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1. INTRODUCTION

My primary research is on the Iwasawa theory of elliptic curves. I use tools from Galois cohomology, module theory,
algebraic and analytic number theory, and arithmetic statistics to answer questions on the structure and growth of
Selmer groups, fine Selmer groups, and class groups in infinite (and finite) field extensions.

Organization: In §2, basic definitions and notations are introduced. In §3, I discuss some of my results on growth
questions of fine Selmer groups. These results indicate that the fine Selmer group “interpolates” between the class
group and the Selmer group. In §4, I explain some of my results which lie at the intersection of arithmetic statistics
and Iwasawa theory. If you are interested in knowing about my ongoing/ future projects, please send me an email
at dkundu@math.ubc.ca.

2. BASIC DEFINITIONS AND NOTATIONS

Let p be a fixed prime. Consider the cyclotomic Z,-extension of Q, denoted by Qcyc. Set I' := Gal (Qeyc/Q) ~ Zy.
The Iwasawa algebra A = A(T) is the completed group algebra Z,[I] := lim Z, [[/T?"]. Fix a topological generator
~ of T'; there is the following isomorphism of rings

A = Z,[T]
y—=14T.

Let M be a cofinitely generated cotorsion A-module. The Structure Theorem of A-modules asserts that the Pontryagin
dual of M, denoted by MV, is pseudo-isomorphic to a finite direct sum of cyclic A-modules. In other words, there is
a map of A-modules

i — (@A™ | o | DA/

with finite kernel and cokernel. Here, m; > 0 and h;(T) is a distinguished polynomial (i.e., a monic polynomial
with non-leading coefficients divisible by p). The characteristic ideal of MY is (up to a unit) generated by the
characteristic element,

3 (1) = [ (@),

The p-invariant of M is defined as the power of p in f](\g) (T'). More precisely,

0 ifts=0

(M) = pup(M) = {Z?_ m; if s > 0.

The Minvariant of M is the degree of the characteristic element, i.e.

AM) = Ap(M) =) " deg hy(T).

3. REsearcH Focus I: FINE SELMER GROUPS

The notion of fine Selmer group was formally introduced by J. Coates and R. Sujatha in [4] even though it had been
studied by K. Rubin [49] and B. Perrin-Riou [45, 46], under various guises in the late 80’s and early 90’s. This is a
subgroup of the classical Selmer group obtained by imposing stronger vanishing conditions at primes above p (the
precise definition is reviewed in §3.1 below). A deep result of K. Kato shows that the fine Selmer group of an elliptic
curve over Qcy. is always A-cotorsion, regardless of whether the elliptic curve E/q is ordinary at p or not, a fact
that is not true for classical Selmer groups. The fine Selmer group is a fundamental object in the study of Iwasawa
theory and plays a crucial role in the reformulation of the Iwasawa Main Conjecture for elliptic curves without p-adic
L-functions (see [16, Conjecture 12.10] and [56, Conjecture 7]).
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3.1. Definition of fine Selmer groups. Suppose F'is a number field. Throughout, E,/r is a fixed elliptic curve.
Fix a finite set S of primes of F' containing p, the primes dividing the conductor of E, as well as the archimedean
primes. Denote by Fg, the maximal algebraic extension of F' unramified outside S. For every (possibly infinite)
extension L/F contained in Fg, write Gg (L) = Gal (Fs/L). Write S (L) for the set of primes of L above S. If L is
a finite extension of F' and w is a place of L, write L,, for its completion at w; when L/F is infinite, it is the union
of completions of all finite sub-extensions of L.

Definition. Let L/F be an algebraic extension. The p-primary fine Selmer group of E over L is defined as

Selg(E/L) =ker | H' (Gs (L), E[p™]) = E H" (L., E[p™))

veES
Similarly, the p-fine Selmer group of E over L is defined as
Selo(E[p]/L) = ker | H' (G5 (L — P H' (L., Elp]
veS

Equivalently, the p-primary fine Selmer group is a subgroup of the classical Selmer group with additional vanishing
conditions at v | p. More precisely,

0 — Selo (E/F) — Sel (E/F) — EDE(F,) ® Qp/Zy.

vlp

It is easy to observe that if F,,,/F is an infinite extension,

Sely (E/Fx) = limSelo (E/L),  Selo (E[p]/Fso) = lim Selo (E[p]/L) ,
L L

where the inductive limits are taken with respect to the restriction maps and L runs over all finite extensions of F’
contained in F..

3.2. 4 = 0 Conjecture for fine Selmer groups. In [42], B. Mazur initiated the study of Iwasawa theory of
classical Selmer groups of elliptic curves. Even over the cyclotomic Z,-extension Qcy./Q, when the Selmer group is
A-cotorsion (i.e., at an odd prime p of good ordinary reduction), he constructed examples of elliptic curves where
the p-invariant of the Selmer group is positive. Thus, providing evidence that class groups and Selmer groups often
differ in growth behaviour in infinite extensions. On the other hand, when E, is an elliptic curve with good ordinary

reduction at p and the residual Galois representation p : Gal (F/F) — GLy(F,) is irreducible, R. Greenberg has
conjectured that the associated p-invariant of the Selmer group over Fey, is trivial (see [9, Conjecture 1.11]).

Motivated by the classical Iwasawa ;1 = 0 conjecture for the cyclotomic Zy-extension and the observation that the
growth behaviour of the fine Selmer group parallels that of the class group [4, Lemma 3.8], Coates—Sujatha formulated
the following conjecture . Henceforth, this will be referred to as Conjecture A.

Conjecture A. Let p be an odd prime and E/r be an elliptic curve. Over Fey./F, the fine Selmer group Selg(E/Fey.)
is a cofinitely generated Z,-module. Equivalently, Selo(E/Feyc) is A-cotorsion and the associated p-invariant, denoted

by Mﬁne(E/Fcyc)a is 0.

Much of my research has been driven by trying to understand this conjecture. Even though we are far from proving
this conjecture in full generality, I have made some modest contributions towards this (see Corollary 4.3). In my
doctoral thesis, I provided a large class of examples where the conjecture is true (see [25, 32]). More precisely,

Theorem 3.1. Let E/p be the base-change of a rational elliptic curve E q. Suppose that it has rank O over F' and
that the Shafarevich—Tate group of E,p is finite. If E has CM by an order if an imaginary quadratic field K, assume
further that the Galois closure of F, denoted by F°, contains K. Then the Selmer group Sel (E/Fcyc) is trivial for a
set of prime numbers of density at least [FT@ In particular, Congecture A holds for E,r at all such primes.

The key difficulty in extending this result to elliptic curves defined over F' is that we rely on [43] to show that
anomalous primes have density 0. Since these results are proven for normalized weight 2 eigencuspforms, we need
to invoke the Modularity Theorem. This has now been extended to higher rank elliptic curves and primes of good
supersingular reduction (see §4).



3.3. Close relationship with class groups. In [40], M. F. Lim and V. K. Murty showed for the first time that
the class groups of number fields and fine Selmer groups are closely related in some finite extensions of number fields
and in Z,-extensions (other than the cyclotomic one) where primes are finitely decomposed.

3.3.1. Arbitrarily large p-invariant. In my doctoral thesis, I explored similar questions in Z/pZ-extensions, non
p-adic analytic extensions, and other p-adic Lie extensions. A particular question I was interested in studying was
whether the growth properties of fine Selmer groups mimics that of class groups even in those p-adic Lie extensions
where primes are not finitely decomposed. K. Iwasawa had shown in [15] the existence of Z,-extensions of certain
number fields where the classical p-invariant can be made arbitrarily large. In [23], I proved that an analogous result
holds for fine Selmer groups by comparing p-ranks of fine Selmer groups and class groups in towers of number fields,
and observing that the p-invariant is closely related to the p-rank. More precisely,

Theorem 3.2. Let ' = Q((p,) be the cyclotomic field of p-th roots of unity for p > 2. Let E,p be an elliptic curve
such that E(F)[p] # 0. Given an integer N > 1, there exists a cyclic Galois extension L/F of degree p and a
non-cyclotomic Zy-extension Lo, /L such that pane(E/Loc) > N.

In [24], I developed a strategy to show that the (generalized) p-invariant of fine Selmer groups can be arbitrarily large
in extensions where the (generalized) p-invariant associated to the class group is arbitrarily large. Using results of
[11], I provided ezplicit examples of commutative and non-commutative p-adic Lie extensions with arbitrarily large
(generalized) p-invariant of fine Selmer groups. A striking feature in all these examples is that there are infinitely
many primes which are infinitely decomposed in these extensions. This raises the following question:

Question 3.3. Should one expect that for any Z,-extension, where primes are finitely decomposed the classical
Iwasawa p-invariant (i.e., associated to class groups) is 07 More generally, if Fi,/F is a (uniform) pro-p p-adic Lie
extension where primes are finitely decomposed, is the (generalized) u-invariant trivial?

3.3.2. Anti-cyclotomic Z,-extension. In [41, Conjecture B], A. Matar extended Conjecture A to the anti-cyclotomic
Zy-extension, K,c, of an imaginary quadratic field, K. He provided computational evidence for the same when the
mod-p representation of E is irreducible. In contrast, when the residual representation in reducible, we proved the
following result in [33] which again underlines the relationship between class groups and fine Selmer groups.

Theorem 3.4. Let E be an elliptic curve defined over an imaginary quadratic field K. Assume that

(i) E(I)[p] # 0 and
(i) the Heegner hypothesis is satisfied.

Then the classical (anti-cyclotomic) Iwasawa p-invariant, p(Ka./K) = 0 if and only if Selo(E/Kac) is a cotorsion
A-module with pigne(E/Kac) = 0.

3.3.3. p # q Iwasawa theory. In [54, 55], L. C. Washington proved that for distinct primes p and ¢, the p-part of
the class number stabilizes in the cyclotomic Z-extension of an abelian number field. These results were extended
by J. Lamplugh in [37] to other Z,-extensions where primes are finitely decomposed. More precisely, if p,q are
distinct primes > 5 that split in an imaginary quadratic field K of class number 1 and F/K is a prime-to-p abelian
extension which is unramified at p, then the p-class group stabilizes in the Z,-extension of F' which is unramified
outside precisely one of the primes above ¢. Using a theorem of H. Hida on the non-vanishing modulo p of algebraic
L-functions, we have extended these results to a class of anti-cyclotomic Z,-extensions in joint work with A. Lei [27].

Theorem 3.5. Let K be an imaginary quadratic field of class number 1. Let p and q be distinct primes (> 5) which
split in K. Let g be a fized ideal of Ok coprime to pq such that g is a product of split primes. Let F = %Z(gq) be
a prime-to-p extension of K and %(gq™>)*°/F be the anti-cyclotomic Z,-extension. Then, there exists an integer N
such that for alln > N,

ord, (h(F,)) = ord, (h (Fn)) ,

where F, is the n-th layer of the anti-cyclotomic Z,-extension.

Main idea of the proof: Proving the theorem involves the following main steps:
Step 1: A special case of a theorem of Hida [14] guarantees the non-vanishing modulo p of algebraic L-functions.

Step 2: Using a result of Lamplugh, show that certain p-primary Galois modules stabilize in the said anti-cyclotomic
Zq-extension. The theorem follows by an application of the Iwasawa Main Conjecture, which is known in this setting
by the work of K. Rubin [48].

Even in this p # ¢ setting, it is possible to relate the growth of the p-part of the class group to the p-part of fine
Selmer group of a fixed elliptic curve E over a Z,-tower. More precisely,



Theorem 3.6. Let p and q be distinct odd primes. Let F' be any number field and let E/p be an elliptic curve such
that E(F)[p] # 0. Let Fso/F be any Z,-extension such that the primes above q and the primes of bad reduction
of E are finitely decomposed. If there exists N > 0 such that ord, (h (Fn)) = ord, (h (FN)) for all n > N, then
Selg(E/F,,) = Selo(E/F).

In particular, the above theorem applies to the setting studied by Washington [54, 55].

A related question for exploration by early graduate students: I am hopeful that the strategy explained
in Section 3.3.1 can be combined with the results in this section. More precisely, I think it should be possible to
show that in Z,-extensions where primes of bad reduction of E split completely, the p-primary fine Selmer group has
unbounded (but predictable) growth.

The result I describe below is not related to the theory of fine Selmer groups. However, the questions arose naturally
while working on [27]. Tt is a classical problem to study the divisibility of the algebraic part of (Hecke) L-values by a
given prime p as one varies the (Hecke) characters of ¢g-power conductor. W. Sinnott introduced the idea of relating
non-vanishing of such L-values modulo p to Zariski density (modulo p) of special points of the algebraic variety
underlying the L-values. Related questions have been studied by A. Burungale, T. Finis, Hida, and M. L. Hsieh on
anti-cyclotomic characters. In [28], which is joint work with Lei, we studied a generalization of the aforementioned
results to Hecke characters (not necessarily anti-cyclotomic) of g-power conductor over an imaginary quadratic field.

Theorem 3.7. Let K be an imaginary quadratic field over which p and q are both split and H be its Hilbert class
field. Suppose that q does not divide the class number of K and that both the prime ideals above q are principal in K.
Let B,y be an elliptic curve with CM by O which has good reduction at primes above p and q. Let ¢ be the Hecke
character over K attached to E of conductor §. Let g denote a principal integral ideal of K that is divisible by § and
coprime to pq. Let F' = H(Egq) and Foo = U5, H(Eggn) be the L2-extension over F. Let m be the uniformizer of
the local field F,, where v | p. Let p be a character of Gal(H/K) satisfying a technical hypothesis. Then, for a Zariski
dense set of finite-order characters k of Gal (FOO/F),

ord, (Lalg (W)) =0

fork=12...,p—1.

Main idea of the proof: The proof consists of the following main ingredients:

Step 1: Establish a theory of Gamma transform of "elliptic function measures" on Zg, which are measures that arise
from a rational function on an elliptic curve.

Step 2: Show that the m-adic valuations of the aforementioned Gamma transforms have the same p-adic valuation
for almost all finite characters on Zg.

Step 3: Show that by choosing an appropriate elliptic function measure arising from a rational function on a CM
elliptic curve, the Gamma transforms of this measure is related to the special values of L-series of interest. The
construction of this elliptic function measure is significantly more involved than the analogous step in the work of
Lamplugh (since he assumes that K has class number 1). This step crucially uses the work of E. de Shalit.

Step 4: Show that the m-adic valuation discussed in Step 2 is zero.

3.4. Close relationship with classical Selmer groups. Since the fine Selmer group is a subgroup of the classical
Selmer group, unsurprisingly these two arithmetic objects often show some similarity in their growth behaviour.
One instance where this has been observed, in a limited scope, is in the formula of the cyclotomic A-invariants via a
Kida-type formula, see [26].

3.4.1. Control Theorems. In [42], Mazur conjectured that the classical Selmer group Sel(E/Feyc) is A-cotorsion,
and also provided the first theoretical evidence towards the same. Using the Control Theorem, he verified the
conjecture when Sel(E/F) is finite. This condition is satisfied precisely when the Shafarevich-Tate group over F is
finite and the elliptic curve E,r has Mordell-Weil rank 0. Till date, this conjecture is known only when E is an
elliptic curve over Q and F' is an abelian extension of Q; see [16].

Via the Iwasawa Main Conjecture, the Selmer group Sel(E/Fcy.) can be related to a p-adic L-function. Therefore,
Mazur’s Control Theorem provides a channel to extract information on Sel(E/F') from the main conjecture thereby
providing an invaluable approach towards studying the Birch and Swinnerton-Dyer Conjecture (see [16, 48, 52]). The
Control Theorem connects the Selmer groups at the finite layers with that over the infinite tower, allowing one to
deduce properties of this arithmetic object over the infinite tower from those at the finite layers, and vice versa.



In joint work with M. F. Lim [31], we proved Control Theorems for fine Selmer groups. More precisely,

(a) established estimates on the Z,-coranks of the kernel and cokernel of the restriction maps
rpp  Selg(E/F') — Sely(E/Fap) G2 (F/F)

for a p-adic Lie extension F,,/F with intermediate sub-fields F’/F.

(b) showed how the module theoretic structure of Sely(E/F,) determines the growth of Z,-coranks of Selo(E/F’) in
intermediate sub-fields F”.

(c) obtained sharper results by specializing to three cases of p-adic Lie extensions: Z;‘f—extensions, multi-false-Tate
extensions, and the trivializing extension obtained by adjoining to F' all the p-power division points of the
elliptic curve, E. In each of these cases, it is possible to show (under appropriate assumptions) that the kernel
and cokernel of the restriction map are finite, and also establish growth estimates for their orders.

Our results though stated only for elliptic curves go through for abelian varieties rather formally. This has been
written down in [19] and has been used extensively in proving new asymptotic formulas for the growth of ideal class
groups and fine Selmer groups in multi-Z,-extensions. More recently, the ideas from our paper have been extended
to modular forms in [20] to study generalized Iwasawa invariants.

3.4.2. Fine Selmer groups and duality. In [8], Greenberg established a criteria for when two finitely generated
A-modules are pseudo-isomorphic. This result has been used to show that the Selmer groups of ordinary (resp.
non-ordinary) representations satisfy a functional equation in [8] (resp. [17, 1, 38]). A key ingredient in all these
works is that the local Selmer conditions at p are ezxact annihilator of each other. Unfortunately, this is not true
in the case of fine Selmer groups, since the local conditions at p are trivial. In joint work with J. Hatley, A. Lei,
and J. Ray [12], we investigated the link between fine Selmer groups of weight & modular forms and its dual. More
precisely, let f be a weight k(> 2) modular form and f be the conjugate modular form. Then,

(a) for an integer i, several control theorems were proven for the fine Selmer groups of f(i) and f(k — i).

(b) via global duality and global Euler characteristic formulae, it could be shown that the criteria established by
Greenberg can be reinterpreted in terms of growth conditions on the localization maps.

(c) under hypotheses which could be verified computationally, using the control theorems it was shown that the
growth conditions on certain localization maps suffice to study the relation between the fine Selmer groups of
f(i) and f(k — i) over Qcyc/Q. In particular, if certain naturally arising growth conditions of localization maps

are satisfied, the p-invariants of Selg(f(7)/Qcyc) and Selo(f(k —4)/Qcyc) are equal.

4. RESEARCH Focus II: ARITHMETIC STATISTICS AND IWASAWA THEORY

In a series of articles (with collaborators), I am exploring questions at the intersection of arithmetic statistics and
Iwasawa theory. The main goal is to understand the variation of the Iwasawa invariants as the triple (E, F, p) varies
such that E,r has good reduction at p. More precisely, I focus on studying the following interrelated problems.

Question 4.1. (i) For a fixed elliptic curve E,p, how do the Iwasawa invariants vary as p varies over all odd
primes p at which E has good reduction?
(ii) For a fixed prime p and fixed number field F', how do the Iwasawa invariants vary as E varies over all elliptic
curves (with good reduction at p)?
(iii) Fix an elliptic curve E g with good reduction at p. How do the Iwasawa invariants of E, vary when F varies
over a family of number fields?

4.1. Iwasawa invariants in Qcy./Q. In [34], we started exploring questions at the intersection of arithmetic statis-
tics and Iwasawa theory using the Euler characteristic. The Euler characteristic is defined as an alternating product
of Galois cohomology groups. By the work of P. Schneider (see [50, 51]) and B. Perrin-Riou (see [44]), this invariant
is known to be given by the p-adic BSD formula for primes of good ordinary reduction. Thus, it captures information
about the size of the Tate—-Shafarevich group, the Tamagawa number, the anomalous primes, and the (global) torsion
points of the elliptic curve; thereby providing information about the Iwasawa invariants.

4.1.1. As a first step, Theorem 3.1 was extended to higher rank elliptic curves and to supersingular primes.

When E has supersingular reduction at p, the p-primary Selmer group, Sel(E/Qcyc), is not A-cotorsion. This makes
the analysis of the algebraic structure of the Selmer group particularly difficult. Instead, one considers the plus and
minus Selmer groups, denoted by Sel* (E/Qcyc), which were introduced by S. Kobayashi in [21] and are known to be
A-cotorsion. The Iwasawa invariants u* and A\* associated with the £-Selmer group are defined analogously. Even



in the supersingular case, there is sufficient computational evidence suggesting that often the associated p-invariants
vanish. Under standard hypotheses on the Shafarevich—Tate group, it is easy to show that the A-invariant associated
to a (A-cotorsion) Selmer group is always at least as large as the Mordell-Weil rank of E. For rank 0 elliptic curves
over Q, the precise =-Euler characteristic formula (associated to £-Selmer groups) has been obtained by Lei and
Sujatha in [39]. This recent result was used crucially in proving the following theorem.

Theorem 4.2. Let E g be a fized rank 0 elliptic curve. Assume finiteness of the Shafarevich—-Tate group over Q.

Then, for all but finitely many primes primes of good supersingular reduction Seli(E/QCyC) is trivial. In particular,
Selo(E/Qeyc) is trivial for all but finitely many supersingular primes.

The final assertion holds because for a prime of supersingular reduction, Sely(E/Qcyc) is a subgroup of Seli(E /Qcye)-
Combining Theorems 3.1 and 4.2, the next result is immediate as there are only a finite number of bad primes for E.

Corollary 4.3. Let E g be a fized rank 0 elliptic curve. Assume finiteness of the Shafarevich—Tate group over Q.
Then, Conjecture A holds for density 1 primes.

In the higher rank setting, answering the question is more difficult. This is because of the presence of the (normalized)
p-adic regulator term in the Euler characteristic formula. In any case, the following theorem can be proven.

Theorem 4.4. Let E g be an elliptic curve such that its Mordell-Weil rank, re > 1. Then there exists an explicitly
determined set of good ordinary primes such that u(E/Qcye) = 0 and A(E/Qqyc) = 7.

Remark 4.5. (i) Numerical data suggests that this explicitly determined set from the above theorem is a density
1 subset of the set of good ordinary primes. The obstruction in attaining an unconditional result is due to our
limited knowledge on how often the normalized p-adic regulator is a unit.

(ii) An analogue of Theorem 4.4 in the supersingular setting can be proven analogously, provided one assumes the
conjectural Euler characteristic formula in this setting.

In the direction of Question 4.1(ii), the following result from [34] allows distinguishing between when the A-invariant
is ezactly equal to the Mordell-Weil rank and when it is strictly greater than the rank.

Theorem 4.6. Let p > 5 be a fized prime number. Let £(X) be the set of isomorphism classes of all elliptic curves
over Q with height < X. Let J(X) be the subset of £(X) containing rank 0 elliptic curves E with good reduction at
p, and Z(X) be a subset for which either of the following hold:

(i) if E has good ordinary reduction at p, then Sel(E/Qqyc) = 0 or
(ii) if E has good supersingular reduction at p, then Seli(E/(@CyC) =0.

Then,

lim sup Z(X) > limsup #IX) e(p).

Here, €(p) is an explicitly determined positive constant which approaches 0 (quickly) as p — oo.

On average, the proportion of elliptic curves over Z, with good reduction at p (ordered by height) is (1 — %), see [5].
By Goldfeld’s Conjecture, it is expected that 1/2 the elliptic curves have rank 1. Therefore, one expects that

L #IX) 11
o e =3 (175)

Theorem 4.6 indicates that for a positive proportion of elliptic curves Sel(E/Qcyc) = 0; the proportion approaches
1/2 as p — co. In [35], it was possible to refine the results and prove that given any integer n, there is an ezplicit
lower bound for the density of the set of elliptic curves with good ordinary reduction at p for which A+ g > n. This
lower bound depends on p (and n), is strictly positive, and becomes smaller as p or n become larger. More precisely,

Theorem 4.7. Let n > 0 be an integer and p be an odd prime number. Assume that the Shafarevich—Tate group is
finite for all elliptic curves E q. The set of elliptic curves E g with good ordinary reduction at p and the additional
property that ;1 + A > n, has positive density which can be explicitly determined.

4.2. Iwasawa invariants in anti-cyclotomic Z,-extensions. In [13], the goal was to study problems raised in
Question 4.1 for rank 0 elliptic curves with good ordinary reduction at p over the anti-cyclotomic Z,-extensions of
an imaginary quadratic field in both the definite and the indefinite setting.



4.2.1. Definite Case: Heegner hypothesis is not satisfied. This setting was studied by R. Pollack and T. We-
ston in [47], and in their joint work with C.-H. Kim [18]. Here, the number of bad inert primes is odd, preventing
the existence of Heegner points. Consequently, there should be few rational points. Their work confirms this and
shows that under various hypotheses, the anti-cyclotomic Selmer group is cotorsion. Hence, the story is somewhat
similar to the cyclotomic one. In particular, it is possible to prove an Euler characteristic formula for Sel(E/K,.).

In the direction of Question 4.1(i), it is possible to prove that for non-CM elliptic curves, the exact order of growth
for the number of primes at which p = 0 is closely related to the Lang—Trotter Conjecture.

In response to Question 4.1(ii) it can be shown that for rank 0 elliptic curves the answer is primarily dependent on
the variation of Shafarevich—Tate groups, which can be studied via the heuristics of C. Delaunay.

Question 4.1(iii) however is more subtle. This question is largely dependent on the divisibility by p of the order
of the Shafarevich-Tate group upon base-change to Q(v/—d) (as d > 0 varies). Even though it appears difficult to
provide (unconditional) theoretical results, there is computational data which suggests that “often” large values of p
do not divide the order of the Shafarevich-Tate group.

Refinements in the case of supersingular reduction. In [36], we revisited Question 4.1(iii) with F. Sprung.
The goal of this paper was to understand the average behaviour of Iwasawa invariants at primes of supersingular
reduction. The key difference of this work from [13] is that it does not use the Euler characteristic formula. Instead,
it focuses on measuring how mild the assumptions in [18] and [47] are from a statistical point of view. A bit more
precisely, it asserts that the proportion of such imaginary quadratic fields is halved for each prime of bad reduction
that is split that would violate the key hypothesis of [18] were it inert. The main result is the following.

Theorem 4.8. Fix a pair (E/q,p) so that

(1) Eq is an elliptic curve with square-free conductor Ng = Il ¢, and
(it) p > 3 is a prime at which E has good supersingular reduction, Pe,p 18 surjective, and k <.

disc Q(\/—d)‘ ,pNE) = 1, the prime p splits in
Q(v=d), and Sel*(E/Q(v/=d)ac) with associated p-invariant equal to zero is at least is A-cotorsion is at least

Then the proportion of imaginary quadratic fields such that gcd(

PNE . (1 _ c*)
2502 (p+ D) Ilg ne (@ + 1) ?
Here, the constant c;, is related to the Cohen-Lenstra heuristics.

Remark 4.9. An analogous result can be proven in the good ordinary setting as well. The only difference is that p
can be either split or inert in Q(v/—d). So, the proportion is doubled.

4.2.2. Indefinite Case: Heegner hypothesis holds. When the Heegner hypothesis holds, the p-primary Selmer
group Sel(E/K,.) is not A-cotorsion. The theory in this setting is vastly different. Many of the arguments used in
proving the earlier results fail, and their analogues are often false. Importantly, in this setting, there is no known
formula for the Euler characteristic of Sel(E/K,.). This issue can be circumvented by relating this Selmer group to
an auxiliary Selmer group which is A-cotorsion and then using recent progress towards the anti-cyclotomic Iwasawa
Main Conjectures made by A. Burungale-F. Castella—C.-H. Kim [3] to obtain an Euler characteristic formula for
the auxiliary Selmer group. It appears that answering Questions 4.1(i)-(iii) systematically in the indefinite setting
is deeply intertwined with the theory of the BDP p-adic L-function and is currently out of reach. However, it was
possible to provide some partial answers and supplement the results with computational data.

4.3. Iwasawa invariants in non-commutative p-adic Lie extensions. In [29], which is joint work with A. Lei
and A. Ray, we have extended the study of average Iwasawa invariants to the non-commutative setting. What makes
the task of determining Iwasawa invariants in this situation more challenging is that in a non-commutative p-adic
Lie extension F.,/F, it is possible for primes other than p to ramify. Given a triple (E, p, F), the main task in this
article was study the variation of the algebraic structure of the Selmer group Sel(E/F,) in three different contexts.

(a) Fix the pair (E,p) and let F, vary over a family of admissible extensions.

(b) Fix the pair (p, Fio) and let E vary over a subset of elliptic curves E g of rank 0.

(c¢) Fix an elliptic curve E and associate to each prime p, an extension Fi, in a natural way. Then, vary p over the
primes at which E has good ordinary reduction.

Using crucially the Euler characteristic formula, we studied these three questions in three distinct settings.



(1) First, consider the Zf,—extension of imaginary quadratic fields. This is a 2-dimensional abelian extension and
a metabelian extension over Q. This case parallels the cyclotomic theory and in fact, the Euler characteristics
for the Z2-extension and the cyclotomic Z,-extension coincide.

(2) The next step is to work with the simplest non-commutative 2-dimensional p-adic Lie extension, which is

the false Tate curve extension. Given primes p and ¢, write
Fy ::Q(:U‘p“agp% n= 1327)

and set G = Gal (Fi/F) =~ Z;, x Z,. The three questions of interest in this case can be explained as follows:

(a) Fix an elliptic curve E of conductor Ng and a prime p of good ordinary reduction of E. Consider the
family of false Tate curve extensions obtained by varying ¢ 1 Ngp. The first question involves studying
for what proportion of primes ¢ is the Selmer group trivial over F.

(b) Fix the primes p and ¢, and let E vary over all elliptic curves defined over Q ordered by height. The next
question is answered by calculating an upper bound for the proportion of elliptic curves for which the
Selmer group is not trivial.

(c) Finally, fix a rank 0 elliptic curve E /g, a good prime /, and let p vary over the primes at which E has good
ordinary reduction. It is possible to show that for at least half of the primes p, the G-Euler characteristic
coincides with the I'-Euler characteristic. When E has good supersingular reduction at ¢, this happens
for ezactly two-third of the primes p. For such primes p, the Selmer group over the false Tate curve
extension is trivial if and only if that over the cyclotomic Zy-extension of Q(p,) is trivial.

(3) Finally, it is worth understanding the case of the trivializing extension F.,/Q, generated by the p-primary
torsion points of a non-CM elliptic curve (denoted by A, Ey and E’ in the three questions). Since G :=
Gal (Foo/(@) is mot a pro-p extension, it is not possible to exploit the theory of Akashi series and translate
the results on the G-Euler characteristic formula to conclusions regarding the pseudonullity of the Selmer
group over the infinite extension. The main results in this direction are the following:

(a) Fix a rank 0 elliptic curve E of conductor Ng and a prime p of good ordinary reduction of E. There is
a family of extensions obtained by varying a non-CM elliptic curve A,qg. For density 0 (but infinitely
many) such elliptic curves A, the G-Euler characteristic is trivial.

(b) Fix p and a non-CM elliptic curve Eq,q. This fixes the p-adic Lie extension Q (Eg ) /Q. As E varies
over all elliptic curves defined over Q and ordered by height, it is possible to calculate an upper bound
for the proportion of elliptic curves for which the G-Euler characteristic is not trivial.

(c) For a pair of elliptic curves (E,E’) such that E’ does not have CM, consider the Selmer group of E
over the p-adic Lie extension Q (E'[p>]) /Q as p varies. For all but finitely many primes, the G-Euler
characteristic is equal to the I'-Euler characteristic. Moreover, [34, Conjecture 3.17] predicts that this
latter quantity is trivial most of the time.

4.4. Diophantine stability. Questions pertaining to rank growth are of much interest to arithmetic geometers.
In [2], the aim was to study questions pertaining to Diophantine stability using tools and techniques from Iwasawa
theory. To answer questions on rank jump of elliptic curves upon base change, the natural thing to do was to study
the growth of a more tractable arithmetic object, i.e., the p-primary Selmer groups upon base change. In particular,
the following two questions were investigated using a Kida-type formula for A-invariants (proven in [10]).

Question 4.10. (i) Given an elliptic curve E q with trivial p-primary Selmer group, for what proportion of degree-
p cyclic extensions does the p-primary Selmer group remain trivial upon base-change.
(ii) Given p # 2,3, for how many elliptic curves over Q does there exist at least one Z/pZ-extension where the
p-primary Selmer group remains trivial upon base-change.

The answer to the first question is the following.

Theorem 4.11. Given an elliptic curve E g and a prime p > 7 with (1(E/Qcyc) = ME/Qcyc) = 0, there are infinitely
many Z/pZ-extensions of Q where the A-invariant does not increase; in particular, the rank does not jump. Moreover,
there are infinitely many Z/pZ-extensions of Q where the Mordell-Weil group does not grow.

The assertion on rank growth follows from the fact that the Mordell-Weil rank is at most as large as the M-invariant.
The final assertion is an immediate consequence of a recent result of [7] on torsion growth. The proof shows that
the A-invariant does not jump in many Z/pZ-extensions. Unfortunately, the method falls short of proving a positive
proportion as predicted by a conjecture of C. David—J. Fearnley—H. Kisilevsky.

A natural follow-up question is when does the p-primary Selmer group grow upon base-change. After establishing a
criterion for either the rank to jump, or the order of the Shafarevich—Tate group to increase upon base-change, the
next result is proven by exploiting the relationship between A-invariants and the Euler characteristic formula.



Theorem 4.12. Let p > 5 be a fized prime and E g be an elliptic curve with good ordinary reduction at p. Suppose
that the image of the residual representation is surjective, Sel(E/Q) is trivial, and 1(E/Qcyc) = AME/Qcyc) = 0. Then,
there is a set of primes of the form ¢ =1 (mod p) with density at least m such that the p-primary Selmer
group becomes non-trivial in the unique Z/pZ-extension contained in Q(u,).

The following theorem answers Question 4.10(ii).

Theorem 4.13. For a positive proportion of rank 0 elliptic curves defined over Q, there exists at least one Z/pZ-
extension over Q disjoint from Qcyc, such that the p-primary Selmer group upon base-change is trivial.

4.5. Hilbert’s 10th Problem. In [30], which is joint work with A. Lei and F. Sprung, we studied the analogue of
Hilbert’s 10th Problem for rings of integers of number fields, which asks the following question:

Is Z a Diophantine subset of the ring of integers of a number field L?

The strategy to prove such results is inspired by the work of N. Garcia-Fritz—H. Pasten, see [6]. However, there are
some important differences which will be explained after mentioning the key ingredients that go into the proof.

Main idea of the proof: The proof has the following three main steps:

Step 1: The following assertion is a straightforward corollary of a result by A. Shlapentokh: if there exists a rank 0
elliptic curve over Q such that in the quadratic extension K/Q the rank jumps, and in the extension F'/Q the rank
remains 0, then Hilbert’s 10th problem has a negative solution for the composite number field, L = K.F.

If F/Q is integrally Diophantine then by the Transitivity Property, L/Q is also integrally Diophantine.

Step 2: Find a rank 0 elliptic curve E/Q satisfying certain mild conditions and two families of number fields:

e a family (of cubic number fields) such that rank of F/Q does not jump.
e another family of (quadratic) extensions such that rank jumps.

Step 3: Determine ‘how big’ these families are. To count the number field extensions where the rank is stabilized,
the authors of [6] crucially used Iwasawa theory. As is shown in [30], it is possible to provide a direct argument. To
count the number of quadratic extensions with rank jump requires the work of D. Kriz—C. Li [22] (or the work of
A. Smith [53] when working with the congruent number curves).

Improving the results of Garcia-Fritz—Pasten. Here are the main differences between this recent work and [6]:

First, using a result from a previous work [29, Section 8 and Appendix] it is possible to refine the results of [6] and
improve the densities of both P and Q.

Theorem 4.14. There are explicit Chebotarev sets of primes P and Q, of density 1% and 4—78, such that for all p € P

and q € Q, the analogue of Hilbert’s 10th Problem is unsolvable for the ring of integers of L = Q(¢/p,/—q).

Second, it was possible to provide a direct proof of the main theorem of [6] by proving the vanishing of certain
3-Selmer groups (rather than the finiteness of 3°°-Selmer group). This allows significant weakening of the hypotheses
and the possibility to find many auxiliary elliptic curves (not necessarily of positive minimal discriminant).

Theorem 4.15. Let
D ={7,39,95,127,167,255,263,271, 303, 359, 391, 447,479, 527, 535, 615, 623, 655, 679, 695 }.

For all D € ®, there are explicit Chebotarev sets of primes P (independent of D) and Qp, of density 19—6 and %
such that for all p € P and q € Qp, the analogue of Hilbert’s 10th Problem is unsolvable for the ring of integers of

L = Q(/p, /Do)

By working with a pair of auxiliary elliptic curves, it is possible to improve significantly the density of P, at the
expense of a smaller set of © and a lower density for the sets Qp.

Theorem 4.16. Let D € {7,615}. There are explicit Chebotarev sets of primes P (independent of D) and Qp, of
density % and %, such that for all p € P and q € Qp, the analogue of Hilbert’s 10th problem is unsolvable for the

ring of integers of L = Q(¢/p, v/ Dq).
Finally, the more direct approach permits working with elliptic curves with good supersingular reduction at 3. This
provide the opportunity to use the congruent number curve.

Theorem 4.17. There is an explicit Chebotarev set of primes P with density % such that Hilbert’s 10th Problem is
unsolvable for the ring of integers of L = Q(/p,\/q) whenever q is a congruent number.
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