
GENERALIZED MAZUR’S GROWTH NUMBER CONJECTURE

DEBANJANA KUNDU AND ANTONIO LEI

Abstract. Let F be a totally real field. Let A be a simple modular self-dual abelian variety
defined over F . We study the growth of the corank of Selmer groups of A over Zp-extensions of a CM
extension of F . We propose an extension of Mazur’s growth number conjecture for elliptic curves to
this new setting. We provide evidence supporting an affirmative answer by studying special cases
of this problem, generalizing previous results on elliptic curves and imaginary quadratic fields.

1. Introduction

Let p ̸= 2 be a fixed prime number. Let A be a simple modular self-dual abelian variety over a
totally real field F , so that F is isomorphic to a subfield of End(A)⊗Q, with d = dim(A) = [F : Q].
In particular, A is a simple quotient of the Jacobian of a Shimura curve over F , corresponding to a
Hilbert modular form. Let σA denote the weight 2 and level N cuspidal automorphic representation
attached to A. Since A is self-dual, the central character of σA is trivial.

Throughout, we assume the following hypothesis holds.

(ORD) A has potentially good ordinary reduction at all primes above p.

Let K be a CM extension of F and suppose that the Leopoldt conjecture is satisfied, i.e., the
compositum of all Zp-extensions of K, which we denote by K∞, is a (d + 1)-dimensional abelian
p-adic Lie group. Let Γ∞ = Gal(K∞/K) ∼= Z⊕(d+1)

p .
Let p | p be a fixed prime of F , which induces an embedding ιp : Q ↪→ Qp. The ring of integers of

the completion Fp is denoted by Op. We are interested in the growth of the Op-corank of p-primary
Selmer groups of A over Zp-extensions of K. When F = Q and A is an elliptic curve, it is predicted by
B. Mazur [Maz83, §18] that the Selmer coranks of A over finite extensions of K inside a Zp-extension
should be bounded, except possibly the anticyclotomic Zp-extension when A/K has root number −1.
More generally, in [MR03, Question 2.13], B. Mazur–K. Rubin asked whether it might be possible
to use towers of Heegner points in Shimura curves over totally real fields to account for (at least
some of) the expected Mordell–Weil growth as one ascends the finite intermediate extensions of the
anti-cyclotomic hyperplane.

Our results are inspired by the aforementioned question raised by Mazur–Rubin, the recent devel-
opments on the p-adic Gross–Zagier formula on Shimura curves by D. Disegni [Dis17], and the works
of J. Nekovár̆ [Nek07, Nek08] which show that growth in the anticyclotomic direction can indeed
be accounted for by Heegner points. More precisely, we study the following analogue of Mazur’s
Growth Number Conjecture.

Growth Number Problem. Fix a prime p ̸= 2. Let A be a simple modular self-dual abelian
variety over a totally real field F with potentially good ordinary reduction at p | p. Let K/F be a
CM extension and K/K be a Zp-extension. Write Kn to denote the unique subfield of degree pn of
K in K. Then for n ≫ 0

corankOp
Selp∞(A/Kn) = cpn +O(1),
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where the growth number c is given by

c =


0 if K ̸⊆ Kac or (A,K) has ‘sign’ + 1

1 if K ⊆ Kac, (A,K) has ‘sign’ − 1 and is ‘generic’
2 if K ⊆ Kac, (A,K) has ‘sign’ − 1 and is ‘exceptional’.

Here, Kac denotes the compositum of all anticyclotomic Zp-extensions of K and Gal(Kac/K) ≃ Z⊕d
p .

The pair (A,K) is called ‘generic’ if A has no complex multiplication (CM), or the CM field of A
is different from K. On the other hand, the pair (A,K) is called ‘exceptional’ if A has CM by (an
order in) K. The sign of (A,K) is defined analogous to [Maz83, § 6]) to mean

• the sign of the functional equation of L(A/K, s) in the ‘generic’ case and
• the sign of the functional equation of L(φ, s) in the ‘exceptional’ case, where φ is the Hecke

character of K satisfying
L(A/F, s) = L(φ, s).

1.1. Progress towards this problem. As per our knowledge, the Growth Number Problem has
been previously studied mainly in the case when F = Q and A is an elliptic curve. The original
conjecture is completely settled for CM elliptic curves in the ‘exceptional case’; see [Gre99, Theo-
rems 1.7 and 1.8]. In a recent preprint by H. Li–R. Xu (see [LX25]), the authors study the growth of
Mordell–Weil ranks of CM abelian varieties associated with Hecke characters of infinite type (1, 0)
over an imaginary quadratic field K along the anticyclotomic Zp-extension of K.

In the last few years, there is increased interest in understanding the original conjecture of Mazur
for non-CM elliptic curves. In particular, we mention the following articles [KMS23, GHKL25,
KL25]. Each of them takes a different approach to solve special cases of the problem, but somewhat
surprisingly a solution is provided only when the Mordell–Weil rank of the elliptic curve over K is
at most 1. These results also focus on the case that p is a prime of good ordinary reduction, which
is precisely the setting in which Mazur first formulated his conjecture.

1.2. Main Result I. The first result of this article gives an affirmative answer to the Growth
Number Problem under the generalized Heegner hypothesis:

(GHH+) ϵK/F (N) = (−1)d−1, where ϵK/F is the quadratic character attached to the extension K/F .
Furthermore, all primes of F lying above p split into two distinct primes in K.

The proof is analytic in nature, relying on Heegner points attached to A over K and their relations
with the derivative of a multi-variable p-adic L-function (see §3). Furthermore, we assume one
inclusion of the Iwasawa main conjecture of A over K∞ holds, which allows us to study the growth
of the Selmer corank via the analytic p-adic L-function. It generalizes our previous result [KL25,
Theorem A] wherein we proved Mazur’s Growth Number Conjecture in Zp-extensions of an imaginary
quadratic field K for non-CM elliptic curves E/Q at primes p ≥ 5 of good ordinary reduction under
(comparable) technical hypotheses.

Theorem A (Theorems 5.3 and 5.4). Fix a prime p ̸= 2. Let A be a simple modular self-dual
abelian variety of GL2-type over a totally real field F with trivial central character satisfying (ORD).
Let K/F be a CM extension such that A(K)[p] is trivial and that the p-primary Selmer group
Selp∞(A/Kcyc) is a co-torsion Λcyc-module. Suppose that (GHH+) and one inclusion of the Iwa-
sawa main conjecture for A over K∞ holds; see (h-IMC). Writing zHeeg to denote the Heegner
point of A over K, if the p-adic height ⟨zHeeg, zHeeg⟩K is nonzero, then the Growth Number Problem
has a positive solution.

1.3. Main Result II. The second result of this article is purely algebraic in nature, where we study
the growth of the Selmer corank using characteristic ideals. It generalizes [GHKL25, Theorem A]
where Mazur’s Growth Number Conjecture for elliptic curves over Zp-extensions of an imaginary
quadratic field K is studied under a hypothesis on the structure of the Selmer group over the unique
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Z⊕2
p -extension of K. In particular, we extend the aforementioned result to the setting of abelian

varieties. Although we follow a line of argument similar to that presented in [GHKL25], we give a
(slight) simplification of the result and remove the non-anomalous hypothesis.

In what follows, Kcyc denotes the cyclotomic Zp-extension of K with Γcyc = Gal(Kcyc/K). Let
Op denote the ring of integers of the completion of F at p and write Λ∞ (resp. Λcyc) for the Iwasawa
algebra OpJΓ∞K (resp. OpJΓcycK).

Theorem B (Theorems 6.1 and 6.2). Fix a prime p ̸= 2. Let A be a simple modular self-dual abelian
variety of GL2-type over a totally real field F with trivial central character satisfying (ORD). Let
K/F be a CM extension such that Selp∞(A/Kcyc)

∨ is Λcyc-torsion. Suppose that one of the following
conditions hold:

(i) the order of vanishing of charΛcycSelp∞(A/Kcyc)
∨ at the trivial character of Γcyc is 0.

(ii) (GHH+) holds, the order of vanishing of charΛcycSelp∞(A/Kcyc)
∨ at the trivial character of

Γcyc is 1, and Selp∞(A/K∞)∨ is a direct sum of cyclic Λ∞-modules.
Then the Growth Number Problem has a positive answer.

1.4. Organization. Including this introduction, the article has six sections. Section 2 is preliminary
in nature; we introduce the notation that is used throughout the paper. We remind the reader of
some definitions and fundamental results that are used several times in our arguments. In Section 3,
we review Disegni’s result on the p-adic L-function attached to A and the relation between its
derivative and Heegner points proven in [Dis22]. Furthermore, we carry out calculations on the
specialization of the p-adic L-function to a Zp-extension of K, reducing its non-vanishing to that
of the p-adic height of zHeeg, which is crucially utilized in the proof of Theorem A. Another key
ingredient of this proof is to show that Selp∞(A/K∞)∨ admit no non-trivial pseudonull submodule;
this is done in Section 4 utilizing the main result of [Gre16] by R. Greenberg. We complete the proof
of the theorem in Section 5. In Section 6, we prove Theorem B, providing evidence for the Growth
Number Problem using algebraic tools under a slightly different set of hypotheses.

1.5. Outlook. As has been pointed out previously, the higher rank case is still out of reach. The
supersingular case would also require more work and new ideas. One may hope to utilize results
on supersingular abelian varieties [BL17, BL15, Pon20, LP20, IL25] combined with earlier works of
elliptic curves [IP06, LL22, LS20, HL20].

When the corank of Selp∞(A/K) is one, our approach for studying the Growth Number Problem
hinges on the results of Disegni and Nekovár̆; therefore, the setup in which we can answer the
question is dictated by their work. In particular, our method of proof cannot be used to address
the question of Selmer rank growth in Zp-extensions of a general CM field K of an abelian variety
A that does not have real multiplication by the maximal real subfield of K. On the other hand, if
Selp∞(A/K) is finite, then standard arguments involving (Mazur’s) Control Theorem that we use to
prove Theorem B under the condition (i) can be adapted readily to obtain an answer.

Let A be an abelian variety over a number field K and K/K be a Zp-extension. One can ask
about the Selmer corank growth of Selp∞(A/Kn) as n → ∞, where Kn denotes the n-th layer of
K/K. In the context of this paper, when K is a CM field and A has real multiplication by the
maximal real subfield of K, we see that

Selp∞(A/Kn) =
⊕
p|p

Selp∞(A/Kn)

under appropriate hypotheses. Thus,

corankZpSelp∞(A/Kn) = cdpn +O(1),

where c is the ‘growth number’ in the Growth Number Problem and d = dim(A). One may speculate
that such a formula might hold for more general number fields K.
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2. Notation and Preliminaries

2.1. Iwasawa algebras and projections. Recall from the introduction that F is a totally real
field of degree d and K is a CM extension of F . The compositum of all Zp-extensions of K is denoted
by K∞ and Γ∞ = Gal(K∞/K) ∼= Z⊕(d+1)

p Let Kcyc be the cyclotomic Zp-extension of K and Kac

the anticyclotomic extension of K inside K∞. Write

Γ∞ = ⟨σ0, σ1, . . . , σd⟩
such that Gal(Kcyc/K) is generated by σ0 and Gal(Kac/K) is generated by σ1, . . . , σd. This gives
rise to the following isomorphism

Λ∞ = OpJΓ∞K ≃ OpJX0, . . . , XdK,

sending σi to Xi − 1.
Given a Zp-extension K/K with ΓK = Gal(K/K), we have a natural projection

πK : Γ∞ −→ ΓK,

whose kernel is isomorphic to Z⊕d
p . We can write

kerπK =


d∏

i=0

σci
i :

d∑
i=0

aici = 0

 ,

for some ai ∈ Zp such that not all ai are zero. This allows us to identify the set of Zp-extensions of
K with Pd(Zp). After scaling if necessary, we may assume that cj ∈ Z×

p for some j = j(K). Then,
for all i ∈ {0, . . . , d},

πK(σi) = πK

(
σ

ci
cj

j

)
.

In particular, we see that ΓK is topologically generated by πK(σj(K)). We shall denote this element
by σK and write XK = σK − 1.

Set ΛK = OpJΓKK ∼= OpJXKK. The natural extension of πK to Λ∞ → ΛK (which we still denote
by the same symbol) can be realized as

πK : OpJX0, . . . , XdK −→ OpJXKK,

f(X0, . . . , Xd) 7→ f

(
(1 +XK)

c0
cj(K) − 1, . . . , (1 +XK)

cd
cj(K) − 1

)
.

Therefore,

dπK(f)

dXK
=

d∑
i=0

ci
cj(K)

(1 +XK)
ci

cj(K)
−1 ∂f

∂Xi

(
(1 +XK)

c0
cj(K) − 1, . . . , (1 +XK)

cd
cj(K) − 1

)
,

which tells us that

(2.1)
dπK(f)

dXK

∣∣∣∣
XK=0

=

d∑
i=0

ci
cj(K)

· ∂f

∂Xi
(0, . . . , 0).

Note that if K = Kcyc, then j(Kcyc) = 0, corresponding to (1 : 0 : . . . 0) ∈ Pd(Zp). We
write πcyc for πKcyc

, which is given by f(X0, X1, . . . , Xd) 7→ f(X0, 0, . . . , 0). Furthermore, we write
Λcyc = OpJΓcycK for the corresponding Iwasawa algebra.
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Throughout this article, we often consider K to be a non-anticyclotomic Zp-extension of K, i.e.
K ̸⊆ Kac. Such K corresponds to (c0 : · · · : cd) ∈ Pd(Zp), where c0 ̸= 0.

2.2. Control Theorems and Rank Growth in Zp-Extensions of Number Fields. Let A/F
be a simple abelian variety of GL2-type and level N over a totally real field F with potentially good
ordinary reduction at all primes above p. Let Σ(F ) be a finite set of primes in F containing p and
all primes of bad reduction for A; in other words Σ(F ) ⊇ {p}∪{v : v | N}. For any field L/F , define
Σ(L) to be the set of places of L lying above those in Σ(F ), and write GΣ(L) for the Galois group
of the maximal extension of L that is unramified outside of Σ(L). Furthermore, for any v ∈ Σ(F )
and any finite extension L/F , write

Jv(A/L) =
⊕
w|v

H1(Lw,A)[p
∞].

When L/L is an infinite extension of L, set

Jv(A/L) = lim−→
L⊆L′⊆L

Jv(A/L
′).

Definition 2.1. Let A/F be a simple abelian variety of GL2-type over a totally real field F with
potentially good ordinary reduction at all primes above p. Let Σ(F ) be any finite set of primes
containing those dividing pN. For any extension L/F , define the Selmer group

Selp∞(A/L) := ker

H1(GΣ(L),A[p
∞]) −→

∏
v∈Σ

Jv(A/L)

 .

We now recall the statement of Mazur’s Control Theorem, which allows us to study the growth
behaviour of Selmer groups in Zp-extensions.

Theorem 2.2 (Mazur’s Control Theorem). Fix an odd prime p. Let F be a totally real field number
field and let A/F be an abelian variety of GL2-type which has potentially ordinary reduction at all
primes of F lying over p. Let K/F be a quadratic extension of F which is a CM field. Let K be any
Zp-extension of K and Kn denote the n-th layer of this extension with Gal(Kn/K) ≃ Z/pnZ. Then
the kernel and cokernel of the natural map

Selp∞(A/Kn) −→ Selp∞(A/K)Gal(K/Kn)

are finite and of bounded order independent of n.

Proof. This is proved in the same way as [Gre03, Proposition 5.1]; see also [MO06, Theorem 2]. □

Corollary 2.3. Suppose that the assumptions of Theorem 2.2 hold. Set r = corankΛK(Selp∞(A/K)).
Then as n → ∞,

corankOp
(Selp∞(A/Kn)) = rpn +O(1).

In particular, if Selp∞(A/K) is finite then as n → ∞,

corankOp
(Selp∞(A/Kn)) = O(1).

Proof. The arguments for both assertions are standard. They are recorded in [Gre99, Corollaries 4.9
and 4.12] for Zp-coranks of p∞-Selmer groups of elliptic curves, but the proofs go through for the
current setting. □

3. p-adic L-functions

Throughout this section, we assume (GHH+) holds. We review results of Disegni [Dis17] that
will be utilized in our proof of Theorem A. For each place of F lying above p, we fix a level 0 additive
character (see the end of p. 1993 in op. cit.).
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Theorem 3.1 ([Dis17, Theorem A]). Let p be a place of F lying above p where A has potentially
good ordinary reduction. There exists a unique p-adic L-function1 Lp(A) ∈ Fp ⊗ Λ∞ such that for
all finite characters χ of Γ∞,

Lp(A)(χ) = Cχ · L(A/K, χ, 1)

Ω

for some constant Cχ and a period Ω. Here,
L(A/K, χ, 1)

Ω
is an algebraic number, which is regarded

as an element of Qp through ιp.

The sign of the functional equation of L(A,K, χ, s) at s = 1 is constant for all finite characters
χ of Gal(Kac/K); see discussion in [Dis17, top of p. 1999]. In particular, since A is assumed to be
self-dual, Lp(A)(χ) = 0 for all such χ under our running hypotheses. If we consider Lp(A) as a power
series in X0, X1, . . . , Xd, we have Lp(A)(0, X1, . . . , Xd) = 0. Consequently, we can expand Lp(A) as a
power series in X0 with coefficients in Λac⊗Zp

Qp, where Λac := OpJGal(Kac/K)K = OpJX1, . . . , XdK.
More specifically, we have

(3.1) Lp(A) = Gp(A)X0 +O(X2
0 ),

where Gp(A) ∈ Λac ⊗Qp.

Proposition 3.2. Let K be a non-anticyclotomic Zp-extension of K. If Gp(A)(0, . . . , 0) ̸= 0, then

dπK(Lp(A))

dXK

∣∣∣∣
XK=0

̸= 0.

Proof. Recall that K corresponds to a Zp-extension such that (c0 : · · · : cd) ∈ Pd(Zp) with c0 ̸= 0. It
follows from (2.1) and (3.1), that

dπK(Lp(A))

dXK

∣∣∣∣
XK=0

=
c0

cj(K)
·Gp(A)(0, . . . , 0) +

d∑
i=1

ci
cj(K)

·
(
∂Gp(A)

∂Xi
X0

)
(0, . . . , 0),

which is a non-zero multiple of Gp(A)(0, . . . , 0). Hence, the lemma follows. □

By [Dis17, Theorem C(4)], Gp(A) is described via the Λac-adic heights of the Heegner points on A
defined over finite sub-extensions of Kac/K. In particular, Gp(A)(0, . . . , 0) is a non-zero multiple of
the p-adic height of the Heegner point zHeeg attached to A/K. The reader is referred to [Dis17, §1.1]
for the definition of zHeeg (where the character χ in loc. cit. is taken to be the trivial character).

We use the notation ⟨−,−⟩K to denote the p-adic height associated with p over K as given in
[Dis22, §1.3]. We consider the following hypothesis:

(HGT) ⟨zHeeg, zHeeg⟩K ̸= 0.

From Proposition 3.2 we can deduce the following:

Corollary 3.3. Let K be a non-anticyclotomic Zp-extension of K. If (HGT) holds, then

dπK(Lp(A))

dXK

∣∣∣∣
XK=0

̸= 0.

In particular, πK(Lp(A)) ̸= 0.

1Many authors, including [Dis17] refer to it as a p-adic L-function; but, to highlight the dependence on p | p, we
refer to it as p-adic L-function.
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4. Non-existence of non-trivial pseudonull submodules

In this section, we review a special case of a result of R. Greenberg [Gre16, Proposition 4.1.1]
regarding sufficient conditions for Selp∞(A/K∞)∨ to admit no non-trivial pseudonull submodule.

Throughout this section, we keep the notation introduced previously. We further assume that

(CYC) Selp∞(A/Kcyc)
∨ is Λcyc-torsion.

In view of [HO10, Lemma 2.6] (which is based on the ideas in [BH97]) we can conclude that (CYC)
implies that Selp∞(A/K∞)∨ is Λ∞-torsion.

Let T = Tp(A)⊗Λι
∞, where ι is the involution on Λ∞ sending a group-like element to its inverse

and set D = T ⊗Λ∞ Λ∨
∞. Throughout this section, we will be consistent with the notation of [Gre16,

§2.1] as much as possible.
The condition RFX(D) asserts that T is a reflexive Λ∞-module; in our setting this condition

holds since it is free over Λ∞.
In the context of our setup, the condition LEO(D) asserts that

ker

H2(KΣ/K,D) −→
∏
v∈Σ

H2(Kv,D)


is a cotorsion Λ(GK)-module. Recall from [Gre06, Theorem 3] that there is an isomorphism of
Λ(GK)-modules H2(KΣ/K,D) ∼= H2(KΣ/K∞,A[p∞]).

Since our hypotheses imply that Selp∞(A/K∞)∨ is Λ∞-torsion, we know (using arguments anal-
ogous to [OV03, Theorems 3.2]) that

(4.1) rankΛ∞H1(KΣ/K∞,A[p∞])∨ − rankΛ∞H2(KΣ/K∞,A[p∞])∨ = r2(K)× r

where r is the Op-corank of A[p∞]. We also know that

(4.2) rankΛ∞

⊕
ℓ∈Σ

Jℓ(A/K∞)∨ = rankΛ∞

⊕
w|ℓ
ℓ∈Σ

H1(K∞,w,A)[p
∞]∨ = r2(K)× r,

by combining [CG96, Proposition 4.8] and [OV03, Theorem 4.1]. A standard argument with Poitou–
Tate exact sequence implies that H2(KS/K∞,A[p∞]) is co-torsion over Λ∞ and H1(KS/K∞,A[p∞])
is of corank r2(K)× r. In particular, LEO(D) holds.

The condition CRK(D,L) asserts that

corankΛ∞H1(KΣ/K∞,A[p∞]) = corankΛ∞Selp∞(A/K∞) + corankΛ∞

⊕
ℓ∈Σ

Jℓ(A/K∞)

= corankΛ∞

⊕
ℓ∈Σ

Jℓ(A/K∞) since we assume (CYC).

The desired equality follows from (4.1) and (4.2).
We now consider the conditions LOC(i)

v (D), i = 1, 2. Write T ∗ = Hom(D, µp∞). The conditions
assert that for v ∈ Σ(K), we have (T ∗)GKv = 0 and T ∗/(T ∗)GKv is a reflexive Λ∞-module, respec-
tively. Since p ̸= 2, we have (T ∗)GKv = 0 when v is an archimedean prime. On the other hand, if v is
a non-archimedean prime, it does not split completely in K∞. It follows from [Gre10, Lemma 5.2.2]
that (T ∗)GKv = 0. This guarantees that condition LOC(1)

v (D) holds for all v ∈ Σ(K). Finally, as
T ∗ is a free Λ∞-module, LOC(2)

v (D) both hold for all v ∈ Σ(K).
We can now state the result due to Greenberg under the following condition:

(TOR) A(K) has no p-torsion.

Proposition 4.1. If (ORD), (TOR) and (CYC) hold, then the Λ∞-module Selp∞(A/K∞)∨ does
not contain a non-trivial pseudonull submodule.
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Proof. We have verified that the hypotheses RFX(D), LEO(D), CRK(D,L), LOC(1)
v (D), and

LOC(2)
v (D) hold for all v ∈ Σ(K). Next, the condition D[m] admits no quotient isomorphic to µp

for the action of GK (assumption (b) in loc. cit.) is equivalent to A(K)[p] = 0 via the Weil pairing
(see the last paragraph on p. 248 of op. cit.). Therefore, the result is a direct consequence of [Gre16,
Proposition 4.1.1]. □

5. Proof of Theorem A

5.1. Preliminary results on Selmer groups. Let A be a simple self-dual modular abelian variety
of GL2-type over a totally real field F and let K/F be a CM field, as before.

Under (ORD), (CYC) and (TOR), the structure theorem of finitely generated Λ∞-modules (as
given in [Bou65, Chapitre VII, §4, Théorème 5]) combined with Proposition 4.1 asserts the existence
of the following short exact sequence

(5.1) 0 −→ Selp∞(A/K∞)∨ −→
m⊕
i=1

Λ∞

Ii
−→ N −→ 0,

where I1, . . . , Im are principal ideals of Λ∞ and
∏m

i=1 Ii = I = charΛ∞(Selp∞(A/K∞)∨) is the
characteristic ideal of Selp∞(A/K∞)∨ as a Λ∞-module and N is a pseudonull Λ∞-module.

Recall from the discussion in §3 the existence of a unique p-adic L-function Lp(A) ∈ Fp ⊗ Λ∞
associated with the abelian variety A, which is an analytic object. On the other hand, Theorem A
is an assertion involving Selmer groups which are algebraic objects. To bridge this gap, we assume
one inclusion of the Iwasawa main conjecture, i.e.,

(h-IMC) Lp(A) ∈ charΛ∞(Selp∞(A/K∞)∨) =
∏m

i=1 Ii.

Implicitly, (h-IMC) asserts that Lp(A) lies inside Λ∞.
In what follows, set HK ≃ Gal(K∞/K) ≃ Z⊕d

p . When K = Kcyc, we abbreviate HKcyc
= Hcyc.

Lemma 5.1. Let K be a non-anticyclotomic Zp-extension of K. If (HGT), (ORD), (GHH+),
(TOR), and (h-IMC) hold, then Selp∞(A/K∞)∨HK

is a finitely generated torsion ΛK-module.

Proof. The short exact sequence (5.1) induces the exact sequence

H1(HK, N) −→ Selp∞(A/K∞)∨HK
−→

m⊕
i=1

ΛK

πK(Ii)
−→ H0(HK, N) −→ 0.

The inclusion of (h-IMC) combined with Corollary 3.3 implies that πK(I) ̸= 0. In particular,
ΛK

πK(Ii)
is ΛK-torsion for i = 1, . . . ,m. This surjectivity of the last arrow in the exact sequence above

implies that H0(HK, N) is ΛK-torsion. By [Lim15, Proposition 2.3], we conclude that H1(HK, N) is
ΛK-torsion. Hence, we conclude that Selp∞(A/K∞)∨HK

is also a ΛK-torsion module. □

Proposition 5.2. Write K/K to denote a Zp-extension, and let HK denote the Galois group
Gal(K∞/K) ≃ Z⊕d

p . Suppose that (TOR) and (ORD) are satisfied. Then the restriction map

α : Selp∞(A/K) −→ Selp∞(A/K∞)HK

is injective. When K = Kcyc, the cokernel of α is a torsion Λcyc-module. In particular, Selp∞(A/K∞)∨Hcyc

is a torsion Λcyc-module if and only if Selp∞(A/Kcyc)
∨ is a torsion Λcyc-module.

We note that this result does not require any hypothesis on the reduction type at primes v | p.
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Proof. We begin by recalling the fundamental diagram

0 Selp∞(A/K) H1(GΣ(K),A[p∞])
∏

v∈Σ(K) Jv(A/K)

0 Selp∞(A/K∞)HK H1(GΣ(K∞),A[p∞])HK
∏

v∈Σ(K∞) Jv(A/K∞)HK ,

α

π

β γ=
∏

γv

where the vertical maps are given by restriction. To prove the first assertion, we study the leftmost
downward arrow and obtain the exact sequence

0 −→ ker(α) −→ Selp∞(A/K) −→ Selp∞(A/K∞)HK .

Note that
ker(α) ↪→ ker(β) = H1(HK,A(K∞)[p∞])

where the description of ker(β) comes from inflation-restriction. Since our assumptions imply that
A(K)[p] = 0, it follows that A(K∞)[p] = 0 (see for example, [NSW08, I.6.13]). Thus,

ker(α) = ker(β) = 0.

The result is now immediate from our assumption that Selp∞(A/K∞)∨HK
is a ΛK-torsion module.

Next, we observe that the same argument as before yields

coker(β) = H2(HK,A(K∞)[p∞]) = 0.

To complete the proof, it suffices to show that

coker(α) = ker(γ) =
∏
v

ker(γv) = torsion Λcyc − module.

Note that v | p is deeply ramified in the sense of Coates–Greenberg, imitating the proof of [CG96,
Proposition 4.8] we obtain that (when v | p has good ordinary reduction)

ker(γ) =
∏

ker(γv) =
∏

v∈Σ(K)
v∤p

H1(Hw,A(K∞,w)[p
∞])×

∏
v∈Σ(K)

v|p

H1(Hw, Ã(kw)[p
∞]),

where w = wv denotes any place of K∞ lying above v, Hw denotes the decomposition group of w
inside HK, Ã denotes the reduction of A modulo w, and kw denotes the residue field of K∞ at w.

For the remainder of the argument we assume that K = Kcyc. First, we consider the case that
v ∤ p. In this case, the local map γv is simply the identity map: for any v ∈ Σ(Kcyc) such that v ∤ p
and any place w of K∞ lying above v, we have that K∞,w = Kcyc,v is the unique Zp-extension of
Kp′ , where p′ is the place of K lying below v. In other words, ker(γv) = 0.

When v | p and p is a prime of good ordinary reduction, it suffices to know that Ã(kw)[p
∞] itself

is cotorsion (since it is of finite corank over Op). On the other hand, when p is a prime of potentially
ordinary reduction, ker(γv) = H1(Hw, D) where D = A[p∞]/C where C is a formal group (over a
base extension). In any case, the kernel lies inside H1(K∞,v,A[p

∞]). As a Λcyc-module, we note
that A[p∞] is still cotorsion. So, H1(K∞,v,A[p

∞]) and hence ker(γv), is Λcyc-cotorsion. Here, we
crucially use the fact that v | p is finitely decomposed in the cyclotomic Zp-extension. □

5.2. The (non)-growth of Selmer coranks. We are now ready to conclude the proof of Theo-
rem A, which is divided into two steps. The first step is to show that the Selmer corank is bounded
in a non-anticyclotomic Zp-extension of K using the preliminary results from the previous sections.
The second step is to show that the Selmer corank grows as predicted in an anticyclotomic Zp-
extension of K. The main input will be results of Nekovář [Nek07, Nek08] on the Heegner point
Euler system and the parity conjecture.
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Theorem 5.3. Let A be a simple modular self-dual abelian variety of GL2-type over a totally real
field F with trivial central character and K be a totally imaginary extension of F , satisfying (ORD),
(GHH+), (TOR), (h-IMC), and (HGT). If K is a non-anticyclotomic Zp-extension of K and
Kn is the n-th layer of the Zp-extension, then Selp∞(A/Kn)

∨ is bounded as n → ∞.

Proof. In light of Theorem 2.2 and Corollary 2.3, it suffices to prove that Selp∞(A/K)∨ is ΛK-torsion.
By Proposition 5.2, there is a surjection

Selp∞(A/K∞)∨HK
↠ Selp∞(A/K)∨.

Furthermore, it follows from Lemma 5.1 that Selp∞(A/K∞)∨HK
is ΛK-torsion. Hence, we deduce that

Selp∞(A/K)∨ is ΛK-torsion, as desired. □

Theorem 5.4. Let A be a simple modular self-dual abelian variety of GL2-type over a totally real
field F with trivial central character and K a totally imaginary extension of F , satisfying (ORD),
(GHH+) and (HGT). Let K be a Zp-extension of K that lies inside Kac and set Kn to denote the
n-th layer of the Zp-extension K/K. Then

corankOp
Selp∞(A/Kn) = pn +O(1).

Proof. Under (HGT), zHeeg is not a torsion element of A(K). In particular, the main theorem of
[Nek07] implies that X(A/K)[p∞] is finite and the Op-module generated by zHeeg inside A(K) is an
Op-module of rank one. Therefore, Selp∞(A/K) is of corank one over Op. As the restriction map

Selp∞(A/K) → Selp∞(A/K)ΓK

has finite kernel and cokernel by Theorem 2.2, it follows that Selp∞(A/K)∨ is of rank one or zero
over ΛK. However, since the root number of A over Kn is −1 by (GHH+), it follows from [Nek08,
Theorem 0.4] that the Op-corank of Selp∞(A/Kn) is unbounded as n → ∞. By Corollary 2.3 the
ΛK-corank of Selp∞(A/K) is one, and corankOp

Selp∞(A/Kn) = pn +O(1), as desired. □

6. Proof of Theorem B

The main goal of this section is to prove Theorem B. We adopt the method utilized in [GHKL25].
In fact, we remove the non-anomalous hypothesis in loc. cit. and streamline the utilization of the
control theorem. Instead of (HGT) in the previous section, we consider the following hypotheses:

(S-C) The Λ∞-module Selp∞(A/K∞)∨ is a direct sum of cyclic Λ∞ modules.
(RK) The order of vanishing of charΛcyc

Selp∞(A/Kcyc)
∨ at X0 is at most one.

Theorem 6.1. Let A be a simple modular self-dual abelian variety of GL2-type over a totally real
field F with trivial central character satisfying (ORD). Let K/F be a totally imaginary extension
and K/K be a Zp-extension. Suppose that (CYC) holds and either of following conditions holds:

(i) the order of vanishing of charΛcyc
Selp∞(A/Kcyc)

∨ at X0 is zero;
(ii) (S-C) holds and K is a non-anticyclotomic Zp-extension of K.

Then, rankOp
Selp∞(A/Kn)

∨ is bounded as n → ∞.

Proof. In case (i), it follows from Theorem 2.2 that Selp∞(A/K) is finite; hence, Selp∞(A/K)∨ is
ΛK-torsion. By Corollary 2.3, we conclude that the Op-rank of Selp∞(A/Kn)

∨ is bounded as n → ∞.
For the remainder of the proof, we consider case (ii). In particular, (S-C) holds, which means

that the pseudonull module N in (5.1) is trivial. Let fi ∈ Λ∞ be a generator of Ii. Let us write

fi =

∞∑
k=0

Gi,k(X1, . . . , Xd)X
k
0 ,
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where Gi,j(X1, . . . , Xd) ∈ OpJX1, . . . , XdK. By Proposition 5.2, there is a surjection

(6.1)
(
Selp∞(A/K∞)∨

)
HK

≃
m⊕
i=1

ΛK(
πK(fi)

) ↠ Selp∞(A/K)∨,

Thus, Selp∞(A/K)∨ is ΛK-torsion if πK(fi) ̸= 0 for all i = 1, . . . ,m.
When K = Kcyc, Proposition 5.2 says that the kernel in (6.1) is Λcyc-torsion. Thus, combined

with (CYC), we have

πcyc(fi) =

∞∑
k=0

Gi,k(0, . . . , 0)X
k
0 ̸= 0

for all i ∈ {1, . . . ,m}. In particular, there exists an integer m(i) such that Gi,m(i)(0, . . . , 0) ̸= 0,
with Gi,k(0, . . . , 0) = 0 for all k < m(i).

Let K be a Zp-extension of K which is not an anticyclotomic extension. Recall that K corresponds
to (c0 : · · · : cd) ∈ Pd(Zp) with c0 ̸= 0. In particular,

πK(X0) = (1 +XK)
c0

cj(K) − 1 =
c0

cj(K)
XK +O(X2

K).

Therefore,

πK(fi) =
∑

k≥m(i)

Gi,k

(
(1 +XK)

c1
cj(K) − 1, . . . , (1 +XK)

cd
cj(K) − 1

)
πK(X0)

k

= Gi,m(i)

(
(1 +XK)

c1
cj(K) − 1, . . . , (1 +XK)

cd
cj(K) − 1

)(
c0

cj(K)
XK

)m(i)

+O(X
m(i)+1
K )

= Gi,m(i) (0, . . . , 0)

(
c0

cj(K)
XK

)m(i)

+O(X
m(i)+1
K ) ̸= 0.

Hence, we deduce that Selp∞(A/K)∨ is ΛK-torsion. Thus, Corollary 2.3 tells us that the Op-rank of
Selp∞(A/Kn)

∨ is bounded as n → ∞. □

Theorem 6.2. Let A be as in Theorem 6.1. Suppose that (ORD), (GHH+), (CYC) and (RK)
hold. If K is a Zp-extension of K that lies inside Kac, then

corankOp
Selp∞(A/Kn) = pn +O(1).

Proof. As in the proof of Theorem 5.4, it suffices to show that Selp∞(A/K)∨ is of corank one over
Op. Indeed, under (GHH+), the corank of Selp∞(A/K)∨ is non-zero by [Nek07, Theorem 0.4].
Therefore, combined with (RK), the order of vanishing of charΛcyc

Selp∞(A/Kcyc)
∨ at X0 is exactly

one. Thus, Theorem 2.2 implies that Selp∞(A/K)∨ is of corank one over Op, as desired. □
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