X)i)(iJ) = @wEMW,li(w):i@w’eMW,f(w'):ij (Kp’ —w/wo(y—kp)—p’ X):hfs
The horizontal complexes (Cous(K?, WY, x)*)(®9) are
B eMw,o(w)=;Cous(KP, —w'wo (v + p) — p, )*E

and the vertical differentials are those given by the maps in the BGG complexes.
Let us define the interior de Rham cohomology by

Hyp (K7 W) X)* = Im(Hip (K2, W) ) = Hig (KP, WY, 0)).
We find:
Proposition 5.89. The cohomology ﬁ;R(Kp,WVV,X)i is a subquotient of
H' (Tot(Cous(K”, W,/ ,x)¥)).

Proof. This follows from corollary (]

Remark 5.90. When the Shimura variety is compact, conjecture [5.20] implies that
Tot(Cous(KP, WY, x)*) is quasi-isomorphic to RT'qr(K?, WY, x)*.
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5.14. Explicit formulas in the symplectic case. Let V' be a Q-vector space
of dimension 2g. Let ¥ be the symplectic form on V given in the canonical basis
er, - ,ezq by ¥(e;,e5) =1if i < gand j =2g—i+1and ¥(e;,e;) =0if i < g and
J #2g—1i+1. Let G = GSp,,, be the subgroup of automorphisms of V' respecting
¥ up to a similtude factor v. We pick the maximal diagonal torus T in G. A typi-
cal element t € T is labelled (t1,--- ,tg;c) = diag(tic, - ,tge,t;'e, - - ,t7tc). The
character group X*(T') identifies with {(k1, -+, kg k) € Z9T', >~ k; = k mod 2}.
The action is given by (ki,--- ,kg; k)(t1, -+ ,tg;¢) = [[tFcF. We let Pjtd be the
stabilizor of the Lagrangian plan (e1,---,eq). We therefore let P, be the sta-
bilizor of the Lagrangian plan (eg41,--- ,e24). We have M, ~ GL; x G,,. We
choose the upper triangular Borel in M,,, which fixes the positive compact roots.
Recall that we choose the positive non-compact roots to be in g/pitd. It fol-
lows that X*(T)Mwt = {(k1, - ,kg;k), k1 > ko > -+ > kg} and X*(T)T =
{(k1,-+  kg; k),0 > k1 > ko > --- > kg}. We have p = (—1,-2,-3,---,¢;0). The
usual way to normalize the central character in the theory of Siegel moduler forms
is to consider weights of the form (ki,---,kg;—> ki), with ky > --- > k,. For
example (consult [FP19], example 5.2 for the details), when g = 1, Vg, _p) = wk
where £ — S7% is the universal semi-abelian scheme and wg is its co-normal sheaf.
When g = 2, Vg, kos—ky—ko) = SymF1 72, ® det®? w4 where A — S}?TZ is the
universal semi-abelian scheme and w4 is its co-normal sheaf.
A standard basis of Hecke operators in ’H; 1,0 1s given by the classes:

(1) Uy = [Kpa0(=1/2,--+,=1/2;—1/2)(p) Kp 1,0], where (=1/2, -+, —=1/2;-1/2)(p) =
diag(pila"’ ap71717"' ﬂl)

(2) Uz = [Kp71,0(0,~' 70,—].,"' ,—1;—1)(]3)Kp1170] for 1 < 1 < g — 1 with
i many —1 before the ;. We have that (0,---,0,—1,---,—=1;-1)(p) =

diag(p~Idg—;, p~21d;, Id;, pIdg_;)
(3) S =[pKp1,0), 57!

Remark 5.91. Following [FP19], remark 5.6, we justify that for g = 1, the double
class [K, 1 odiag(p™*,1)Kp1,0] indeed corresponds to the standard U,-operator !
For simplicity let us assume that K? C GLa(]],, Z¢). The corresponding moduli
space (ignoring cusps) parametrizes two elliptic curves Fy, E5 up to isomorphisms,
with K level structures, together with a quasi isogeny Fy — FEj giving a map
V(E3) — V(E1) where V(E;) = lim E;[N] ® Q is the adelic Tate module, and we
ask that this map is represented by Kdiag(p~',1)K. Concretely this means that
the quasi-isogeny Fo — FE7 comes from a degree p isogeny E; — FE5 and that this
isogeny matches K-level structures on the Tate modules. The K, 1 o level structure
is the data of a rank p-subgroup H; C F;[p]. Because we choose the lower triangular
Borel, we find that the isogeny E; — E5 induces and isomorphism between H; and
Hs.

5.14.1. GL2/Q. In this case, everything is already in [BP20]. Let x = (k; —k). The
Cousin complex is Cous(KP,r,x) : HY(K?, x, )" — HL(KP Kk, x)"/* where
Hy(KP, k, x)T /% is the space of finite slope overconvergent modular forms of weight
k, nebentypus x and H} (K?, x, x)*/* is the finite slope part of the cohomology with
compact support of the dagger space “ordinary locus” in weight k and nebentypus .
We have wo ps = 1 for GLy. For w = 1, we find that w™wo s (k+p)+p = (k—2; —k)
and that ((—1/2;—1/2), (k — 2; —k)) = 1. The un-normalized U,-operator acts on
g-expansion by > a,q" = p)_ anpq" and has indeed slope greater or equal to 1
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on HY(KP, k,x)"/5. For w # 1, we find that w™ wo (K + p) + p = (—k; —k)
and we get that —((—1/2; —1/2), (—k; —k)) = k. On HL (K?, x,x) "/, U, acts like
Frobenius, and this explains why it is of slope greater or equal than k. See lemma
5.3 in [BP20]. We deduce from this lemma the classicality theorem.

5.14.2. GSp4/Q. The Weyl group is generated by the following transposition: sqg(k1, ke; k) =
(kg, k1 k) and s1(kq, ko; k) = (—k1, ko; k). The elements of ¥ W are Id, s1, 5150, 515051
We consider the weight k = (k1, k2; —k1—k2) so that —wo vk = (—ke, —k1; k1 +k2).
The following table indicates the value of the pairing
(t,w™ wo m (K + p) + p) = (t,w™  wo v (%)) + (8, w ™ wo ar(p) + p)
where t = (—1/2,—1/2;—1/2)(p) or (0, —1;—1)(p), and w € MW

1d S1 5150 515051
(—1/2,—1/2;—1/2) 3 ko +1 ko +1 k1 + ko
(07—1;-1) ko+3 | ko+ 3| 2ke+ ki | 2k + kq

The table giving the pairing (f, w ™ wg (%)) is deduced from this one by replac-
ing the constants by 0:

Id | 51 $150 515051
(—1/2,—1/27—1/2) 0 kQ kg kl +]€2
(07—1;-1) ko | ko | 2ko + k1 | 2ko + k1

The difference between these two tables illustrates the difference between con-
jecture (first table) and theorem (second table). Let us explain how to
interpret this information.

Let us take a weight in the interior of the holomorphic chamber: ky > 2. We
assume that Us has slopes < ko+1. This is the “small slope” condition because there
are conjecturally no overconvergent cohomology classes for w # 1 which satisfy this
slope condition. Therefore the Us-slope < ko + 1 part of classical cohomology
indentifies conjecturally with the overconvergent cohomology for w = 1. Under the
bounds of theorem we have to use the strongly small slope condition < ks
instead.

Let us take a weight in the interior of the “H! chamber” ks < 2 and k; +
ks > 3. The small slope condition is now Us-slope < 3 and U;-slope < ki +
2ko. The first condition kills conjecturally the overconvergent cohomology for 1.
The second condition kills the overconvergent cohomology for sps; and spsisp.
Therefore, the small slope classical cohomology identifies conjecturally with the
small slope overconvergent cohomology for w = sg. Under the bounds of theorem
[5-33] we have to use the strongly small slope condition Us-slope < 0 instead of < 3.
As a final remark, in this case the cuspidal overconvergent cohomology for w =1 is
in degree 0, and by a g-expansion argument we can indeed show that the Us-slope
is > 3. Therefore we can show that the small slope classical cuspidal cohomology
identifies with the small slope cuspidal overconvergent cohomology for w = sg.

6. p-ADIC FAMILIES OF OVERCONVERGENT COHOMOLOGY

6.1. On the locally analytic BGG resolution. In this section we recall some
basic facts about analytic inductions and BGG resolutions for p-adic groups. Stan-
dard references for this material are [Urb11], section 3 and [Jonll]. The notations
for this section are as follows. We let F' be a finite extension of Q, and we let
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M — Spec Op be a split reductive group. We fix a maximal torus 7" and a Borel B
containing 7. We let &), = &7, [[ ®;, be the root system. We also let Ay C @7,
be the positive simple roots. We denote by Wj, the Weyl group, and denote by
£ : Wy — Z>o the length function. For all ¢ € Zxq, we let Wﬁ}) be the set of
elements in Wy, of length i. We denote by wg s the longest element of Wy, We
let pps be half the sum of the positive roots. The Weyl group acts on T, X, (T) and
X*(T). We also have the dotted action on X*(7T') given by w-x = w(k+pap) — pu-
We let X, (T)M*+ and X*(T)M-+ be the cones of dominant cocharacters and char-
acters and we let X, (T)M*++ and X*(T)M-++ be the cones of dominant regular
cocharacters and characters. We use a — sign to denote the opposite cones. We
assume that Tp = T Xgpec 0 Spec F' is in fact defined over Q,. Namely, there is a
torus T, and an isomorphism Ty, x Spec F' = Tr. We often drop the subscripts
F or Q, when the context is clear.

Remark 6.1. In our applications, M will be the Levi M, of the group G which is
part of the Shimura datum. A slight warning is that the torus Ty, will in general
be the conjugate of a maximal torus of Gg, by an element of the Weyl group of G
which is not necessarily rational.

We let T C Ty, be the maximal split subtorus. We let T'(Z,) C T(Q,) be the
maximal compact subgroup. There is a valuation map v : T(Q,) — X*(Td) ®Q
whose image is a lattice and whose kernel is T(Z,). We let T*'* be the inverse
image of X, (T%)M-+ via v. We define similarly 7M-++ 7M.~ 7M~—

For any x € X*(T),we let F(x) be the one dimensional F' vector space endowed
with the action of T'(Q,) via the character . If V is a F-vector space endowed
with an action of (a submonoid of) T(Q,), we let V(k) =V @ F(k).

We let M be the quasi-compact adic space over Spa(F, Or) attached to M and
we denote by M, the subgroup of M of elements reducing to 1 modulo p™. We
define in a similar fashion 7, the quasi-compact torus over Spa(F, Or) attached to
T and 7T, the subgroup of T of elements reducing to 1 modulo p".

We let My € M(Op) be a closed subgroup possessing an Iwahori decomposition,
in the sense that the product map

Nl x Ty x Ny — M,

is an isomorphism, where Ny = My NU, T} = M, QT, N,=MNU (for U and U
the unipotent radical of B and the opposite Borel B respectively). We also assume
that Ty = T(Z,), and that T*>~ normalizes N;.

6.1.1. Algebraic inductions. Let k € X*(T)™*. We have the algebraic representa-
tion V,; of M with highest weight . It can be realized as an algebraic induction:
V., = Indg(w07M/-s)
= {f: M — A'| f(mb) = (wo,mr)(b" 1) f(m), ¥ (m,b) € M x B}
We have a left action of M given by hf(m) = f(h~'m).
6.1.2. Analytic weights. Let (A, AT) be a complete Tate algebra over (F,Or) and

let k4 be a continuous morphism T'(Z,) = A*. Let n € Z>o. We say that k4 is
n-analytic if the map x4 can be extended to a pairing:

T(Zp)Tn % Spa(4,AT) — G
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where T(Z,)T, is the subgroup of 7 generated by T(Z,) and 7, (this is a finite
union of translates of 7). We recall that any continuous character x4 is n-analytic
for some n (see [UrbII], lemma 3.2.5. for example).

6.1.3. Analytic inductions. Let (A, AT) be a complete Tate algebra over (F,Op)
and let S = Spa(A4, A"). We assume that A is uniform (i.e A° is bounded) and
equip A with the supremum norm. Let ny € Z>o be an integer. We now fix
a character k4 : wo, }VIT(ZP)WO, v — A* which is ng-analytic, or equivalently a
character wo pmka : T(Zy) — A* which is ng-analytic.

Remark 6.2. The notation wg,prk4 may seem strange so let us explain it to orient
the reader. Let k € X*(T') be an algebraic character of T. Then for any w € Wy,
we have (wk,t) = (k, w™'t) so that wk(t) = x(w™tw).

For all n > ng we can define

n—an __ . My M, _
Vi =an —Indgd i (wonka) =

{f: (MM)s = AG™™ | f(mb) = (wo,nrrka)(b71) f(m), ¥ (m,b) € (MiMy)sx (BO(MiMy))s}.
This is a Banach A-module for the supremum norm. We let V'~ *"% be the
module of elements with supremum norm less or equal than one. The space V,'"%"
carries the following actions of the group (M;M,,)s and of the monoid T™::
e hf(m) = f(h=tm) for h,m € (MiM,)s,
o tf(m) = f(t Mmtmt) for t € T+ m € (MiM,)s, and m = Rty
the Iwahori decomposition of m.
These actions respect the submodule V",
We now include the following lemma for later use. Let M? be the quotient of
M by its maximal normal pro p-subgroup.

Lemma 6.3. The representation V'~ "% @ 4+ AT JATT of MyM,, is a countable
inductive limit of finite projective AT /AT T -submodules V; stable under the action of

My M,,, and with the property that the action on V;y1/V; factors through an action
of MY .

Proof. The character k4 takes only finitely many values on AT /A*T therefore we
may assume it is constant. We are then reduced to the case that A is a finite
field extension of F' and A*/ATT is a finite field. The stabilizer of any vector
ve VIt @y AT /AT is open in My M, and we deduce that V"%t @4+
A1 /ATT is a countable inductive limit of finite dimensional representations. Since
groups of order p have non-zero fixed vectors on finite dimensional representations
in characteristic p, the claim follows. U

We also let V'™ = colim,, V""" be the locally analytic induction.

Lemma 6.4. The operators t € TM:*+ are compact on Viime" and the maps
vemem — V,:LAH*“" induce isomorphisms on the finite slope part. The slopes of
t e TM:A on V,fj"’fs are greater or equal than 0.

Proof. If t € TM-F one sees easily that the map ¢ : V7" — V7" improves
analyticity. In particular, if min,ea,, v(a(t)) > 1, one has a factorization

n—an n+l—an n—an
Vs = v -V
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where the first inclusion is compact. Moreover, we deduce from the definition of

the action that if ¢ € T™%, then ¢ preserves the open and bounded submodule

anan,+ O
KA N

The space V,"~%" embeds in H*(M1M,,, Op, a1,,) and similarly V" embeds in
COliHlnHO(]\41./\4”7 ﬁMan).

We have a left action of M M,, on H*(M1M,,, Onr, am,) given by hx f(m) = f(mh).
Passing to the limit over n and differentiating, we get an action of the Lie algebra
m of M on colim, H*(M;M,,, Onr, p, ) which can be extended to an action of the
enveloping algebra U (m).

Remark 6.5. We are not requiring that M; C M (Op) is an open subgroup and
My will not always be Zariski dense in M. In our definition of locally analytic
induction, we consider analytic functions on neighborhoods on M; in M. These
functions are not necessarily determined by their restriction to M;.

6.1.4. Twist by a finite order character. We fix a character k4 : woijle(Zp)woyM —
A* which is n-analytic. Let wo arx : M1 — F'* be a finite order character. We still
denote by wo, arx its restriction to T'(Z,) and by x the corresponding character of
wg’}wT(ZP)wQM which we assume also to be n-analytic. We also denote by wo arx
the corresponding 1-dimensional representation of M;. We endow it with the trivial
action of T+ We have the following lemma :

Lemma 6.6. There is a canonical map V'~ " ®p (wo,mrx) ™t — Vi oy which is

an isomorphism of (My, TM-*)-modules.

Proof. The map is defined by sending a tensor a ® b to the product ab as functions
on M M,,. The rest of the lemma follows easily and is left to the reader. O

6.1.5. Locally algebraic induction. Let x € X*(T)M:*. From x we obtain a charac-
ter K : w(J_’}MT(Zp)wO7M — F* as the composition of the inclusion wo_}MT(Zp)me C
T(F)and k: T(F) — F*.

From the definitions, restriction induces a natural inclusion ¢ : V, — V!
There is an action of M on V., and therefore actions of M; and T™*. The map ¢
is Mi-equivariant, but not TM t-equivariant. More precisely, we have the following
formula:

1(tv) = (wo k) (E)te(v)

from which we deduce that the map ¢ : V,; — V'™ (wq prk) is (M, TMF)-equivariant.

We can define the subspace of V%9 of V!e" consisting of elements arising from
functions on M;M,, for some n which on each component of M;M,, are the re-
striction of a polynomial function on M. This is a (M, T**)-subrepresentation.
This space contains the space Vi, (—wq ar) of algebraic functions. Let

smo__ Ml J—
Vi™ =sm —Indpl,, 1=

{f: My — Op | f(mb) = f(m) V (m,b) € M1 x BN M, f islocally constant}

The map V,@V{™ — V149 (wg prk) is an isomorphism of (M, T} )-representations.
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6.1.6. The BGG complex. For all o € Ay, we fix a generator X, of the root space
u, € m and we have the corresponding generator X_,, of u_,. Let k € X*(T).

Lemma 6.7. For all « € Ays such that (k,a") > —1, we have maps:
Oq : VI (wo prr)  — Vl“" v (wo,m(Sa - K))

foe X0t g

wo, M

equivariant for the action of (My, T™:T).

Proof. These maps are constructed in [Urbll], proposition 3.2.11, remark 3.3.11,
proposition 3.3.12, as well as [JonlI], section 5, see also the remark below theorem
13. O

Remark 6.8. The normalization of [Urbll] and [Jonll] is slightly different from
the one we use here. They realize the highest weight x representation V,, as the
following induction: V! = {f : M — Al | f(bm) = k(b)f(m), V (m,b) € M x B}.
To translate to our setting, one simply applies the involution m +— wo pym™two ar.
We therefore get an isomorphism V,; — V. which sends f to f’ defined by f/'(m) =
f(wo, Mm_lw(), ). There is an action of M on V! induced from the right translation
action of M on itself. We find that mf’ = ((wo,xrmwy },)f)’. This explains the
twist by wg s appearing in lemma compared to loc. cit.

Remark 6.9. We have
won (Sa - 5 — k) = —({Kk, ") + 1w pra.
In particular, for any t € T+ ((k,a") + 1)(—wo ara, v(t)) > 0. This means that

©, increases the slopes.

Theorem 6.10 ([Jonll], thm. 26, [Urb11], sect. 3.3.9). There is an exact sequence
of (My, TM:F)-representations

0—>VK®V15 —>Vlan’U) MKZ @ Vlan’wOM’w /ﬁ;))_>_>
wEWJ(VP
@ V;ia: wO M w - ’V‘:)) — ‘/ul)%nM K(WO,M(U}O,M : Ii)) -0
wEW](W)
where the first map Vi, @ V™ — V9™ (wq \rk) is the natural inclusion, the second

map VI (wo k) — D m V2en (wo p(w - K)) is a linear combination of the

weW,,
maps O for a € Ay, and more generally the differentials &
K)) — @weW““)Vw "(wo,m(w - K)) are linear combinations of maps of the form
X - for suitable elements X e U(g).

ewd Vw ‘K (wO M(

Definition 6.11. Let k € X, (T)M*. We say that a TM-*- eigensystem X in V1o
is of M-small slope (abreviated +, sspr) if
v(\) < —((k,a") + Dwo,pax

for some a € Ayy.
We say that a TM-* - eigensystem \ in Vi, is of M -small slope (abreviated +, ssns)
if
v(A) < wo prk — ((k, @) + Dwo e
for some a € Ayy.
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Corollary 6.12. The map V%M — V6ien+ssa (yq \k) is an isomorphism of
(M, TM:*)-modules.

Proof. Tt follows from theorem and lemma [6.4] that the map V, ® V™ —
V%an(wg ark) is an isomorphism on the small slope part. On the other hand, the
map V,; — V, ® V3 is an isomorphism on the finite slope part. (I

Ezample 6.13. Let M = SLy/Q,, with diagonal torus T" and upper triangular
Borel B. Then X*(T) = Z, and there is a unique simple root @« = 2. For any
k€ X, (T)M+ = Zsg, we have V}, = Sym*(St). The valuation of the eigenvalues of
t = diag(p,p~!) on V} are —k, —k+2,--- k. The M — ss condition on V}, translates
into the condition that the eigenvalues of ¢ have valuation < —k+2(k+1) = k+ 2.
This condition is always satisfied (in the case of SLy) and we have V; = VM5,
The space V%" identifies with the space of locally analytic functions on pZ, and
the action of ¢ is given by f(2) — f(p?z). A basis of finite slope vectors in V}/*" is
given by the monomial functions z — 2" for n € Z>¢. The slopes of ¢ on this basis
are 0,2,---,2n,---. The inclusion V} — Vkl“” identifies Vi with the polynomial
functions of degree < k, which is indeed the space defined by the slope condition
M — ss.
6.1.7. Distributions. Let k4 : w&hT(Zp)WO,M — A* be ng-analytic. For all n >
ng, we now define D! %" = (V"= %")" as the continuous A-dual. This is a Banach
A-module, and we let D " be the continuous AT-dual of V=T It is an
open and bounded submodule of D%, We let D!*" = lim,, D" = (Vlam)V,
This is a compact projective limit of Banach A-modules (the distributions of weight
k). There is a perfect pairing:

(—, =) Viem x Dlan — 4.
The space fof carries a right action of (My, TM:*) defined by (mf, u) = (f, um),
(tf ) = (f, ut) for (t,m, f,pn) € TM T x My x V! x D% The space D™ therefore
carries a left action of (M, TM7) defined by (m=1f, u) = (f,mpu), ¢~ f u) =
(fstu) for (t,m, f,u) € TM~ x My x V}am x Dlan The action of T~ is by
compact operators on D,l,i‘ff

Let k € X*(T)*. By dualizing the exact sequence of theorem we get the
following complex of (M, T™:~)-representations:

0= Dy, o (—wonr(wonr - £)) = -+ = Puwewd Dy (—woar(w - )
== @weWyDiZlﬁ(—wo,M(w k) = D" (—wo nrk) — 0
This complex is exact except in the last degree. The cokernel of ® cw® Dan (—wo pr (w-
M

K)) — DY (—wp k) maps to V,Y. Passing to the finite slope part gives an exact
sequence:

0— DE%TMAK(_WO,M(WO,M : H))fs — = @wewg>D£§-Z(_w07M(w . ;@))fs
— s = @weWIS)Digz(_wovM(w . K))fs — ngan(—’UJo,]wﬁ)fS — Vn\/ — 0
Definition 6.14. Let k € X, (T)M+. We say that a T ~- eigensystem \ in D!

is of M-small slope (abbreviated —, ssyy) if

v(A) > ({k,a") + Dwo pra
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for some a € Ayy.
We say that a T™~- eigensystem X in VY is of M-small slope (abbreviated
—, 880 ) if
v(X) > —wo a6+ (k") + Dwo pa

for some av € Ay
We have the following control theorem:

Corollary 6.15. The map (D'")- %M (—wq prk) — (VY )7%M is an isomorphism
of (My, T™:~)-modules.

Proof. This is the dual of corollary [6.12] O

6.2. p-adic families of sheaves. We will now use the locally analytic BGG reso-
lution in families.

6.2.1. Definition of the sheaves. We let K, = K, /.o with m’ > 0. Let w € MW.
By the results of section for any n > 0, over (ﬂ}%)Kp)—l(]Cw,k[anp) the
torsor M5 has a reduction of structure group to a torsor My p, i, under the
group Kp . ar, M-

The group K a1, has an Iwahori decomposition by proposition@ Moreover,
Ky, NT = wT (Zy)w™t.

Let (A, AT) be a Tate algebra over (F,Op). Let vq : T°(Z,) — A* be an
n-analytic character. Let k4 : wo pwT(Zy)(wo pw) ™t — A* be given by k4 =
—wo, mwra — (Wo,prwp + p).

We can construct a sheaf V)" over (7rf§,’r}7Kp)_1(]Cw’k[n,nK]g)7 modeled on
Vr-em. Namely consider the torsor m : Mpyr K, — (W}}’}’Kp)_l(]ka[anp)
and m x 1 : My, k, % Spa(A, AT) = (7497) "1 (|Cuw k[n,nKp) X Spa(A, AT). We
let V' %" be the subsheaf of (7 x 1)*ﬁMHT,n,K,,xSpa(A,A+) of sections which sat-
isfy f(mb) = —wo,n,ka(b)f(m) for all b € BN (Kp’w,MuM}L’n). We let Dy 4" =
Vo™ @V_2p,. =V, 3-1,,.)" asheaf locally modeled on D} 5, .

If K, = Ky form’ > b > 0and m’ > 0, we have a map (757 i )~ (|Cw i [n.n K,) —
(7577, 1,) " (1Cu 1 [n,n K) and we obtain sheaves V7' " and Dy " over (727 /) ™' (1Cu ke [n,n K}p)

by pull back.

6.2.2. First properties. We prove that the interpolation sheaves are projective Ba-
nach sheaves.

Proposition 6.16. The sheaves V) " and D;, " are projective Banach sheaves
over (Wg}pr)’l(]Cw,k[n’nKp). More precisely, for any affinoidd = Spa(R, RT) —
(W}f}pr)_l(]Cw,k[n’nKp), Vi oem(U) and DL (U) are projective Banach R&p A-
modules and the maps V) 7" (U)Rr Oy — Vi "y and D7 (U)RrOy — D" |u
are isomorphisms.

Proof. Tt follows from proposition [4.78] that there is a finite flat morphism f : U’ =
Spa(R/, (R')T) — U, a finite group H acting on U’ such that U’'/H = U, such that
the torsor M g7, K, [u is trivial. It follows that VI =o"(U) = (V,'7*"&@R')" (where
H acts diagonally) is a direct factor of the projective A®rR-module V,{”A’“"@)R' .
Similarly,

VI = (VIS @p Oy )" = (VI @p R @r Oy)" = V)" (U)OROY.
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The case of the distribution sheaf is similar and left to the reader. O

Corollary 6.17. Let U C (ﬂ}}’?)Kp)_l(]Cw,k[anp) be an open subset which is a
finite union of quasi-Stein opens. Then

RIe, (U, V") = Rlan (U, V77 *")
is an object of Pron(KPT°I(A)) and

RIe(U, Dy ") = RTan (U, Dy ™)
is an object of Pron(KP%I(A)).

Proof. This follows from proposition and lemma m (or a slight elaboration
of it). O

6.2.3. Interpolation sheaves and locally algebraic weights. Let v € X*(T€) and let
Kk = —wo,mwv — (wo prwp + p) be algebraic characters of T. By restriction they
also define characters v : T(Z,) — F*, k : wo ywT(Zy)(wo pw) ™t — FX.

Proposition 6.18. Suppose k € X*(T)Mwt. Let K, = Ky . Over (ﬂfL%!Kp)_l(]Cw)k[mnKp)

we have morphisms Vi, — V)~ and Dy~ =V o, =V wg pin—2pmc-
Proof. This follows from the construction. Compare with section [6.1.5 O

We would like to get a similar formula for locally algebraic dominant weights.
Let m" > b > 0. Recall that the map S?;-Kp,m/,b,z — S}?;'prm,joyz is an étale

cover with group T(Z,)/Ty(Z,). For any character x : T(Z,)/Ty(Zy,) — F*, we get

an invertible sheaf Ogtor . (x). For any sheaf of Ogop -module F, we
p,m’,0’ p,m’,0’

denote by F(x) = F ®05%.K , Ostor Y (0.
p,m’,0° p,m”,0’

Proposition 6.19. Let K, = K}, s 0 with m’ > 0. Let m’ > b > 0. Let n > b.
Let x : T(Zy,)/Ty(Zy) — F* be a finite order character. Let va be an n-analytic

character. Quer (W}?}7Kp)_1(]0w7k[n,nKp) we have that V] 4" = V) 7" (x).

Proof. Let K, = Km0 with m' € Zso. Let K}, = K}, p with m’ > b. The

map (175 g )~ (1CwklnnKy) — (727 k)" (1CuwklnnKp) is an étale cover of
group T(Zy)/Ty(Zyp) since |C k[nn K, =|Cuw k[nnkp. We also have a map of tor-

. . . / 1
sors MHT’m,n,K}r) — MHT mn K, equivariant for the map: Kp’wyM“M o
Kypwm,M,, ., We form the quotient:

KpavauMlll,,m,n/K/,w,]\/I“M;lL,m,n = wT(ZP)w_l/wa(ZP)w_l‘

By taking the pushout of the map ./\/lHTm)n,K;D — METmn Kk, Via K, 7’w,MuM/11,m,n —
wT(Zp)w™t JwTy(Zy)w™?, we get a map:

(57, 1:) " (Cwklmin Kp) = METmm 1, X Ky ary M, (W (Zp)w™ J0 T (Zp)w ™)

This map is necessarily an isomorphism, because the left hand side is an étale
cover of (wfj‘f§7Kp)’1(]C’w7k[m7nKp) of group T(Z,)/Ty(Z,) and the right hand side

is an étale cover of group w1 (Z,)w ™' /wT,(Z,)w~!. Moreover, the map is equi-

variant under the isomorphism T(Z,)/Ty(Z,) — wT(Zp)w™ JwTy(Zy)w™" given

by conjugation by w. It follows that the étale cover (7497 /)™ (JCuw k[mnK}) —

t -1 .
(wﬁ}pr) (]Cuw,k[m,nKp) can be realized as a pushout of the torsor Myr n x, -
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We deduce from lemma that V! ™" @ wx = Vi, @(wo.arwy-1)- The lemma fol-
lows. ([

Corollary 6.20. Let v = vgyx is a locally algebraic character of T¢(Z,), with
Vaig € X*(T) algebraic and x : T(Z,)/Ty(Z,) — F* a finite order character then

if Kalg = —wWo,MWVaig + (Wo,prwp — p) is M-dominant, we have maps of sheaves
Vﬁalg (X) — Vlclicm and ,Dgian — V*2pncfﬁazg(_X)'
Proof. This is a combination of propositions [6.18] and [6.19] O

6.2.4. Definition of the action of the Hecke algebra. Let t € T*. Let K, = K, ' 0.
We consider the Hecke correspondence:

Stor
Kr(Kp,ntKpt—1),5"

tor tor
SKPKP,Z SKPKP,E’

Over p2_1 ((Wg{”% K, )~ 1(]CU),k[n,nKp)) mpl_l ((7"?% K, )~ 1(]Cw,k[n,nKp)) we have a
map

PiMirr ]

T

PiMuT K, PsMHuT N K,

an
HT

which is represented by K, w a1, Mpwt™ Lw 1K .w,M, My by proposition @ So
far, all this discussion depends only on the double class [KptK,] and therefore only
on the image of t € T"/T(Z,). In particular, if ¢t € T(Z,), all the maps are the
identity.

We now consider the following map:

[tf:/l] s Py Mpp U — ps M U™
which is given by aU/%" + [t~ zwtw ™ 1U. This map depends on ¢ and not only
on its class in T /T(Zy).

Lemma 6.21. (1) The map [tivl] induces a map
PIMuT 0K, U™ = psMuT 0K, U
(2) Ift € TTF and n > 1, this map factors through
PIMut i, /U™ = DIMur a1k, /U™ = DsMurn i, /U

(3) Let vg be an n-analytic weight. Then [FT] induces a compact morphism

(in the sense of definition @)
(61 PV PV

which, is locally modeled on the morphism wtw™" : V=% — V=" defined

in section[6.1.3.
Proof. Easy and left to the reader. Observe that wtw™! € TMuT, O
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We can now attach to ¢t € TF the following normalized map that will be used to
obtain an action on cohomology :

t:R(p1)upaV, " = V"

and wich is the composite of [t—l] tR(p1)«p3V0 " = R(p1) w0V " and (—w ™ wo a p+
P, t)Trp, = Ripr)upi V) " = V).

Lemma 6.22. Ift € T(Z,), then
LRV = VI Vi
acts via scalar multiplication by va(t).

Proof. This follows from the identity vy = w_1w07M/1A —w_1w07Mp+p. The scalar

multiplication by w™lwg prka(t) comes from the map [t~1], the multiplication by

(—w™wo prp + p,t) comes from the trace map. O
By duality we also obtaln a morphism: p3Dy " — pi Dy *" which is locally
modeled on (wtw™")~': DR — DR

6.3. Locally analytic overconvergent cohomology. Let w € M. For a choice
of 4+ or — and a weight v4 : T(Z,) — A* we want to define a finite slope overconver-
gent, locally analytic cohomology RI'y o (K, v4) % and the cuspidal counterpart
RTy,an(KP, vy, cusp)®7¥* by taking cohomologies of the analytic sheaves Voo or
Dy ™ (for n large enough), with suitable support conditions of neighborhoods of
the inverse image of P,\P,wK, by the Hodge-Tate period map, and applying a
finite slope projector.

6.3.1. Relative spectral theory. We recall briefly the relative spectral theory for
compact operators. The original reference is [Col97]. Let (A, AT) be a noe-
therian complete Tate (F,O)-algebra. Let M® € Ob(KP™(A)) and let T €
Endp(Ban(a))(M*®) be a compact operator.

We begin by describing a non-canonical construction which depends on a lift
T € Ends(M*) which is compact in all degrees. We let

P(X) =[] det(1 — XT|M*) € A[[X]]
k

be the (total) Fredholm determinant of 7" (see [Col97], section A 2). The series [:’(X )
is an entire series and we let Z < G x Spa(A, A*) be the vanishing locus of P.
This is the spectral variety associated to 7. The morphism 7 : Z — Spa(4, A1) is
locally quasi-finite, flat and partially proper (see [AIP18], thm. B1 for a short proof
in the language of adic spaces). Any point z € Z has a neighborhood U, such that
Z CU, and U, — w(U.) is finite flat. We can describe more precisely a neighborhood
U, of z. Let z € Spa(A4, AT) be the image of z. Then there is a neighborhood
Spa(B, BY) of x in Spa(A, A™) and a factorization in B[[X]] P(X) = R(X)Q(X)
where R(X) is a Fredholm series, Q(X) = 14+ a1 X + --- + agX? is a polynomial
with ag € B*, R(X) and Q(X) are prime to each other and Q(z) = 0. Moreover,
U, =V (Q(X)) C A x Spa(B, BT) is a neighborhood of z in Z.

Over Z we have a complex of coherent sheaves M*/* whose definition we briefly
recall. Let Q*(X) = XdQ( D). Over Spa(B, B*) we have a unique decomposi-
tion M*®4B = M*(Q) ® N*(Q) where Q*(T) is zero on M*(Q) and invertible on
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N*(Q). Tt follows that M*(Q) has a natural structure of complex of B[X]/Q(){)—
module of finite type (with X ! acting like T') and we let M"fS|V(Q(X)) =M*(Q).

These glue to give the complex M*Is over Z. We observe that by construction
M*Fs s a perfect complex of W‘lﬁspa(AAﬂ—modules. Moreover, if M*® is concen-
trated in the range [a, b], so is M* 75,

We observe at this point that neither M®, nor Z are canonical objects. They
depend on the choice of T. We now introduce some objects that do not depend on
the choice of 7.

Let M*® be the complex of projective Banach sheaves over Spa(A, AT) attached
to M*®. We define M*¥s = 1, M*¥5. It follows from the construction that there is
a natural map M* /% — M®. There is also a section M*® — M*5. By adjunction,
this section is provided by the map 7*M*® — Me:Ss (which in the above notations,
is locally given by the projection M*®B — M*(Q), orthogonal to N*(Q)).

The complex M* /¢ is thus a direct factor of M®. For any z € Spa(A, AT), we
have that M*7# ®%S ) k(z) = (M* ®% k(2))?* where the second sup script fs
is taken in the sense of section F.2.2)

Any other lift of T" will produce another complex Mot , canonically quasi-
isomorphic to M*7#. Thus the complex M*/* viewed as an object of the derived
category of abelian sheaves over Spa(A, A™) depends on T up to a unique isomor-
phism. Therefore, M®/# is canonically attached to T" and we call it the finite slope
part of M*®. The choice of T allows us to construct the perfect complex M®*fs
which is some sort of nice “resolution” of M®* /5 over the spectral variety Z.

We let H® (/\;l"fs) be the associated graded module over Z, obtained by taking
cohomology. We also let Z be the closed subspace of Z, equal to the support of
H* (/\;l”f ). This is also independent of T and is the spectral variety associated to
T. Finally, we note that H®(M®*/%) = 7, H*(M* /).

S

6.3.2. Relative spectral theory for an algebra of operators. We now let ZZ, be the
free monoid on r generators, generated by element 71, --- ,T,.. We assume that we
have an action of ZZ, on an object M*® € Ob(KPTI(A)). We also assume that the
operators T € Z | are potent compact.

For any choice of T' € Z% | acting compactly, and any lift T of T to a compact

operator on the complex M*®, we can construct a spectral variety Zr, and a complex
of sheaves M%/® over Zp. The complex of sheaves M37* on Spa(4, A1) (the
pushforward of /\;l}f %) is easily shown to be independent of the particular choice of
T (compare with lemma , and is called the finite slope part of M*, and denoted
Mo,fs.

Let us fix again a compact operator T' € Z% ;. Let Zp < G,, x Spa(A, AT) be the
spectral variety associated to T'. We let 0z be the coherent 0z, -algebra generated
by the image of T, -, T} in @HF(M3'®). Let Z be the associated adic space,

finite over Zp. We call this space the spectral variety associated to Th,---,T.
There is a structural morphism Z — Spa(4, A™) (the weight morphism). There
is also a morphism Z — (G%*)" given by T, ',--- ,T.! (as one checks that since

T is invertible, so are each of the T;), and we have an embedding Z < (GJ}")" x
Spa(A, AT). Finally, the space Z carries a graded sheaf of modules H®(M®*/9)
(with pushforward along the finite map Z — Z7 equal to H*(M$7%)).
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6.3.3. The case of projective limits. We claim that all the material of the last sec-
tions applies to the more general case where the complex M*® € Ob(KPTI(A)) is
replaced by an object “lim; " M2 € Ob(Pron(KP%(A))). This was explained in sec-
tion[5.2.4]when the base if a field (F, Or),the key observation being lemmal[2.6|which
reduces the theory of compact operators on objects “lim; ” M? € Ob(Pron(KP™7(A)))
to theory of compact operators on objects M® € Ob(KP"(A)). Details are left to
the reader.

6.3.4. First definition. Let K, = Kp o with m’ > n and let vy : T(Z,) —
A* be an n-analytic weight. We fix ¢t € TT" and we assume that min(t) =
inf,ee+ v(a(t)) > 1 in order to simplify notations. We let T' be the associated
Hecke operator.

We have that

T (w7 i)~ (X kDN (7, )™ Yok D) € (757 1,) ™ (1Cov kel v )

< (WE%,K,,)_l (1Cw kln.nKp)

by lemma and therefore, the sheaves V)" and Dj " are defined over a
neighborhood of T ((wig xc, )™ (1Xw k() N (T)" (w57 ke, )™ (Y k]))-
We also have that

T (i i) ™ (X kDI (7, )™ Yok D) € (77 1,) ™ (Cook bzt s Kp)

< (77;?5“7Kp)_1(]cw7k[n,nKp)
and therefore, the sheaves V) "%" and Dy *" are defined over a neighborhood of
TN ((rigr e, )™ 1 Xw k) 0 (T (707 1, ) (Vi k) as well.

1EEP

We define:

Ry —an(KPKp,va) ™7 =
— +1/ _t -1 - +.f
BT Foen (mtgg. o)~ (R D)@y (rigy )2 0V ) (T (T, )™ (1K) V)0
Implicit in this definition is that it makes sense to take the finite slope part: namely
the cohomology is an object of Proy(KP™/(A)) and that H;m,70 acts on it in a way
that 7—[; jn/,o acts by potent compact operators. This is proved in Theorem W

below. Note that Ry, p—an(KPK,, va)t¥% is an object of the derived category of
abelian sheaves on Spa(4, AT). See sections [6.3.1} 6.3.2 [6.3.3]
Similarly, we define:

RLynan(KP Ky, va) 7% =

tor

n+1 —1 n—an\—,fs
RE ot (g, e, )= (Xt DN+ (g, ey (¥ (T (i1, )™ (Vi ), D) 7

HT,Kp HT,Kp
Again implicit in this definition is that it makes sense to take the finite slope part:
namely the cohomology is an object of Proy(KP"*/(A)) and that H,_ ., 4 acts on it
in a way that H, om0 ACts by potent compact operators. This is proved in Theorem
below.

We have similar definitions for cuspidal cohomologies RI'y, 5 —qn (K? K, v4, cusp)"“f s
and RI'y pn—qn(KPKp,va, cusp)~7*
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6.3.5. Ezistence of finite slope cohomology. We now justify that the cohomologies
introduced in the previous section are well defined.

Theorem 6.23. Let K, = K ;.0 for some m' >n, w € MW, and va : T(Z,) —
A* an n-analytic character.

(1) The cohomologies

n+1 tor —1 n—an
RE s (et ) (R @1 wig e ) Vo) T 71 )™ (Kb, Vo),

n+1 or -1 n—an
RE i (g o) 10 DN (o) (T (T (i, )™ (Yoo D, DE)

are objects of Pron(KP9I(A)).
(2) There is an action of H;_,m’,o on

n+1 tor —1 n—an
RE Lo (mtgr, o )1 om0 (i, )2 (VoD L (THTE,) T (1 Xwk) V™)

for which H;;',o acts via compact operators.
(3) There is an action of H .. o on

t\n+1 tor —1 n—an
RE s (mtgr. o 1<}Xw,kD)m(Tf)nH<<w;;;,Kp>fl<}Yw,kD)((T) (mrrxc,) " (Yorl), Dy ™)

for which H, s o acts via compact operators.
(4) All these statements hold also for the cuspidal cohomology.

Proof. The property that the objects at hand are objects of Proy(KPT%7(A)) is

corollary [6.171 The rest of the argument follows almost Verbatlm the proof of
theorem In particular the compactity of the operators € Hp mr o follows from

lemma mﬁ The details are left to the reader. O

6.3.6. Change of analyticity radius.

Theorem 6.24. Let m' > n+ 1. Let va be an n-analytic character. The maps
RFUJ,n-i—l—an,(Kpr, Va)Jr’fS — RFw,n—an(KpK]h VA)+’fS and RFuy,n—an(Kprv VA)i’fS —
RTw nt+1—an (KP K, va) "7 are quasi-isomorphisms.

Proof. Let T = [Kp 1/ 0t Kp 0] for t € THT satisfying min(¢) > 1. The endomor-
phism T of

BT vt (rigy )= (D= (g o =1 (van (L (7,1, ) ™ (X ) V)

HT,Kp HT,Kp

factors into

n+1 or -1 n—an
RE ot (rtg, e, )~ (K DN (i) 0¥os ) (L (T ,) ™ (1K kD V)

HT.Kp HT.Kp

—

RI TN (i ) (Xw sl Vo)

T (747 x,) ™ (X w kDT (727 ¢, (]Yw,k[))(

—

n+1 or 1 n—an
RE ot (rtg, )= Rk N (i )2 ¥rs) T (T, 1Kk D VT

HT,Kp HT,Kp

The — case follows similarly. [
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6.3.7. Change of support condition. It is important to us that the cohomology
RT v n—an(KP K, VA)i’fS can actually be realized as the finite slope part of coho-
mology groups with different support conditions. The following definition is similar
to definition E We start by fixing an element ¢ € T such that min(¢) > 1 and
we set C' = max(t).

Definition 6.25. Let m' > n. A (+,w, Kp 0,1 — an)-allowed support is a pair
(U, Z) where:

(1) U is an open subset of S?:Kp,m/,oﬂ which is a finite union of quasi-Stein
open subsets.

(2) Z is a closed subset of S?;Kp,m/,oi whose complement is a finite union of
quasi-Stein open subsets.

(3) There exists m,l,s € Z>o with m,l > n+ 1 such that:

(w2 w ) ) 1Cw ko o Kpmr 00Cu ko 75 Kpmr 0) € Z € (7 i, ) (1Cw kg ciKpm.0),

p,m’,0 p,m’,0

(W%)S",Kp,m,,o)il(]Cw,k[m+s,6Kp,m/70m]Cw7k[oij,m/,O) cuc (W};;,Kp=m,,0)71(]Ow,k[Cm,—le,m’,O)-
Let m’ >n. A (—,w, Kpm 0,n — an)-allowed support is a pair (U, Z) where:
(1) U is an open subset of Si%, .S which is a finite union of quasi-Stein
pym’ 00
open subsets.
(2) Z is a closed subset of S | ,.x Whose complement is a finite union of
p,m”,0?
quasi-Stein open subsets.
(3) There exists m,l,s € Z>o with m,1 > n+ 1 such that:

(72w ) ) (1Cw ks o Kpam 0N Co kg 0 Kpmr0) € Z € (i i, ) (1Cw kom0 Kp.m o),

p,m’,0 p,m’,0
(i1, 0 o) (Cuw kel 0 Kpm 00 Cukelg s Kpomr 0) CU S (w7 i, )7 (1Cw k[ 1,01Kpm 0)-

Theorem 6.26. Let m' > n, w € MW, and v4 an n-analytic character.

(1) Let U, 2) be a (+,w,Kpm 0,n — an)-allowed support condition. Then
Rz (U, V)7 *™) and RT zoy (U, V7" (—D)) are objects of Pron(KP™7 (A))
and carry a canonically defined, potent compact action of T®. Moreover
there are canonical isomorphisms

RT w1 an (K7 K mr 0,v4) T 2 RD 2 (U, V)T 1
and
RFw,nfan(Kpr’m/,o, va, CUSp)+7fS ~ RFZQL{ (u7 V;LA_O‘”(—D»TS_JCS.

(2) Let U,2Z) be a (—,w,Kpm 0,n — an)-allowed support condition. Then
Rz (U, D) and RT zoy (U, D" (—D)) are objects of Proy(KP7o7(A))
and carry a canonically defined, potent compact action of T®. Moreover
there are canonical isomorphisms

RT - an(KP Kp o 0,v4) 7 = RUz (U, Do) 770
and
RTw,n—an(K? Kpmr 0, va, cusp) ~7* = RTz (U, Dy " (= D)™ 7*.

Proof. This is very similar to the proof of theorem [5.13] and left to the reader. O
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6.3.8. Change of level. Now we investigate how the finite slope cohomologies Ry, y—qn (KP Kp, vp)Eofs
and Ry n—an(KPK,,va, cusp)™/* vary with the level K,,.
Theorem 6.27. For all w € MW and all m" > m’ > n, the pullback map
RCwon—an(KPKpmr0,v4) 77 = RUy o an(KPKp o 0, va) 778
and the trace map
Rl p—an(KP Ky 0,v4) " = R4y e an (KPKp s 0, va) 70

are quasi-isomorphisms, compatible with the action of Q[T(Qp)/T(Zy)], and the
same statements are true for cuspidal cohomology.

Proof. This is very similar to the proof of theorem Details are left to the
reader. d

As a result of the theorems and we can let
RFw,an(Kp,yA)i’fs and RFw,an(Kp,uA,cusp)i’fs
denote respectively
RT i an (KP Ky 0, va) 57 and RT 4y n—an (KPKp s 0, V4, cusp)=7*

for any m’ > n, as these spaces have been canonically identified.

6.4. Cohomological vanishing. We now state a cohomological vanishing conjec-
ture. Compare with conjecture [5.20

Conjecture 6.28. For all w € MW, the cohomology RT sy an(KP,va, cusp)™7* is
concentrated in degree [0, 04 (w)] and the cohomology RT y an(KP,va)*f
centrated in degree [4(w),d)

s con-

In this section we prove one half of this conjecture. Compare with theorem

Theorem 6.29. For all w € MW, the cohomology RT 'y an(KP,va, cusp)™F* is
concentrated in degree [0, L4 (w)].

Proof. This is exactly as the proof of theorem [5.18] granting the lemma below. [

The key lemma to prove the theorem is the following (this lemma and its proof
is inspired by [AIP15]):

Lemma 6.30. Let K, = K, /0. There exists ng such that for all n > ng the fol-

lowing holds. LetU C|Cy k[n,nIp be an open affinoid. LetV be the inverse image of

S i S ey Then RT((migh o )71 (U), Vi 2™ (~D)) and RT((migh. )~ (t), Dy (D)
are concentrated in degree 0.

Proof. For any K], C K, we let &%/ k,,» be an integral toroidal compactification
W Ko

and &%, g» be an integral minimal compactification (whose existence is given by
P

the main results of [MS11]). Let $ be a formal model for U, realized as an open

subset of the normalization of a blow-up of §€¢,,. For Kj, small enough, we have

. *,mod * —1 *
nice normal formal models Sy ey = Sk for the map 77 ;o (U) — Skr kv

tor,mod tor tor -1 tor
and ('EKI,]K,J&u = 6Kk x for the map (wigf )7 (U) — SK;,KP,E- We have a

. (~tor,mod *,mnod
map f: Sy ier 59— Sk gr s



136 GEORGE BOXER AND VINCENT PILLONI

By proposition for Kz’) C K, small enough, the torsor Myt K, is trivial

. C . tor,mod
on the generic fiber of a Zariski cover of & K1 KPS AL

We can construct a formal model for the Banach sheaf V7" that we denote
Uy @™t over G’}?Z?p‘tgu. Indeed let G?Z}Tp"éu = U;Pk;,; be a Zariski covering,
with the property that the torsor My, K, is trivial over the generic fiber VK;,Z» of
Py K/i- We fix such a trivialization. We can construct the associated 1-cocycle: over
each intersection Uk ; ; = Vi iNVk;,; we have an element m; ; € Kpw,nm, Mpun
describing the change of trivialization of the torsor Mpyrn k,. Over Q]Kzg,i we
let Gy ot = VJA_“"’+®0F Oy Ky and we glue these sheaves using multiplication
by m;; on each intersection. The sheaf U7 "7 is a flat formal Banach sheaf
(see section [2.5.2). We claim that it is also small (see again section [2.5.2)). In-
deed, it follows from lemma that the representation V'~"% @44+ A1 /ATT
of Kp w,am, My is an inductive limit of finite free AT /A**-submodules colim;V;,
stable under K ., 1, M n, and such that over V;/V;_; the action factors over the
quotient K m,, Of Kp.wa, by its maximal normal pro-p subgroup. We find that
K;wM“ =wT(Zy)w/wTiw is a finite abelian group.

It follows that the sheaf 7% /AT+ = colim;.%; is an inductive limit of lo-
cally free sheaves of AT /AT ® Oy/-modules with the property that .#; /.%; 1 runs
through a finite family of torsion invertible sheaves. We now fix £ an ample line
bundle over G?Z Kr sl

We claim that there exists m > 0 such that RF(GtI(()Z%LpO,%,w Lmeur -t (~Dg))
(where —Dp, is the pull back of the boundary divisor at level K,) is concentrated
in degree 0. The cohomology is represented by a complex of AT-modules which
are completions of free AT-modules (take the Cech complex associated with the
covering UL,). It follows from lemma that its suffices to prove that there
exists m > 0 such that RF(G?Z?Pigwﬁm ® Yoot JATH(—Dy)) s concen-
trated in degree 0. We are therefore reduced to prove that there exists m such that
RF(G@?Z’I?Z%’LL, L™ @ F; ) Fi—1(=Dk,)) is concentrated in degree 0.

We first observe that Rf,.%;/.%;_1(—Dk,) is a sheaf concentrated in degree 0
by an analogue of theorem which only relies on the structure of the map f at
the boundary.

Since L is very ample on 6}2}%7273 and f,.%;/%;_1(—Dk,) runs through a finite
family of coherent sheaves, it follows that there exists m such that RT(G;?,T’]TPO% HLT®

L EP.T,
Zi| Fi1(—Dk,)) = 0.
d .. .. _
Let L = HO(GEZ}?P,&’ L[1/p]). This is arank 1 projective ﬁsf%m ((mar, )~ (U))-

module. By inverting p, we deduce that

RL (S5 a0 L@V (D, )[1/p]) = L0 _,

W RE(RR i, ). B2 (<D, (1)
HT,K;)
and therefore RF(@’}?Z’;ZO’%’H,‘I]ﬁ;“”*(fDKp)[l/p]) is concentrated in degree 0.

Taking a Zariski covering of thgf’;{"po% «» we deduce that the associated augmented
LKP.Y,

Cech complex on the generic fiber is exact. By theorem [2.12] affinoids are acyclic
for Banach sheaves arisings as generic fibers of flat small formal Banach sheaves.
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We deduce that RU((777 g )~ (U), V)7 *™F(=Dg,)) = 0. The lemma follows by
taking the invariants under K,/ K. O

Lemma 6.31. Let M, L My Iy Ms be a complex of complete separated and torsion
free AT -modules. Assume that

My ®@a+ ATJATT = My @4+ ATJATT = My @44+ AT/ATT
is exact. Then the complex My ﬁﬁ M, f# M, is exact.

Proof. Tt follows from the assumptions that Im(fo)+ (AT M;NKer(f1)) = Ker(f1).
Since M, is torsion free, we deduce that (ATTM; NKer(f1)) = AT Ker(f1). Let
m € Ker(f1). By successive approximation, we can construct a sequence of elements
my € Mo for n > 0, with m,, —m, 11 € (ATH)" My and fo(m,)—m € (ATT)" 1M,
The sequence m,, converges to Mmq and fo(me,) = m. ]

6.5. The spectral sequence from locally analytic overconvergent to over-
convergent cohomology. Let v = vg,x : T(Z,) — F* be a locally algebraic
character where kq1g = —wo M WVa1g — (wo,mwp + p) is M-dominant.

By propositions and we have morphisms:

RFw (Kp’ Kalga X)Jﬁfs - RFw@ﬂ(Kp’ V)—hfs

RFw,an(Kpa V)i’fs - RFUJ(KP’ *wO,MKJaZg - 2pnca Xﬁl)i’fs

and similarly for cuspidal cohomology. We remark that these morphisms are not
Hecke equivariant. Namely, on RT',,(K?, kqg4, x)17* we have an action of TF with
the property that T(Z,) acts via v and on RTy a4n(K?,v)™ /%, we have an ac-
tion of T~ such that T'(Z,) acts by —v (see lemma . We deduce (compare
with section that there is a T -equivariant map : Ry, (KP, karg, X) 7% —
RL 4y an (KP, 1)1 75(—v4y) and a T~ -equivariant map : RTy, n (K?, V)”fs(yalg) —
RFw(Kpa —Wo,MRalg — 2pPnes X_l)_7fs

We can study these maps with the help of the locally analytic BGG resolution.

+

Theorem 6.32. In the setting above, thereis a H, .,

-equivariant spectral sequence
ER9(KP, k,x)T converging to finite slope overconvergent cohomology HEF(KP, karg, x) F7¢,
such that

Eﬁ;,ql (Kpa Ralg, X)+ =

EBUEWMJ(’U):PHZ),(WL (Kpa (((woyMw)ilvwo,Mw)'Valg)X)Jﬁfs (7(((w0,]\/fw)71vw0,Mw)'Valg)) .

There is a M,y 1 0-€quivariant spectral sequence ELI(KP Kk, x)~ converging to
finite slope overconvergent cohomology HEF(KP, —wo pKalg — 2Pnes XY, such
that

Eiz)ql (K?, Kalg X) =

DoeWns t(0)=—pHb an (K7, (((wo,pmrw) ™ vwo M W) Vaig) X) o ((((wo,mw) ™ vwo, pw) Vaig)).-

Proof. This is the spectral sequence associated to the BGG sequence of theorem
6.10, as well as its variant for distribution sheaves. We use the following iden-
tities 1 Vag + p = —w rwo v (Kag + p) and —wtwo ar(v. - Kag + p) — p =
(wo, rw) ™t vwo, prw) « Vaig- O
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6.6. Slope estimates and control theorem. We now formulate a conjecture
regarding the slopes of the locally analytic overconvergent cohomologies. This is of
course consistant with conjecture [5.29]

Conjecture 6.33. Fizw € MW, and let v : T(Z,) — C, be a continuous charac-
ter.
(1) For any character X\ of T+ on RTy an(KP,v) "/ and Ry an (KP, v, cusp) ™73,
we have v(A) > 0.
(2) For any character A of T~ on RI'y, on (K7, V)f’fs and RT 'y o0 (KP, v, cusp)f’fs,
we have v(A) < 0.

Remark 6.34. The inequalities in conjecture [6.33] are compatible with those of
conjecture [5.29 due to the way we have renormalized the Hecke operators acting
on locally analytic cohomology. Similarly the slightly weaker bounds we prove in
theorem [6.35] are compatible with those of theorem [5.33]

We can prove a bound which is slightly weaker than the conjecture.

Theorem 6.35. Fizw € MW, and let v : T(Z,) — C, be a continuous character.
(1) For any character X\ of T+ on RTy an(K?,v) /% and Ry on (KP, v, cusp) T7%,
we have v(A\) > —w ™ wo pp — p.
(2) For any character X of T~ on RI'y, on(K?, V)75 and R w,an(KP, v, cusp)~F*,
we have v(\) < —w™lp+ p.
Proof. This is similar to the proof of theorem [5.33] and left to the reader. a

Corollary 6.36. Fiz w € MW and let v = VaigX be a locally algebraic character.
Let kqig = —Wo, MWVaig — (Wo,prwp + p) and suppose Kqig € X*(T)YM+. Then the
morphisms

RT,, (K7, Kalg, X)-‘:-,SSSM,w(nazg) — Ry an(K?, V)-i-mSSSM,w(Kazg)
RFw,an (KP, V)77nSSSM(7w0,MK/a,Zg72pnc) — R, (KP’ *WO,MK*ZOnm X71)758'55]&1(77-”0,1\/1’{/(115]72pnc)
and the corresponding morphisms for cuspidal cohomology are all quasi-isomorphisms.

Proof. This follows from the spectral sequence of theorem together with the
slope bounds of theorem [6.35 O

Remark 6.37. If we assume conjectures [5.29] and [6.33] we can replace the sssp
condition by the ssj; condition in the above corollary.

6.7. Cup products. We now consider cup-products on locally analytic overcon-
vergent cohomology.

Theorem 6.38. For all w € MW and weights v4 there is a pairing:
() s HY (K va, cusp) ™7 x HE (K, va) T8 — A

w,an w,an
Let v = vq14X be a locally algebraic weight so that kqig = —Wo, MrwWVaig—(Wo, prwp+p)
is M -dominant. The above pairing induces a pairing between the spectral sequences:
(Vpar  BRL(KP, Rarg, X, cusp)™ x Byhd=(KP k,x™1)T = F
On the abutment of the spectral sequence the pairing (,)p .00 5 induced by the
pairing of theorem [5.2%:
HEPI(KP, kX, cusp) ™7 x H =K, —2pne — womk, X~ )T = F.
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Proof. We construct the pairing
()t HY (K, va, cusp) ™7 x HE 0 (K, va) ™% — F.

w,an w,an

We can realize Ry opn (KP, v, cusp) ™7 as the the finite slope part of
RU(zs e 1 0Cualentty ) (58, ) 0Cusls 1 K 0), Vi (=)

for s >> 0 and m’ >> s by definition m and theorem [6.26] Similarly we can
realize Ry on (K7, va)~f* as the finite slope part of

RE(rir o ) 100w klorr o1 Ky ) T )T (Cuw gl -1,5-1 K p e 0), Dy ™).

m’.0 p,m’,0

Moreover, by construction we have a pairing V' %" (=D)xD} %" = V_s, (—=D)®
A. We have a cup-product by proposition [2:3}

zﬂgg;,K ) 0)71(]cw,k[5,§1(p,m,,0)((Wfr%,Kp,m,yo)_l(]Cw,k[s,fle,m/,O)»Vf;an(—D))X

d—1 —1 _
H(wéf%,xp o) " 00w ka1 Kt ) (757 k0 0) " (Cwk[1,5-1Kpmr0), Dy, ")
d —
- H(W;}J’;‘",Kp m/ 0)_1(]Cw,k[ﬁ,§Kp,m/’0)((Tr}—?;;,Kme/,O) 1(]Cw7k[svs_1K ,m’,05 V_Qpnc (_D)®A)

and there is a trace map (by theorem [2.32)):
H{ .., )= 0Cu sl oK ,’0)((7&;’;% , )7 (1Cw klss—1Kpmr 0), V=2p,,. (~D)DA) — A.

HT,K s8p,m p,m/,
pym

pom,0- 10 is straightforward

This pairing intertwines the actions of 7—[; m,0 and H
(and painful) to check that the induced pairing

(,): H! (Kp,I/A7CUSp)+’fS x HI~? (Kp,uA)f’fS — A

w,an w,an
is independent of choices.

The rest of the theorem follows from the functoriality of the trace map.
O

6.8. Eigenvarieties. Consider the Iwasawa algebra Z,[[T°(Z,)]] and the weight
space
W= Spa(Zp[[Tc(Zp)]],Zp[[Tc(Zp)]]) XSpa(Zy,Zp) Spa(Qp»Zp)~
For an adic space Spa(4, A1), we have:
Hom(Spa(A, AT), W) = {Continuous characters v4 : T°(Z,) — A*}.

Let also T be the analytic adic space of characters of T(Q,), whose restriction
to T(Z,) factor through T¢(Z,). If we fix a splitting £ for the map T(Q,) —
T(Q,)/T(Z,), and we fix an isomorphism T'(Q,)/T(Z,) ~ Z" (for a suitable integer
r), then we have an isomorphism 7' ~ W x (G&")", where the map sends a character
Ato (Ale(z,), Al€(e1)), -, A(&(er))) (for the canonical basis ey, , e, of Z"). We
also observe that there is a natural map T'— 0.

Let Spa(A, AT) C W be an affinoid open and let v4" : T°(Z,) — A* be the
universal character.

For each w € MW we have four objects of Proy(KP™7 (A)): RTy,an (KP, yffln)i’fs
and RT'y on (KP, 04", cusp)75. We define an action of 7% on all these spaces. For
Ry an (KP, 4% and RTy, o0 (KP, 4", cusp) ¥/ we use the existing action (de-
fined using Hecke operators). For RTy, an (K?, v4") /¢ and Ry an (KP, 4", cusp) —7/¢
we compose the action of T~ (defined using Hecke operators) which we compose
with the isomorphism TF — T~ given by t — t~!. We observe that the action
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of Tt extends to a T(Q,)-action, and that its restriction to T'(Z,) is given by the
character v}{".

In what follows we will denote these cohomologies by M®%f and M:Ufué; in
order to shorten notation.

Remark 6.39. Our weight variable v is morally a translate of the infinitesimal
character. We recall briefly how to switch between the weight of our coherent
cohomologies and the infinitesimal character. Fix v = %9y be a locally algebraic
weight. Then M+ /9|, and M:Utufg; v are related to classical or overconvergent
cohomology in weight x4, Where v4; = —w’lwo’M(ﬂalg—ﬁ—p)—p. On the other hand,
M—f4|, and M:,,Zu};‘; v are related to classical or overconvergent cohomology in
weight n;/lg = —Wo, MKalg — 2Pne and Vg = wil(n(\{lg +p)—p.

We fix t € TTt and choose compact lifts T of t*! acting on M%* 7% and
M‘wfufgj, By the relative spectral theory (sections |6.3.1|7 |6.3.2|7 |6.3.3|)7 there is a

(non-canonical) spectral variety 7 : Z, — Spa(A, AT), over which, there are for each

w € MW four complexes, perfect as complexes of 77! Ospa(a,a+)-modules, M;}f’fs

M;fué;t with the property that W*M:l;fi:’fs = METs, W*M:J,ﬂg&];;t = MLl
We also have morphisms

)

M.,:t,fs - Mo,:l:,fs

w,cusp,t w,t

as well as cup-products given by theorem [6.38

e E.fs L 1o F.fs -1
Mw,cusp,t[d] ®7T716$pa(A,A+) Mw,t - T ﬁspa(A7A+)'

Let us also define

ot fs

o+, sV -1
M Js:V _ RHOmﬂflﬁspa(AyA_*_)(Mw,cusp)t7ﬂ- ﬁSpa(A,A+))[_d}-

w,cusp,t

Then we have morphisms of &z -modules
®—fs ®—fs g0+, fs,V
Mw,qu;;),t — Mw,t /s — Mw,cuéi,t
where the second morphism is induced by the cup product.
Passing to cohomology, we get graded coherent sheaves over Z;: @, HF (M;ﬁf %),
k(pAqoEf k(Aq®t.fsV
EB]CH (Mw7cus;,t)’ and EB]CH (Mw,cus;,t)'
We have maps
I VLED VLN
H (M;),cu{;;t) —H (M:u,t fS)

as well as pairings

HE (ML ) @ HERMETT) = 77 Ospaga,an

w,cusp,t
and there is also a map
HY (M0 — BRI
We let Z; be the closed subspace of éw,t equal to the support of these sheaves.
We let Z be the finite Z;-adic space whose algebra is the coherent &z  .-algebra
generated by the operators ¢’ € T acting on

w,t

B (W) emw) o iR ) o 1N L))
weMW,kEZ

where in the case of the — sheaves we let ¢t € TF act by ¢t~ L.



HIGHER COLEMAN THEORY (VERSION 18/11/20) 141

This is the spectral variety. We now assume that K? = [[ K, and we let S’ be
the set of primes ¢ # p such that K, is not hyperspecial. We let S = S" U {p}.
Let H® = C (G(AJSC)//KS, Q) be the spherical Hecke algebra at places away from
S. We let € be the finite Z-adic space whose algebra is the coherent 0z,-algebra
generated by the operators t € TT and h € H® acting on

D (o) e BT e HHVGEL, ) 0 BN

w,cusp,t w,cusp,
weMW,keZ

where in the case of the — sheaves we let t € T+ and h € HS act by t~! and h.

We denote by @,H*(M®+/%) and @ka(/\;l;)’f.ﬁJ;;) the coherent sheaves on &
whose pushforwards to Z; are H* (./\;l;jt[fé) and HF (./\;l:ujc[u];;t) They do not de-
pend on the choice of ¢ and T.

The spaces Z, £, and the graded sheaves on them are defined over Spa(A4, A™).
By letting Spa(A4, A™) run through a cover of W we can glue them. We now change
our notation and consider Z and &, together with their graded sheaves over W.
Note that Z is by construction a closed subspace of T.

A (classical rigid analytic) point of Z corresponds to a character A\, : T(Q,) —
F*. We can attach to A, the weight v = Ap|pe(z,) : T¢(Zp) — F*. When the
weight v = vgyx is locally algebraic, then we let AJ™ = )\pua_l; with v,y viewed
as a character of T(Q,). Then 5™ factors through a character of T(Qy)/T,(Zy)
where b is the conductor of .

Remark 6.40. The supscript sm stands for smooth, because the character A\J™ is
the smooth character attached to A,. Remark that the Hecke action on classical
cohomology produces smooth characters. This is visible in point (1) of theorem
below.

A point of £ corresponds to a pair (A, \%) where A% : H° — F is a character.

Theorem 6.41. The eigenvariety m : € — W is locally quasi-finite and partially
proper. It carries graded coherent sheaves
B (Pt e ) o BN ML) @ BE ML)
weMW,kEZ
and they satisfy the following properties:

(1) (Any classical, finite slope eigenclass gives a point of the eigenvariety) For
any Kag € X*(T)M*, finite order character x : T¢(Z,) — F*, and
any systhm of Hecke eigenvalue_s (A, %) occurring in Hi(Kp, Kaig, X)T7*
(resp. Hl(Kp’ K:;/lga X*l)*,fs} HZ(KP’ Halga Xa Cusp)+7fs7 or HZ(KP’ ’%2,/197 X717 Cusp)ijs)
there is aw = wywM € W, so that if v = VaigX With Vgig = —w‘le,M(ﬁalg—i—
p)—p, then ()\;lassualg, M%) is a point of the eigenvariety £ which lies in the
support of Brez H* (M50 7°) (resp. @pezHF (M), @keZHk(M;’zj;j({ussp);
or Orez HF (M52 ).

(2) (Small slope points of the eigenvariety in regular, locally algebraic weights
are classical) Conversely if v = vqigX is a locally algebraic weight with veg €
X*(T)*, and (M, %) is a point of € in the support of Greg HF (M2 T7)
(resp. EBkEZHk(M;;*’fS), @keZHk(M;”g{:;), or @keZHk(M;U:gﬁ{;;)) for
some w € MW, and if \, satisfies +,s5s,(v) then ()\;m,)\s) occurs in
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Hi(Kpa Ralg, X)+’fs (reSp- Hi(va ’Q(\l/lga X71)77fs; Hi(Kpa Ralgs X5 CUSp)J“fS:
or HY(KP, k), x 7, cusp) ™7%) for kg = —wo,mw(Varg + p) — p-
(3) (Serre duality interpolates over the eigenvariety) We have pairings:

HY M) @ B RMETT®) = 7 tow.

and these pairings are compatible with Serre duality under the classicality
theorem.

Proof. We only prove the first point for H!(K?, /salg7x)+’fs. The other cases are
similar. There is a succession of three spectral sequences, going from the sheaves
HE (M%) (for varying k and w) to the classical cohomology H (K, kag, x) /.
The first spectral sequence is a tor spectral sequence (see [Han17|, thm. 3.3.1 for
example):

EDY = Tor™ (O (HP (M%), k(v)) = HEYS, (K, v) "7

p w,an

The second spectral sequence is the spectral sequence of theorem [6.32] from lo-
cally analytic overconvergent cohomology to overconvergent cohomology. The third
spectral sequence is the spectral sequence of theorem from overconvergent to
classical cohomology. Therefore, starting from a classical class, we can lift is suc-
cessively to the F; terms of the last two spectral sequences (for suitable choices of
wyr and wM) and then to a class in a suitable H* (M$1:/%),,. We now prove point
(2). Let (v, Ay, A%) be a point in the support of @z H* (M2 /%) over v. Then
on sees that there is a corresponding class in ®xHY, ,,, (K?,v)"/¢. Indeed, if there
were no such class, a version of Nakayama’s lemma for perfect complexes would
contradict the existence of (v, Ay, A¥) in the support of ©pezH” (M;v"“fs). Then
we conclude by the control theorems (corollary and theorem [5.66)):

eakHﬁ),an(va V)+’SSSW(U) = @ka(Kpa _wO,Mw(Valg + p) - P, X)-i—,sssw(U).
The last point follows from the functoriality of the pairing. O

We now define certain components of the eigenvariety of maximal dimension and
show that they contain all finite slope interior cohomology classes.

By theorem RTy.an(KP,va, cusp)™/* is concentrated in degree [0, /4 (w)].
This implies that @ka(/\;l;JguJ;;) is concentrated in degrees [0, ¢4 (w)] and that
©RHF(MSEL5V) is concentrated in degree [£+(w),d]. Let us define the following

w,cusp
coherent sheaf over & :

Cousy(KP)* = Im(H =M (Mg 0y — HE (M EEY)).

w,cusp
We have pairings :
Cous, (KP)T x Cous,(KP)™ — n 1Oy
Let Z' (resp. £') be the closed subspace of Z (resp &) equal to the support of
@D, vy Cousy, (KP)E. For w € MW we also write Z, (resp. £,,) for the supports
of the individual sheaf Cous,, (K?)*.
Recall also, for any 4, € X*(T¢)MF, x : T¢(Z,) — F* afinite order character,

that we have the interior Cousin complex : Cous(K?, Kqg, x)T where the module
placed in degree ¢ is

EBwEMW,Zi (w):11m(vai(w) (Kpa Ry X, Cusp)Jﬁfs — Hff () (K;D’ *QPnc*U/O,M/‘E, Xﬁla Cusp)Jr’fS’v)'
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and recall that we defined

w
We aso have to consider the analytic version. We let

ﬁfi(w)

w,an

Theorem 6.42. The following holds:

(1) The coherent sheaves Cous,,(KP)* are m=' Oy -torsion free.

(2) The eigenvariety £ and the spectral variety Z' are either empty or equidi-
mensional of dimension dimW. The same is true of the £, and Z., for
each w € MW.

(3) For allw € MW and kay € X*(T)MF, x : T(Z,) — F* a finite order

(K?,v)5 7% = Im(HE (W) (K, v, cusp)=7* — HF () (K, v, cusp) T75Y).

w,an w,an

character, let vq1g = fwfle,M(/fangrp) — p, there are canonical surjective
maps

S — —0_

Cous,,|, — H,, C(L:lu)(Kp,V)_’fs — H,, (w)(K”, nglg,x_l)_’fs.

In particular, any eigenclass in H _(U))(Kp Kalgr X ~1)=fs gives a point on
&, of weight v = vgigX.
(4) There is also a canonical surjective map

Cous,, (KP)*|, SEw )(Kp,u)+’fs

w,an

and a canonical map:

(K, gy )0 — T

w,an

(KP’V)Jrvfs

mducing an isomorphism :

" SROMINS s 0 (KP, p)tsssmw (59,880 0 (719) Y

+,sssM,w(na’lg),sssM7w(n
(K Kalg, X) w,an

H,

and there is therefore a surjection :

—_— al al Y al al Y
Cousw(K”)ﬂj’“sM«w(“ 9),8850 w0 (K9) —>H( )(Kp Kalgjx)+7333]\/1,w(5 9) 5880w (K1)

(5) The pairing Cous,,(KP)t x Cous,(KP)~ — m~10)\y is compatible with the

pairing Hw( azl(K” v)ytfs x Hi) élf:)(K”, V)71 — F* via the specialization
maps

Cots,y (KP) |, — Ho ) (K?,v)HF
and

Cousy, (KP)™|, — Hi 5:)([(” V)*’fs,

and compatible with the pairing H,, £ (Kp Kalg, X)T7* ><H€ (e)

F* via the maps :

Ho ) (K, Katg, X) 77— Hy ol (K?,v) 0
and
H, (kP vy~ (KD kY )

ﬁgi(w) (Kp7 Kalg7 X)iJS = Im(Hi;i(w) (Kp7 Ry X5 Cusp)ijs — Hff(w) (Kzn _2pnc_w0,Mﬁ7 X_

(Kp alg’X 1)7,fs -

v cusp):F’fs’v).
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Proof. Since Hei(w)(./\;l;;fjd:p) is the first non-zero cohomology group (assuming it

is indeed non-zero), it is torsion free as a 7~ &)y-module. We deduce that

Im(HZi(w)(Mo,:t,fs) N HZi(w) (Mo,:t,fs,\/)) — CO’LLSw(Kp)i

w,cusp w,cusp

also has this property. The first and second point follows. For the third point
we first fix an open Spa(A, AT) of W which contains v. We have a commutative
diagram where the bottom vertical map are specialization in weight v and the
top vertical map are specialization from overconvergent analytic to overconvergent
cohomology, while the horizontal maps are induced from the pairing:

0_ _ _ Y4
Hy (w) (K;m —Wo,MKalg — 2an X 17 cusp) R (Hw+(w)(Kp; Ralgs X» Cusp)Jﬁfs)v

! !

HU (5 cusp) 99 (HLL L) (5. v, cusp) #5°)

| |

Hf,;yff) (Kp, vy™, cusp) "/ —m > Ext ) (RTw,an (K p, V4", cusp)T19), A)

The left vertical maps are surjective because they are induced by taking cohomology
of surjective maps of sheaves, and the cohomology above degree [_(w) vanishes.
We therefore deduce that the class ¢ can be lifted in an Hecke-equivariant way to
a section of

(Y 0 (V) — B O 5 5))

w,cusp

The proof of the fourth point is very similar, the diagram is now :

Hf‘jr(w) (KIN Kalg, X CUSp)+7fs > (Hfﬂi(u}) (va —Wo,M Kalg — 2Pne; X_la CUSp)_JS)v

i |

Hﬁ,*,gff) (Kp, v, cusp)t7s (Hﬁ;élf;) (K, v, cusp) ~¥5)V

| |

Hﬁfffff) (Kp, vy, cusp) /S ——= Ext ¢~ () (RT w,an (K p, VY™, cusp)~7%), A)

and the condition +, sssMﬂ,,(nalg), sssMw(n“lg)V turns the maps
Hfj(w) (Kp, Kalgs X, cusp)+’fs — Hfuf((l;‘{)(Kp, v, cusp)+’fs
and

HY (K, —wo akatg — 20me; X1y cusp) 7)Y — HE (WK, v, cusp) 7)Y

w,an

into isomorphisms on the corresponding strongly small slope part. The last point
follows from the functoriality of the pairing. (I

Remark 6.43. There is an asymmetry between point (3) and (4) which concern
respectively the — and + theories. This asymmetry follows from our choice to
develop the + theory using locally analytic induction sheaves and the — theory
using their dual distribution sheaves.
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Corollary 6.44. Let Cous(K?, /Q;/lg, X~1)~ be the interior Cousin complex of sec-
tion . Then for any eigenclass ¢ € Cous(KP?, Ii(\l/lg,x_l)_ in degree i, there is a
w € MW with £_(w) =i so that ¢ gives a point of £, in weight v = VaigX where
Valg = —w ™ 'wo a1 (Katg + p) — p-

Proof. This is immediate from theorem [6.42] given the definition of the degree 4
term of the Cousin complex given in section O

We can now state the following theorem which asserts that any interior finite
slope eigenclass admits an analytic deformation over the total weight space.

Theorem 6.45. Let kq, € X*(T)MF and let x : T(Z,) — F* be a finite char-
acter. For any eigenclass in interior cohomology c € ﬁl(Kp,nZlg,Xfl)”fs =

H(Kp, k5, x)TI%)Y there is a w € MW with (_(w) =i so that ¢ gives a point of

&' in weight v = VaigX where vag = —w ™ wo ar(Kag + p) — p-

Proof. By corollary ﬁi(Kp, —wWo mrK—2pne, X 1) /% is a subquotient of H (Cous(KP, —wo ark—
20ne, X)), so the theorem follows from corollary
(Il

To any such interior eigenclass ¢ as in theorem [6.45] we can attach a subset
MW (c) of MW which consists of all w € MW such that c lifts to an eigenclass
of Cous,,(KP)~ and therefore gives a point on & . If w € MW (c) N C(x)*, then
v € X*(T¢)*. Tt seems natural to ask for some condition under which ¥ W (c) N

C(k)* # 0 or even for MW (c) = C(x)*.
Proposition 6.46. Assume that k + p is G-regular and let
ce ﬁi(Kp, K\/7 X—l)—,sssM(n),sssM(n)v.
Then MW (c) C C(k)T. In particular, if k + p is G-regular, MW (c) = C(r)*.

Proof. By corollary we have that Cous(K?, k", X’l)*’sssM(")’sssM(”)v is con-
centrated in the range [(min(k"), fmax(x")] and the only objects appearing in the
complex are simply the modules ﬁfu_ (w)(Kp, ,%V,X_l)_’SSSM(")’s‘("“”M(’“)v (in degree
{_(w) for w = C(k)T = C(kY)~. Therefore the class ¢ can only lift to a class in
Cous,(KP)™ for w € C(k)T. The last statement follows from the property that
if k + p is G-regular, C(k)T contains only one element and W (c) is always non

empty.

O

Remark 6.47. If ¢ is a cohomology class represented by an automorphic form 7
which is tempered at co and contributes to coherent cohomology in weight &V,
then 7 is a limit of discrete series which is described by the pair consisting of
its infinitesimal character —k" — p and a Chamber wX*(T)a C X*(T)g]’+ for
w € C(k¥)T. We can ask if this class lifts to a point in €, | ., This is indeed
the case under the assumption of proposition [6.46}

6.9. Improved slope bounds for interior cohomology and applications.
Using the interior eigenvariety we are able to prove that the conjectured slopes
bounds [6.33} [5.29] and [5.10.2| hold for (modified) interior cohomology. The point is
that classical points in regular weight satisfy the correct slope bound by corollary
[5.44] and these points are dense in the interior eigenvariety.
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Theorem 6.48. (1) Fizw € MW and a weight v : T¢(Z,) — C}. For any
>

character X of T* on ﬁifé:)(Kp,u)i’fs we have v(\)
and v(\) < 0 in the — case.

(2) Fizw e MW, k € X*(T°)M+, and a finite order character x : T¢(Z,) —
<

0 in the + case

F*. For any character X\ of T~ on ﬁi_(w)(Kp, K, X) 7% we have v(\)

w™ (K +p) — p.

(3) Fiz k € X*(T)™* and a finite order character x : T¢(Z,) : T¢(Z,) —
F*. Letv = —w_lwo’M(/{ +p) — p for any w € C(k)T. Then for any
character X\ of T+ on H (K?, k,x)E7* we have v(\) > —v in the + case
and v(\) < —wov in the — case.

Proof. The first point implies the second point by theorem (3). The second
point implies the third point as in the proof of proposition[5.42] using corollary[5.27]

We now prove the first point. The eigensystem A\ gives a point (v, )\p,)\s ) of
E' (where A\, = X in the + case and A! in the — case.) We can find another
point (v, A}, )\,S) which satisfies v(\},) = v()p) and v/ = V;lgx is locally algebraic,
and vy, € X*(T°)" is sufficiently large so that v(\}) satisfies +,sss(v). Then
this point is classical by theorem (2), and so the slope bound is satisfied by

corollary [5.44] O

As a consequence we deduce a vanishing theorem for interior cohomology which
improves on theorem [5.69

Theorem 6.49. Let k € X*(T°)M* and let x : T¢(Z,) — F* be a finite order
character. We have that H' (K?, k, X)SSM(”) is supported in the range [lmin(K), lmax (K)]-

Proof. Theorem m (2) implies that the complex Cous(K?, /f,x)_’ssM(“) is con-
centrated in the range [lmin(K), fmax ()], which implies the theorem by corollary
.21

[l

6.10. Application: local-global compatibility. In [FP19], section 9, we defined
a certain class of cupsidal automorphic forms for the group GL,, /L where L is either
a totally real or CM number field. These are called weakly regular, odd, essentially
conjugate self dual algebraic cuspidal automorphic representations. Regular essen-
tially conjugate self dual algebraic cuspidal automorphic representations have been
studied intensively. They occur in the Betti cohomology of Shimura varieties and
one can attach to them compatible systems of Galois representations which satisfy
all the expected properties. (see, e.g., [CH13|, [BLGGT14]).

Theorem 6.50 (Bellaiche, Caraiani, Chenevier, Clozel, Harris, Kottwitz, Labesse,
Shin, Taylor, ...). Let m be a regular, algebraic, (essentially) conjugate self dual
cuspidal automorphic representation of GL, /L. In particular 7¢ = 7 ® x and the
infintesimal character of w is A= ((A1,r, -+, An,r)res) With Az > -+ > Ay . Let
1:Cr~ @p. There is a continuous Galois representation p, : Gp — GLn(@p) such
that:

(1) p, =~ pX,L ® 611,_" ® x, where x, 1s the p-adic realization of x and €, is the
cyclotomic character,
(2) pr, is pure,
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(3) px,. is de Rham at all places dividing p, with .= o T-Hodge-Tate weights:
(_An,'r + anl’ U 7_)\1,7' + %);
(4) for all finite place v one has:

V[/D(,07M|GF”)F_SS = rec(m, ® | det |1;Tn)

Weakly regular, odd, essentially conjugate self dual algebraic cuspidal automor-
phic representations form a larger class of automorphic representations where one
relaxes the regularity assumption to weakly regular odd. Those automorphic rep-
resentations realize in the coherent cohomology of Shimura varieties. One can
attach to them compatible system of Galois representations, but at present their
local properties are still mysterious. The techniques of this paper allows for a new
construction of the associated Galois representation via analytic families. The ad-
vantage of this construction is that we can prove some instances of local-global
compatibility for those Galois representations at primes dividing the residue char-
acteristic of the coefficients, using results of Kisin [Kis03] on the interpolation of
crystalline periods in analytic families, as for example in the work of Jorza and Mok
[Jor12], [Mok14].

Theorem 6.51. Let w be a weakly regular, algebraic, odd, (essentially) conjugate
self dual, cuspidal automorphic representation of GL,, /L. In particular, ¢ = 7V ®
x- Let A = (\ir,1 < i < n,7 € Hom(L,Q)) and \1r > --- > A\,. be the
infinitesimal character of m. There is a continuous Galois representation pr, :

G, — GL, (@p) such that:
(1) ps, ~=p'® 6;_" ® x. where x, is the p-adic realization of x,
(2) pr,. is unramified at all finite places v t p for which m, is unramified and
one has:
1-n
WD(me|GLv)F_SS = rec(m, ® |det |, 2 ).

(3) pr,. has generalized Hodge—Tate weights (—A, » + ”Tfl, N ”7*1)
(4) Let v | p be a place of L and assume that w, is a regular principal series
representation. Then pr |, is potentially crystalline and

1-n
WD(priler, )" = rec(m, ® | det], ™).
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