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Abstract. In this article, we study the growth of (�ne) Selmer groups of
elliptic curves in certain in�nite Galois extensions where the Galois group G,
is a uniform, pro-p, p-adic Lie group. By comparing the growth of (�ne)
Selmer groups with that of class groups, we show that it is possible for the
µ-invariant of the (�ne) Selmer group to become arbitrarily large in a certain
class of nilpotent, uniform, pro-p Lie extension. We also study the growth of
�ne Selmer groups in false Tate curve extensions.

Dans cet article, nous étudions la croissance de groupes de Selmer (�ns)
de courbes elliptiques dans certaines extensions in�nies de Galois oú le groupe
de Galois G est un groupe de Lie uniforme, pro-p, p-adique. En comparant la
croissance des groupes (�ns) de Selmer avec celle des groupes de classes, nous
montrons qu'il est possible que l'invariant µ du groupe (�n) de Selmer devienne
arbitrairement grand dans une certaine classe de nilpotents, uniformes, pro-p
Lie extension. Nous étudions également la croissance de groupes de Selmer
�ns dans de fausses extensions de courbe de Tate.

1. Introduction

Iwasawa theory began as the study of ideal class groups over in�nite towers of
number �elds. Kenkichi Iwasawa introduced the notion of a µ-invariant to study the
growth of (p-ranks) of ideal class groups in Zp-extensions. In [13], he constructed
Zp-extensions over number �elds with arbitrarily large µ-invariants. This notion of
a µ-invariant was later generalized to all uniform pro-p groups [12], [30]. In [10],
Hajir and Maire investigated uniform pro-p groups which are realisable as Galois
groups of extensions of number �elds with arbitrarily large µ-invariant.

In the study of rational points on Abelian varieties, the Selmer group plays an
important role. In [21], exploiting the intimate connection between class groups
and Selmer groups, Mazur developed an analogous theory to study the growth of
Selmer groups of Abelian varieties in Zp-extensions. He showed that the Selmer
groups of Abelian varieties and ideal class groups have similar growth patterns in
Zp-extensions. When the Abelian variety has good ordinary reduction at p, it is
possible to associate a µ-invariant to the Selmer group. In [3], Coates and Sujatha
showed that the �ne Selmer group has even stronger �niteness properties than the
classical Selmer group. They showed that the growth of �ne Selmer groups mimics
the growth of ideal class group in a general p-adic analytic extension containing
the cyclotomic Zp-extension. In [20], this was further investigated by Lim and
Murty wherein they extended this analogy to some non p-adic analytic extensions
as well. In [16], the author showed that there exist non-cyclotomic Zp-extensions
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over number �elds where the µ-invariant associated to the �ne Selmer group can
be made arbitrarily large. In this article, the goal is to extend these methods and
investigate the growth of Selmer groups and �ne Selmer groups of Abelian varieties
(and their associated µ-invariants) in extensions of the kind studied by Hajir-Maire.

In Section 3, we develop a general strategy to show that the µ-invariant of (�ne)
Selmer groups can be arbitrarily large in extensions where it is known that the µ-
invariant associated to the class group is arbitrarily large. We give explicit examples
of nilpotent, uniform, pro-p, p-adic Lie extensions of number �elds with arbitrarily
large µ-invariant of (�ne) Selmer groups. In Section 4, we study the growth of �ne
Selmer groups in metabelian extensions (in particular, false Tate curve extensions).
All the results we prove in this paper are for elliptic curves, but can be easily
generalized to Abelian varieties.

2. Preliminaries

Throughout this article, p is an odd prime.

2.1. Selmer Groups and Fine Selmer Groups [2], [3], [32]. Let E be an
elliptic curve de�ned over a �xed number �eld F . Let S be a �nite set of primes
in F containing the Archimedean primes, the primes above p, and the primes of
bad reduction of E; for short write S ⊇ S∞ ∪ Sp ∪ Sbad. For any (�nite or in�nite)
extension L/F , denote by LS the maximal extension of L unrami�ed outside S;
for the Galois group Gal(LS/L), set the notation GS(L). For a GS(L)-module M ,
its i-th Galois cohomology group is denoted by Hi

(
GS (L) , M

)
. If w is a place

of L, write Lw for its completion at w; when L/F is in�nite, it is the union of
completions of all �nite sub-extensions of L. For local �elds, the cohomology group
Hi (Lw, M) is with respect to the absolute Galois group of Lw. For an Abelian
group A, we use the notation A[p] to denote its p-torsion points and A(p) to denote
its p-primary part.

The p-primary Selmer group �ts into an exact sequence

0→ E(F )⊗Qp/Zp → Sel(E/F )→X(E/F )(p)→ 0

where E(F ) is the group of F -rational points called theMordell-Weil group and
X(E/F ) is the Shafarevich-Tate group.

The �ne Selmer group is a subgroup of the classical Selmer group obtained by
imposing stronger conditions at primes above p. The p-primary �ne Selmer
Group is de�ned by the following kernel

0→ R
(
E/F

)
→ Sel

(
E/F

)
→
⊕
v|p

H1
(
Fv, E[p∞]

)
,

where E[p∞] is the set of all the p-power division points of the elliptic curve.
For an in�nite Galois extension L/F , the p-primary Selmer group, Sel

(
E/L

)
,

and the p-primary �ne Selmer group, R
(
E/L

)
, are de�ned as follows

0→ Sel
(
E/L

)
→ H1

(
GS(L), E[p∞]

)
→
⊕
v∈S

lim−→
L

⊕
w|v

H1 (Lw, E) (p)

 ,

0→ R
(
E/L

)
→ H1

(
GS(L), E[p∞]

)
→
⊕
v∈S

lim−→
L

⊕
w|v

H1
(
Lw, E[p∞]

) .
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The inductive limit is taken with respect to the restriction maps and L runs over
all �nite extensions of F contained in L. Also, note that

Sel
(
E/L

)
= lim−→

L

Sel
(
E/L

)
,

R
(
E/L

)
= lim−→

L

R
(
E/L

)
.

2.1.1. Control Theorem. Let F be a number �eld and L/F be a p-adic analytic
extension with Galois group Gal(L/F ) ' G. Let E be an elliptic curve de�ned over
F . The study of the natural restriction map

sL/F : Sel
(
E/F

)
→ Sel

(
E/L

)G
is called the control problem. Mazur proved the following result.

Theorem 2.1 (Control Theorem [21]). Let L/F be a Zp-extension and let E be an
elliptic curve de�ned over F with good ordinary reduction at primes above p. Then
both ker(sL/L) and coker(sL/L) are �nite and bounded as L/F varies over all �nite
extensions inside L.

In [7], Greenberg formulated a general plan to attack this problem. He proved
generalizations of Mazur's Control Theorem stated below.

Set E(L)[p∞] to denote all the p-power torsion points in L, g be the Lie algebra
of Gal(L/F ) ' G, and dp (resp. ip) be the Lie algebra of the decomposition group
(resp. inertia subgroup) at p. For any Lie algebra l, denote by l′, the derived Lie
subalgebra.

Theorem 2.2 (Greenberg [7]). Assume E has potentially ordinary reduction at all
primes of F lying over p. Assume that L/F is a p-adic Lie extension satisfying the
property that d′p = i′p for all primes p above p. Further suppose that g is reductive
or E(L)[p∞] is �nite. Then both ker(sL/L) and coker(sL/L) are �nite as L varies
over all �nite extensions of F inside L.

Some examples of p-adic Lie extensions L/F , where the property d′p = i′p holds
for all primes p | p, include:

(1) when G is Abelian.
(2) when the inertia subgroup has �nite index in G for all p | p.
(3) whenG admits a faithful, �nite-dimensional p-adic representation of Hodge-

Tate type at p | p.
With the same setting as above, for the �ne Selmer group, there is an analogous

control problem. It involves studying the natural restriction map

rL/F : R
(
E/F

)
→ R

(
E/L

)G
.

The following result is known.

Theorem 2.3 (Control theorem for �ne Selmer groups [26, Chapter VII, Section
4]). Let F be a number �eld and E be an elliptic curve de�ned over F . Let L/F be
a Zdp-extension where d ≥ 1, and suppose all primes in S are �nitely decomposed.
Then both ker(rL/L) and coker(rL/L) are �nite as L varies over all �nite extensions
of F inside L.

Remark 2.4. (1) The Control Theorem for �ne Selmer groups is independent
of the reduction type at p.



4 DEBANJANA KUNDU

(2) When d = 1, the Control Theorem is proved for all Zp-extensions [32].
Moreover, the order of ker(rL/L) and coker(rL/L) are bounded independent
of L.

2.2. Iwasawa Theory of Uniform pro-p Groups [4], [12], [30]. Let G be a
�nitely generated pro-p group. For two elements x, y ∈ G, de�ne the commutator
[x, y] := x−1y−1xy. For closed subgroups H1, H2 of G, let [H1, H2] be the closed
subgroup generated by all commutators [x1, x2] with xi ∈ Hi.

De�nition 2.5. A pro�nite group G, is uniform if it is topologically �nitely gen-
erated by d generators, and there exists a (unique) �ltration by the p-descending
central series of G. In other words, we have

G = G0 ⊃ G1 ⊃ . . . Gn ⊃ . . .

such that each Gn+1 is normal in Gn, and Gn/Gn+1 '
(
Z/pZ

)d
. In particular, a

uniform p-adic analytic group is always pro-p.

For a d-dimensional uniform pro-p group G, one has [G : Gn] = pdn, for all n.
A well-known and important fact is the following.

Theorem 2.6 ([4, Theorem II.8.32]). Every p-adic analytic pro-p group is a closed
subgroup of GLm(Zp) for some integer m and contains an open uniform subgroup.

Let Λ(G) = ZpJGK := lim←−H Zp[G/H] be the completed Iwasawa algebra of G,

where H runs over all open normal subgroups of G. Set Ω(G) = FpJGK = ZpJGK/p.
Both Ω(G) and Λ(G) are local, Noetherian rings without zero divisors [4, Chapter
7] (see also [12]). Denote by Q

(
Ω (G)

)
the fraction skew �eld of Ω(G). If M is

a �nitely generated Ω(G)-module, the rank of M , written as rankΩ(G)(M), is the

Q
(
Ω (G)

)
-dimension of M ⊗(Ω(G)) Q(Ω(G)).

De�nition 2.7. Let M be a �nitely generated Λ(G)-module. Set

r(M) = rankΩ(G)

(
M [p]

)
; µ(M) =

∑
i≥0

rankΩ(G)

(
M [pi+1]/M [pi]

)
where M [pi] denotes the pi-torsion points of M for all i ∈ Z≥0.

It follows that µ(M) ≥ r(M) and r(M) = 0 if and only if µ(M) = 0.
Recall that for anyG-moduleM , the co-invariantMG is the largest quotient ofM

on which G acts trivially. WhenM is a discrete p-primary Abelian group or a com-
pact pro-pAbelian group, de�ne itsPontryagin dualM∨ := Homcont(M, Qp/Zp).
The following result of Perbet measures the growth of �nitely generated Λ(G)-
modules where G is a uniform, pro-p, p-adic Lie group.

Theorem 2.8 (Perbet [24]). Let G be a uniform pro-p group of dimension d and
M be a Λ(G)-module of rank ρ(M). Then for su�ciently large n,

dimFp

(
MGn

/p
)

=
(
ρ(M) + r(M)

)
pdn +O

(
pn(d−1)

)
,

#
(
MGn/p

n
)

= p(
ρ(M)+µ(M))pdn+O

(
npn(d−1)

)
.
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2.3. Growth of Class Groups in Uniform pro-p Lie Extensions. Let p be an
odd prime and let F be a number �eld. Let L/F be a uniform pro-p Lie extension,
i.e. Gal(L/F ) ' G where G is a uniform, pro-p, p-adic Lie group. Let L/F be a
�nite subextension of L/F . Denote by Cl(F )p the p-Sylow subgroup of the class
group of F . De�ne the Iwasawa module

X
(
L/F

)
:= lim←−

L

Cl(L)p

where the inverse limit is taken over all number �elds L in L/F with respect to
the norm map. By a Nakayama's Lemma argument, it is known that X(L/F ) is

a torsion Λ(G)-module [1](see also [11]). Set µL/F = µ
(
X
(
L/F

))
and rL/F =

r
(
X
(
L/F

))
. Perbet proved the following result by classical descent.

Theorem 2.9 (Perbet [24]). Let X(L/F ) be as de�ned above. Then for su�ciently
large n,

rp
(
Cl(Fn)

)
= rL/F p

dn +O
(
pn(d−1)

)
,

log
∣∣Cl(Fn)p/p

n
∣∣ = µL/F p

dn log p+O
(
npd(n−1)

)
,

where for any Abelian group A, the p-rank rp(A) := dimFp
(A[p]).

Remark 2.10. In [18], Lei obtained a more precise version of the above result when
G is a metabelian extension.

2.4. p-Rational Fields. Let p be an odd prime. Let F be a number �eld and let
FSp denote the maximal pro-p extension of F unrami�ed outside Sp, i.e. the primes
above p. The number �eld F is called p-rational if Gal(FSp

/F ) is pro-p free.

Theorem 2.11 ([6, Theorem IV.3.5]). Let F be a number �eld that contains a
primitive p-th root of unity. Then, F is p-rational if and only if there exists a
unique prime p above p and the p-part of the p-class group of F is trivial.

Remark 2.12. (1) It is believed that given any number �eld, it should be p-
rational for all primes p outside a set of density zero [8, Page 99].

(2) Let F be a p-rational number �eld which is Galois over Q. Suppose p is
the unique prime above p in F , p -

∣∣Cl(F )
∣∣, and p− 1 | [F : Q]. Then, p is

totally rami�ed in FSp
/F [8, Remark 6.4].

2.5. False Tate Curve Extensions. Let p be a �xed odd prime and let F be a
number �eld containing the group of p-th roots of unity, denoted by µp. The false
Tate curve extension, denoted by F∞, is obtained by adjoining the p-power
roots of a �xed integer m > 1 to the cyclotomic Zp-extension of F , which in turn
is written as Fcyc. Therefore,

F∞ = F
(
µp∞ , m

1
pn : n = 1, 2, . . .

)
.

The Galois group, G = Gal
(
F∞/F

)
' ZpoZp, is a solvable group with no element

of �nite order. This is a non-Abelian pro-p p-adic Lie extension of cohomological
dimension 2 [28]. Set H = Gal

(
F∞/Fcyc

)
' Zp. The extension F∞/F is contained

in GS(F ) where S is a �nite set of primes in F containing the Archimedean primes,
the primes above p, the primes of bad reduction of E and primes dividing m. For
short we write, S ⊇ S∞ ∪ Sp ∪ Sbad ∪ Sm.
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3. Growth of Selmer Groups in Uniform pro-p Extensions

3.1. Brief Review of the Result of Hajir-Maire [10, Section 4]. Given a
uniform pro-p group G, Hajir-Maire developed a general strategy to construct G-
extensions of number �elds with arbitrarily large µ-invariant.

Proposition 3.1 ([10, Proposition 4.1]). Suppose G is a uniform pro-p group and
L/M is a Galois extension of a number �eld such that

(1) Gal(L/M) ' G;
(2) there are �nitely many primes that are rami�ed in L/M;
(3) there are in�nitely many primes of M that split completely in L/M.

Then, there exist G-extension of number �elds with arbitrarily large associated µ-
invariant.

The main theorem they prove is the following.

Theorem 3.2 ([10, Theorem 4.8]). Let G be a uniform pro-p group having an
automorphism τ of order m with �xed-point-free action, where m is coprime to p.
Suppose F0 is a totally imaginary �eld admitting a cyclic extension F/F0 of degree
m such that F is p-rational. Then there exists a �nite p-extension K/F unrami�ed
outside p and a G-extension L/K such that for any given integer N , there exists a
cyclic degree p extension K ′ over K(µp) and a G-extension L′/K ′ where L′ = LK ′
whose associated µ-invariant is greater than N .

3.1.1. Construction/Discussion: Let G be a uniform pro-p group having an auto-
morphism τ of order m with �xed-point-free action, where m is coprime to p. If
m = 2, then G ' Zdp for some d ≥ 1 [25, Corollary 4.6.10].

Suppose F0 is a totally imaginary �eld admitting a cyclic extension F/F0 of
degree m such that F is p-rational. For n su�ciently large, set K0 (resp. K) to be
the n-th layer of the cyclotomic Zp-extension of F0 (resp. F ). It follows that K is
p-rational. By construction, K/K0 is a cyclic extension of degree m.

Let KSp
be the maximal, pro-p, unrami�ed outside Sp extension of K. Then,

there exists an intermediate �eld K ⊂ L ⊂ KSp with Gal(L/K0) ' G o 〈τ〉 [10,
Proposition 4.6]. The conjugation action of τ is �xed-point-free by assumption;
equivalently the action of 〈τ〉 is �xed-point-free, if m is a prime (not equal to
p). Under this additional assumption, G o 〈τ〉 is a Frobenius group [25, Theorem
4.6.1(d)]. Hence G is a nilpotent uniform pro-p group [25, Corollary 4.6.10].

Every place q which is totally inert in K/K0 and is not rami�ed in L/K splits
completely in this extension [10, Proposition 4.7]. By the Chebotarev density the-
orem, there are in�nitely many primes that remain totally inert in the Galois ex-
tension K/K0.

Without loss of generality assume K contains µp (otherwise replace K by K(µp)
in this paragraph). Choose an integer t ≥ 1, and primes q1, . . . , qt in OK which
split completely in L/K. There exists a Z/pZ-extension, K ′/K in which each of
these qi ramify. Indeed, let q0 be a prime ideal coprime to q1 · · · qt which is in the
inverse of q1 · · · qt, i.e. q0q1 · · · qt is a principal ideal generated by α (say). Then
K ′ := K(α1/p) is a cyclic degree p extension of K where q1, . . . , qt ramify.

3.2. Strategy to Extend the Above Result. To extend Theorem 3.2 to (�ne)
Selmer groups of elliptic curves, we adopt the following strategy. We write it down
for Selmer groups. For �ne Selmer groups, the strategy is identical.
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Step 1: Let G be a d-dimensional uniform pro-p p-adic Lie group. Let K be a
number �eld that admits an in�nite extension L/K with Gal(L/K) ' G such
that the associated µ-invariant in this extension is arbitrarily large. Recall that
[G : Gn] ' (Z/pZ)nd. Let Kn/K be the �eld �xed by Gn. Let E/K be an elliptic
curve such that E(K)[p] 6= 0. Then, the �rst task is to show

(1) rp

(
Sel
(
E/Kn

))
≥ rp

(
Cl(Kn)

)
rp
(
E(Kn)[p]

)
− 2.

This is a consequence of the following lemma.

Lemma 3.3 ([19, Proposition 4.1(i)]). Let M be a number �eld and E be an elliptic
curve with good reduction everywhere over M and E(M)[p] 6= 0. Then,

(2) rp

(
Sel
(
E/M

))
≥ rp

(
Cl(M)

)
rp
(
E(M)[p]

)
− 2.

Step 2: With notation as in Step 1, we construct a cyclic extension K ′n/Kn such

that rp

(
Sel
(
E/K ′n

))
can be made arbitrarily large.

A key ingredient in this step is the following result from genus theory.

Theorem 3.4 ([27]). Let M be a number �eld and L/M be a Z/pZ-extension. Let
t be the number of primes that ramify in L/M. Then,

rp
(
Cl(L)

)
≥ t− 1− rp

(
O×M
)
.

Let K be the number �eld considered in Step 1. Suppose there exists a Z/pZ-
extensionK ′/K such that the number of primes t that ramify inK ′/K can be made
arbitrarily large. Further, suppose these primes split completely in the G-extension
L/K. Set L′ = LK ′; then K ′n = KnK

′ is the �eld �xed by Gn in L′/K ′.
By (the K ′n-version of) Inequality 1 and Theorem 3.4, both rp

(
Cl(K ′n)

)
and

rp

(
Sel
(
E/K ′n

))
can be made arbitrarily large. In fact [10, Page 609],

(3) rp
(
Sel(E/K ′n)

)
≥ [K ′n : K]

(
t− r2(K ′)− 1

)
− 2

where r2 denotes the number of pairs of complex embeddings of the number �eld.
In obtaining the above inequality we have used that rp

(
E(K ′n)[p]

)
≥ 1.

Remark 3.5. When G is a uniform pro-p group having an automorphism τ of order
m with �xed-point-free action, and m is coprime to p, the number �elds K and
K ′ exist by the work of Hajir-Maire. They are constructed as in Theorem 3.2 (see
Section 3.1.1 for the details).

Step 3: We apply Greenberg's Control Theorem (Theorem 2.2). This allows the
comparison of the growth estimate obtained from genus theory (in Inequality 3)
and that obtained from the theorem of Perbet (Theorem 2.8).

Recall that the Pontryagin dual of the Selmer group (and hence the Pontryagin
dual of the �ne Selmer group) is always a �nitely generated Λ(G)-module where G
is a uniform pro-p group. This is a consequence of the Nakayama's Lemma in this
setting [1].

In our setting, Perbet's theorem can be applied. It gives the following equality.

(4) rp

(
Sel
(
E/L′

)Gn
)

=
(
ρ(X′) + r(X′)

)
pdn +O(pn(d−1))

where ρ(X′) (resp. r(X′)) is the Λ(G)-rank (resp. Ω(G)-rank) of the dual Selmer
group X(E/L′) = X′. By construction, Gal(L′/K ′) ' G. If L′/K ′ is such that
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Greenberg's Control Theorem is applicable and the p-ranks of the kernel and cok-
ernel of the restriction map are �nite and bounded (see for example [7, Proposition
3.4]), then for an elliptic curve E with (potentially) ordinary reduction at K ′,

rp

(
Sel
(
E/L′

)Gn
)

= rp

(
Sel
(
E/K ′n

))
+O(1).

This allows the comparison of the leading terms of Inequality 3 and Equation 4.
We get

ρ(X′) + r(X′) ≥ pt− pr2(K ′)− p.
In Step 2, it was guaranteed by construction that t can be made arbitrarily large. It
follows that ρ(X′) + r(X′) (and hence ρ(X′) + µ(X′)) can be made arbitrarily large.
If X′ is Λ(G)-torsion then ρ(X′) = 0. Hence, µ(X′) can be made arbitrarily large.

3.3. Growth of Selmer groups when G is Abelian. When G is an Abelian
pro-p group, i.e. G ' Zdp (for d ≥ 1), the result of Hajir-Maire can be applied (with
m = 2) and Greenberg's Control Theorem holds.

With notation as before, invoking the strategy described in Section 3.2, the
following result is immediate.

Theorem 3.6. Let G ' Zdp where d ≥ 1. Suppose F0 is a totally imaginary
�eld. Let E/F0 be an elliptic curve with good reduction everywhere over F0 and
ordinary reduction at primes above p. Further suppose E(F0)[p] 6= 0. Let F/F0

be a cyclic extension of degree coprime to p such that F is p-rational. Given any
integer N > 0, there exists a number �eld K ′/F and a Zdp-extension L′/K ′ such
that ρ(X′) + µ(X′) ≥ N . If further, X′ is Λ(G)-torsion, then µ(X′) ≥ N .

Remark 3.7. If E/F0 is an elliptic curve with complex multiplication (CM) by an
imaginary quadratic �eld contained which is a sub�eld of F0, then E acquires good
reduction everywhere over F0(E[p]) [29]. If p ≥ 5, [F0(E[p]) : F0] is coprime to p
and by the Weil pairing F0(E[p]) ⊇ F0(µp).

3.4. Growth of Selmer groups when G is a non-Abelian nilpotent uniform
pro-p group. Throughout this section, let p ≥ 5.

The nilpotent uniform pro-p groups of dimension ≤ 2 are always Abelian. This
follows from the fact that every 2-dimensional nilpotent Lie algebra is Abelian. In
this section, we work with a speci�c example of a non-Abelian nilpotent uniform
pro-p group of dimension 3 considered in [10].

In [5, Theorem 7.4], González-Sánchez and Klopsch proved that up to iso-
morphism, every non-Abelian, nilpotent, uniform, pro-p group of dimension 3 is
parametrized by s ∈ N and represented by

G(s) =
〈
x, y, z | [x, z] = [y, z] = 1, [x, y] = zp

s
〉
.

The center of G(s) is pro-cyclic and there exists a short exact sequence

1→ Zp → G(s)→ Z2
p → 1.

These groups were studied by Hajir-Maire. They proved that G(s) is a uniform
pro-p group having an automorphism τ of order 3 with �xed-point-free action when
p ≡ 1 (mod 3) [10, Proposition 5.1]. The following result is known about growth of
class groups (and the associated µ-invariant) in G(s)-extensions of number �elds.
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Theorem 3.8 ([10, Corollary 5.3]). Suppose p is a regular prime, i.e. p -
∣∣Cl(Q(µp))

∣∣
and satisfy the additional property p ≡ 1 (mod 3). For each s ∈ N, there exist G(s)-
extensions of number �elds with arbitrarily large µ-invariants.

In this section, we prove the following result.

Theorem 3.9. Let s ∈ N and G ' G(s). Suppose p is a �xed regular prime with
p ≡ 1 (mod 3). Suppose F0 is a totally imaginary �eld containing µp and E/F0 is
an elliptic curve without CM with good reduction everywhere, ordinary reduction at
p, and E(F0)[p] 6= 0. Let F/F0 be a cyclic Z/3Z such that F is p-rational, Galois
over Q, and p -

∣∣Cl(F )
∣∣. Given any integer N > 0, there exists a number �eld

K ′/F and a G(s)-extension L′/K ′ such that ρ(X′) + µ(X′) ≥ N . If further, X′ is
Λ(G)-torsion, then µ(X′) ≥ N .

Remark 3.10. Since G(s) is a non-Abelian, nilpotent, uniform pro-p group, the
corresponding Lie algebra can not be reductive.

To prove the theorem, we adopt the general strategy developed in Section 3.2.
We need to verify that Greenberg's Control Theorem is in fact applicable to this
extension. For this, we need the following lemmas.

Lemma 3.11. Let the number �eld K ′ and a G(s)-extension L′/K ′ with arbitrarily
large µ-invariant be constructed as in Theorem 3.2. Let E/K ′ be an elliptic curve
without CM. Then, E(L′)[p∞] is �nite.

To prove the lemma, recall the following result of Zarhin.

Theorem 3.12 ([33, Main Theorem]). Let X be a g-dimensional Abelian variety
over a number �eld M. Assume that the Hodge group of X is semi-simple. If L/M
is an in�nite extension such that its intersection with Mcyc/M is of �nite degree
over M, then X(L)tors is �nite.

Proof of Lemma 3.11. When E is an elliptic curve without CM, it is known that
its Hodge group is SL2, and therefore semi-simple [22, Section 2]. Further, the
intersection of the G(s)-extension L′/K ′ and K ′cyc/K

′ is necessarily of �nite degree
over K ′. This is because by construction of L′/K ′, there are in�nitely many primes
that are not �nitely decomposed in L′/K ′. However, in K ′cyc/K

′ all primes are
�nitely decomposed. Thus, for a non-CM elliptic curve E/K ′, Theorem 3.12 implies
that E(L′)[p∞] is �nite. �

Lemma 3.13. Keep the notation as in Theorem 3.9. Let the number �eld K ′

and a G(s)-extension L′/K ′ with arbitrarily large µ-invariant be constructed as in
Theorem 3.2. Let E/K ′ be an elliptic curve. The inertia subgroup has �nite index
in G(s) for all primes above p in K ′.

Proof. Recall that by construction, K is the n-th layer of the cyclotomic Zp-
extension of F . Therefore, K/F is p-rational number �eld containing µp such
that KSp ⊆ FSp . There is a unique prime p above p in K (see Theorem 2.11), i.e.
Sp = {p}. Recall that the p-adic Lie extension L/K with Gal(L/K) ' G(s) is
contained in KSp

. Since K/F is a p-power extension and p -
∣∣Cl(F )

∣∣, it follows that
p -
∣∣Cl(K)

∣∣ [31, Theorem 10.4(1)]. By Remark 2.12(2), the unique prime p | p is
totally rami�ed in FSp/F . Hence, the unique prime above p in K is totally rami�ed
in KSp

/K; the inertia subgroup of G(s) ' Gal(L/K) is maximal (in this case, of
dimension 3). Upon performing a base change to K ′/K, for every prime above p
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in K ′, the dimension of the inertia subgroup is still 3, i.e. the inertia subgroup has
�nite index in the G(s)-extension over K ′. �

Proof of Theorem 3.9. Given F0 as in the statement of the theorem, construct
K ′/F0 as in Theorem 3.2 and let L′/K ′ be a G(s)-extension with arbitrarily large
µ-invariant. Such a G(s)-extension L′/K ′ exists by the proof of Theorem 3.8.

By hypothesis, E/K ′ has good reduction everywhere and good ordinary reduc-
tion at primes above p. To apply Greenberg's Control Theorem, the following two
properties need to be veri�ed.

(i) E(L′)[p∞] is �nite.
(ii) The inertia subgroup has �nite index in G(s) for all primes p | p.
The �rst property is veri�ed in Lemma 3.11. This guarantees that the kernel of

the restriction map is �nite and bounded [7, Proposition 3.1]. The second property
is veri�ed in Lemma 3.13. This guarantees that the cokernel is also �nite and
bounded [7, Proposition 4.4]. The general strategy developed in Section 3.2 proves
the theorem. �

Remark 3.14. If p is a regular prime and m is an odd divisor of p− 1, then for any
k ≥ 1, the cyclotomic �eld Q(µpk) admits a Z/mZ extension K/Q(µpk) which is
p-rational (see discussion following [10, Theorem 1.1]).

3.5. Growth of �ne Selmer groups when G is Abelian. When G ' Zdp (for
d ≥ 1), it is possible to prove an analogue of Theorem 3.6 for the �ne Selmer groups.
The di�culty lies in the fact that the control problem for �ne Selmer groups is less
understood. Set the notation Y = Y(E/L) (resp. Y′ = Y(E/L′)) to denote the
Pontryagin dual of the �ne Selmer group over L (resp. L′).

Theorem 3.15. Let G ' Zdp where d ≥ 1. Suppose F0 is a totally imaginary �eld
containing µp. Let E/F0 be an elliptic curve with good reduction everywhere and
E(F0)[p] 6= 0. Let F/F0 be a cyclic extension of degree coprime to p such that F
is p-rational and p - Cl(F ). Given any integer N > 0, there exists a number �eld
K ′/F and a Zdp-extension L′/K ′ such that ρ(Y′) + µ(Y′) ≥ N . If further, Y′ is
Λ(G)-torsion, then µ(Y′) ≥ N .

Remark 3.16. (1) The de�nition of the �ne Selmer group is independent of
the choice of the set S. By hypothesis, E has good reduction everywhere.
Hence, choose S = Sp∪S∞. In our setting, the unique prime p | p is totally
rami�ed in L/K. Observe that the prime(s) above p in K ′ are �nitely
decomposed in the Zdp-extension L′/K ′.

(2) When d = 1, Wuthrich proved the Control Theorem for all Zp-extensions.
As will be clear from the proof, in this case there is no hypothesis on the
reduction type [16].

(3) It is always possible to choose S = Sp ∪ Sbad ∪ S∞. If all the bad primes
in S are �nitely decomposed in L′/K ′, we need not assume E/F0 has good
reduction everywhere.

De�nition 3.17. Let HS(M) be the maximal Abelian unrami�ed extension of M
such that all the primes in S split completely in HS(M). By class �eld theory, the
Galois group Gal

(
HS(M)/M

)
' ClS(M) where ClS(M) is the S-class group of M.

We begin by recording two elementary estimates.
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Lemma 3.18 ([19, Lemma 3.2]). Let G be a pro-p group and let M be a discrete

G-module that is co�nitely generated over Zp. If rp
(
H1
(
G, Z/pZ

))
is �nite then

rp

(
H1 (G, M)

)
≤ rp

(
H1
(
G, Z/pZ

))(
corankZp M + logp

(∣∣M/Mdiv

∣∣)) .
Lemma 3.19 ([20, Lemma 3.2]). Consider the following short exact sequence of
co�nitely generated Abelian groups

P → Q→ R→ S.

Then ∣∣rp (Q)− rp (R)
∣∣ ≤ 2rp (P ) + rp (S) .

To prove Theorem 3.15, we will apply the general strategy. To complete Step 1
of the general strategy, we need the following lemmas.

Lemma 3.20. Let L be any Zdp extension of a number �eld M. Let S(M) be a �nite
set of primes in M containing the primes above p and the Archimedean primes. Let
s0 be the number of non-Archimedean primes in S(M). Let Mn be the sub�eld of L
such that [M : Mn] = pdn. Then∣∣∣rp (Cl (Mn)

)
− rp

(
ClS (Mn)

)∣∣∣ ≤ 2s0p
dn.

Proof. Let S(Mn) denote the primes in Mn above the primes in S(M). Set Sf (Mn)
to denote all the non-Archimedean primes of S(Mn). Consider the following short
exact sequence for all n [23, Lemma 10.3.12],

Z|Sf (Mn)| → Cl(Mn)
αn−−→ ClS(Mn)→ 0.

Observe that ker(αn) is �nite because the class group is always �nite. Note that
rp
(
ker (αn)

)
≤
∣∣Sf (Mn)

∣∣ and by �niteness it follows that rp (ker (αn) /p
)
≤
∣∣Sf (Mn)

∣∣.
Using Lemma 3.19, compare the p-ranks in this short exact sequence; this gives∣∣∣rp (Cl (Mn)

)
− rp

(
ClS (Mn)

)∣∣∣ ≤ 2
∣∣Sf (Mn)

∣∣ ≤ 2s0p
dn.

The last inequality follows from the fact that if all the non-Archimedean primes in
S(M) undergo complete splitting inMn, there are s0p

dn �nite primes in S(Mn). �

Lemma 3.21 ([20, Lemma 4.3]). Let E be an elliptic curve de�ned over the number
�eld M with E(M)[p] 6= 0. Let S be a �nite set of primes in M containing the primes
above p, the primes of bad reduction, and the Archimedean primes. Then,

rp

(
R
(
E/M

))
≥ rp

(
ClS(M)

)
rp
(
E(M)[p]

)
− 2.

We can now prove Theorem 3.15. The proof involves invoking the strategy in
Section 3.2. We brie�y explain some of the di�erences.

Proof of Theorem 3.15. Let F0 be as in the statement. Construct K and K ′ as in
Theorem 3.2. Let t be the number of primes that are inert in K/K0 and totally
split completely in L/K. By construction, these primes ramify in K ′/K. Since
E/F0 has good reduction everywhere, set S = Sp ∪ S∞. Recall that the prime(s)
above p in K ′ are �nitely decomposed in L′. It follows that for n su�ciently large,
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)
− rp

(
ClS (Mn)

)∣∣∣ is �nite and bounded. Over the n-th layer of the Zdp
extension L′/K ′, we have

rp

(
R
(
E/K ′n

))
≥ rp

(
ClS

(
K ′n
))
rp

(
E
(
K ′n
)

[p]
)
− 2(5)

=

(
rp

(
Cl
(
K ′n
))

+O(1)

)
rp

(
E
(
K ′n
)

[p]
)
− 2(6)

≥
(
pt− r2

(
K ′
)
− p
)
pdn +O(1).(7)

The �rst inequality is an application of Lemma 3.21. The equality in the second
line follows from Lemma 3.20. The last inequality is obtained by an application of

Theorem 3.4 and noting that rp

(
E
(
K ′n
)

[p]
)
≥ 1. By Theorem 2.8,

(8) rp

(
R
(
E/L′

)Gn
)

=
(
ρ(Y′) + r(Y′)

)
pdn +O(pn(d−1)).

Step 3 of the general strategy can now be carried out. The Control Theorem for
�ne Selmer groups holds when G is Abelian and primes in S are �nitely decomposed
(Theorem 2.3). This is independent of the reduction type at primes above p. The
p-rank of the kernel and cokernel of the (global) restriction map

hL′/K′n : H1
(
K ′n, E[p∞]

)
→ H1

(
L′, E[p∞]

)Gn

is known to be �nite and bounded independent of n [7, Proposition 3.4]. Therefore,

the p-rank of ker
(
rL′/K′n

)
enjoys the same properties. The above mentioned result

of Greenberg also ensures that coker
(
rL′/K′n

)
is �nite and bounded independent

of n, if the same holds for the p-rank of the kernel of the local restriction map.

But the latter follows from Lemma 3.18 upon observing that rp

(
H1
(
Gn,v,Z/pZ

))
is bounded independent of n. Now by Lemma 3.19, it is possible to compare the
leading terms of Inequality 7 and Equation 8. By construction, t can be made
arbitrarily large. This proves the theorem. �

Remark 3.22. At this point, we are unable to prove a Control Theorem for �ne
Selmer groups in G(s)-extensions. This prevents us from completing Step 3 of the
general strategy and proving an analogue of Theorem 3.9 for �ne Selmer groups.

Remark 3.23. It was only after this paper was published, while discussing with
Meng Fai Lim on another problem, we realized that the strategy developed in
Subsection 3.2 can be extended to all p-adic Lie extensions. Indeed, the strategy
works whenever the p-rank of ker(rL′/K′) has bounded p-rank which is trivially true
for p-adic Lie extensions.

4. Growth of Fine Selmer Groups in False Tate Curve Extensions

We will use the notation introduced in Section 2.5. In this section, the goal is
to prove a non-commutative version of results in [20, Section 5] and [16, Section
3.3]. We prove our results for the false Tate curve extension F∞/F with Galois
group G = Gal(F∞/F ) ' H o Γ where both H and Γ are isomorphic to Zp. The
action of Γ on H is non-trivial; hence G is non-Abelian. Note that G is a solvable
uniform pro-p group which is not nilpotent. This is because all nilpotent uniform
pro-p groups of dimension ≤ 2 are Abelian. Thus, we do not expect that the results
proved in Section 3 will extended easily to the false Tate curve extension.
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Consider the setting described in Section 2.5. Let p be a �xed odd prime and for
simplicity, set F = Q(µp). Throughout this section, we make either of the following
hypothesis on m:

(1) let m be an integer which is not a p-th power or
(2) let p | m.

In either of the cases, it is guaranteed that the unique prime above p is totally
rami�ed in F∞/F (see [9, Lemma 3.9(ii)] or [17]).

By a deep result of Kato, for a modular elliptic curve, an analogue of the
Weak Leopoldt Conjecture (WLC) holds over the cyclotomic extension Fcyc/F ,

i.e. H2
(
GS
(
Fcyc

)
, Ep∞

)
is trivial [14]. By a Hochschild-Serre spectral seqeunce

argument it follows that H2
(
GS (F∞) , Ep∞

)
= 0. Thus, the elliptic curve ana-

logue of the WLC is true over this false Tate curve extension [9, Remark 2.2].
In the main theorem of this section, we relate the growth of �ne Selmer groups

and class groups in the false Tate curve extension.

Theorem 4.1. Let E be an elliptic curve de�ned over a number �eld F . Let F∞
be the false Tate curve extension such that primes of bad reduction of E divide m.
Further assume E[p] ⊆ E(F ). Then,∣∣∣∣rp (R (E/Fn))− 2rp

(
Cl (Fn)

)∣∣∣∣ = O(1).

Remark 4.2. (1) It should be possible to weaken the hypothesis E[p] ⊆ E(F )
slightly, i.e. the above theorem should hold under the weaker hypothesis
E(F )[p] 6= 0 (see [15]).

(2) It should be possible to generalize this result to any metabelian extension
considered in [18].

To prove the theorem, we need a series of lemmas. In the �rst lemma we prove
that the class group and S-class group have the same order of growth in the false
Tate curve extension. Recall that S ⊇ Sp ∪ Sbad ∪ Sm ∪ S∞.

Lemma 4.3. Let F∞/F be the false Tate curve extension of F . Let Fn be the n-th
layer of this false Tate curve extension, i.e.

Fn = Q
(
µpn ,

pn
√
m
)
,

where either p | m or m is an integer that is not a p-th power. Then for su�ciently
large n, ∣∣∣rp (Cl(Fn)

)
− rp

(
ClS(Fn)

)∣∣∣ = O(1).

The proof is similar to Lemma 3.20 (see also [20, Lemma 5.2]).

Proof. As in the proof of Lemma 3.20, we obtain∣∣∣rp (Cl (Fn)
)
− rp

(
ClS (Fn)

)∣∣∣ ≤ 2
∣∣Sf (Fn)

∣∣ = O(1).

By the hypothesis on m, the last equality follows from the fact that primes in S are
�nitely decomposed in the false Tate curve extension F∞/F [9, Lemmas 3.9]. �

We now de�ne the p-�ne Selmer group of an elliptic curve. Let S be a �nite
set of primes containing the primes above p, the primes of bad reduction of E, the
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primes above m, and the Archimedean primes. De�ne

RS
(
E[p]/F

)
= ker

H1
(
GS (F ) , E[p]

)
→
⊕
v∈S

H1
(
Fv, E[p]

) .

The next lemma is the �ne Selmer group analogue of Lemma 4.3. As will be shown
in the proof of Theorem 4.1, the p-�ne Selmer group indeed depends on the set S.

Lemma 4.4. Let F∞/F be the false Tate curve extension of F . Let Fn be the n-th
layer of this false Tate curve extension, i.e.

Fn = Q
(
µpn ,

pn
√
m
)
.

Let E be an elliptic curve de�ned over F satisfying the additional property that∏
v∈Sbad

v divides m. Then for su�ciently large n,

∣∣∣∣rp (R (E/Fn))− rp (RS (E[p]/Fn
))∣∣∣∣ = O(1).

Proof. Consider the commutative diagram below.

0 → RS(E[p]/Fn) → H1
(
GS (Fn) , E[p]

)
→

⊕
v∈S(Fn)H

1
(
Fn,vn , E[p]

)ysn
yfn

yγn
0 → R

(
E/Fn

)
[p] → H1

(
GS (Fn) , E[p∞]

)
[p] →

⊕
vn∈S(Fn)H

1
(
Fn,vn , E[p∞]

)
[p]

Both fn and γn are surjective. The kernel of these maps are

ker(fn) = E(Fn)[p∞]/p

ker(γn) =
⊕

vn∈S(Fn)

E(Fn,vn)[p∞]/p.

Observe that rp
(
ker (sn)

)
≤ rp

(
ker (fn)

)
≤ 2. Also, rp

(
ker (γn)

)
≤ 2

∣∣Sf (Fn)
∣∣.

By assuming that
∏

v∈Sbad

v divides m, it is guaranteed that all primes are �nitely

decomposed in the false Tate curve extension [9, Lemma 3.11], i.e. for n su�ciently
large,

∣∣Sf (Fn)
∣∣ = O(1). By an application of the Snake Lemma, it follows that

rp
(
coker (sn)

)
is �nite and bounded. Applying Lemma 3.19 to the map sn gives

the desired result. �

We are now in a position to prove the theorem.

Proof of Theorem 4.1. Let S be a �nite set of primes containing the primes above p,
the primes abovem and the Archimedean primes. By hypothesis, it is not needed to
assume that S also contains the primes of bad reduction of E. Since E[p] ⊆ E(F ),
we have the following isomorphism (as GS(Fn)-modules)

E[p] ' Z/pZ× Z/pZ.

Since the action of GS(Fn) is trivial, the following equality holds

H1
(
GS (Fn) , E[p]

)
= Hom

(
GS (Fn) , E[p]

)
.
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There are similar identi�cations for the local cohomology groups. It follows that
(see [3, Lemma 3.8] or [26, Chapter I 6.1])

RS
(
E[p]/Fn

)
= Hom

(
ClS (Fn) , E[p]

)
'
(
ClS (Fn) [p]

)2
.

Thus, rp

(
RS
(
E[p]/Fn

))
= 2rp

(
ClS (Fn) [p]

)
. Combined with Lemmas 4.3 and

4.4, the proof of the theorem is complete. �
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