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Abstract. In this paper we show that the p-�ne Selmer Group can become
arbitrarily large as we vary over all Z/pZ extensions of a given number �eld
K and �nd e�ective estimates on the conductor of such a Z/pZ-extension. In
fact, we show that the p-�ne Shafarevich-Tate group can become arbitrarily
large on varying over all Z/pZ extensions of a given number �eld. We explore
the close relationship in the size of p-�ne Selmer groups and p-torsion of ideal
class groups in quadratic extensions of number �elds. Iwasawa Theory, Fine
Selmer groups, Class groups, p-rank

1. Introduction

Using genus theory, Gauss proved that the 2-torsion of the ideal class group of a
quadratic number �eld can be arbitrarily large. There is a known analogy between
the growth of ideal class groups and growth of Selmer groups of Abelian varieties.
For �xed prime p, it is a folklore result that the p-torsion of the ideal class group can
become arbitrarily large in Z/pZ extensions of a �xed number �eld. Varying over
all Z/pZ-extensions of a global �eld, the p-Selmer group is also known to become
arbitrarily large [1].

In [3], the study of the �ne Selmer group was initiated. A key idea was to
show that the �ne Selmer group approximates the ideal class group better than the
classical Selmer group. This was made more precise in [5]. Lim-Murty proved that
the p∞-�ne Selmer group of an Abelian variety has unbounded growth on varying
over all Z/pZ-extensions of a �xed number �eld. Using this method of proof, we �nd
e�ective estimates on the conductor of such a Z/pZ-extension (see Theorem 3.4).
As per the knowledge of the author, such bounds can not be obtained by the method
of proof in [1].

It is known that the p-torsion of the classical Shafarevich-Tate group of an el-
liptic curve has unbounded growth in Z/pZ-extensions of a �xed number �eld [2].
Just like the �ne Selmer group, one can de�ne a �ne analogue of the classical
Shafarevich-Tate group [11]. Lim-Murty asked the natural question whether the
p-�ne Shafarevich-Tate group has unbounded growth in Z/pZ-extensions. Using
the unboundedness result of Clark-Sharif, we provide an a�rmative answer to their
question, for the case of elliptic curves in Theorem 4.5. It would be interesting to
give an independent proof of this theorem.

For a �xed number �eld K, we don't know how to show that the p-�ne Selmer
group has unbounded growth as one varies over all Z/nZ-extensions of K for
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1 < n < p. Analogous results are conjectured to be true for the p-torsion of
the ideal class group. It is believed that such a result should be true for n = 2. In
Theorem 5.1, we prove these two conjectures are equivalent.

2. Preliminaries

Let K be a �xed number �eld and p be an odd rational prime. Let A be a
d-dimensional Abelian variety de�ned over K. Let S be a �nite set of primes of K
including the in�nite primes, the primes where A has bad reduction and the primes
above p. Fix an algebraic closure K/K and denote the absolute Galois group
Gal(K/K) by GK . Use the notation KS for the maximal sub�eld of K containing
K which is unrami�ed outside S. Write GS(K) = Gal(KS/K).

The pk-Selmer group of an Abelian variety is de�ned as,

Selpk(A/K) = ker

H1
(
GS(K), A[pk]

)
→
⊕
v∈S

H1 (Kv, A) [p
k]

 .

Here, H∗(Kv,M) is the Galois cohomology of the decomposition group at v for any
G-module, M .

The pk-�ne Selmer group is de�ned as

(1) RS
pk(A/K) = ker

H1
(
GS(K), A[pk]

)
→
⊕
v∈S

H1
(
Kv, A[p

k]
) .

For any number �eld K, one has the following exact sequence

0→ RS
pk(A/K)→ Selpk(A/K)→

⊕
v∈S

H1(Kv, A[p
k]).

Consider the limit versions of the above de�ned objects. De�ne

Selp∞(A/K) := lim−→ Selpk(A/K) = ker

H1(GS(K), A[p∞])→
⊕
v∈S

H1(Kv, A)[p
∞]

 ,

where the limit is w.r.t maps induced by inclusions A[pk] ↪→ A[pk+1]. It has a
subgroup, the discrete �ne Selmer group

Rp∞(A/K) := lim−→RS
pk(A/K).

Note that Rp∞(A/K) is independent of S. However, RS
p (A/K) is not.

For the classical Selmer group, one has the short exact sequence

0→ A(K)/pk → Selpk(A/K)→X(A/K)[pk]→ 0,

where A(K) is the Mordell-Weil group. In [11], a �ne subgroup of the Mordell-Weil
group is de�ned; it is the following kernel

0→Mpk(A/K)→ A(K)/pk →
⊕
v|p

A(Kv)/p
k.

It is now natural to de�ne the �ne Shafarevich-Tate group by the exact sequence,

0→Mpk(A/K)→ RS
pk(A/K)→�pk(A/K)→ 0.
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One can view �pk(A/K) as a subgroup of X(A/K)[pk]. To see this we repeat the
argument in [11, Page 3]. Consider the following diagram

0 −→ A(K)/pk −→ Selpk(A/K) −→ X(A/K)[pk] −→ 0y
y

y0
0 −→

⊕
v|pA(Kv)/p

k −→
⊕

v|pH
1(Kv, A[p

k]) −→
⊕

v|pH
1(Kv, A)[p

k] −→ 0

From the above diagram, by an application of the snake lemma, one obtains the
following exact sequence

0→Mpk(A/K)→ RS
pk(A/K)→X(A/K)[pk]→ Cpk ,

where Cpk is the cokernel of the left vertical map in the above diagram. Thus,
�pk(A/K) is a subgroup of X(A/K)[pk] with quotient in Cpk .

2.1. p-rank. For an Abelian group G, de�ne its p-rank, denoted by rp(G), as
dimZ/pZG[p]. We record some elementary estimates.

Lemma 2.1. [5, Lemma 3.2] Consider the following short exact sequence of of
co�nitely generated Abelian groups

P → Q→ R→ S.

Then ∣∣rp (Q)− rp (R)
∣∣ ≤ 2rp (P ) + rp (S) .

Denote the p-Hilbert S-class �eld of K by HS(K) or HS . It is the maximal
Abelian unrami�ed p-extension of K where all primes in S split completely.

The following lemma is a variant of [5, Lemma 4.3]. The proof is identical. It
provides a lower bound for the p-rank of p-�ne Selmer group in terms of the p-rank
of the S-class group.

Lemma 2.2. Let A/K be a d-dimensional Abelian variety. Let S be a �nite set
of primes of K including the in�nite primes, the primes where A has bad reduction
and the primes above p. Suppose A(K)[p] 6= 0. Then

rp(R
S
p (A/K)) ≥ rp(ClS(K))rp(A(K)[p])− 2d.

Remark 2.3. Under the slightly stronger assumption that A[p] ⊆ A(K), we can
get better estimates. This assumption forces A[p] ' (Z/pZ)2d as GS(K)-modules.
Now, GS(K) acts trivially on A[p] and hence we have

H1(GS(K), A[p]) = Hom(GS(K), A[p]).

We have similar equalities for the local cohomology groups as well. Thus,

RS
p (A/K) = Hom(ClS(K), A[p]) ' ClS(K)[p]2d

as Abelian groups (see [5, Page 87] or [3, Lemma 3.8] or [9, 6.1]). Therefore

rp(R
S
p (A/K)) = 2drp(ClS(K)).
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3. Unboundedness of p-fine Selmer groups in Z/pZ-Extensions and
Effective Estimates

Recall the Grunwald-Wang theorem [8, Theorem 9.2.8].

Theorem 3.1. Let S be a �nite set of primes of a global �eld K and let G be a
�nite Abelian group. For all p ∈ S, let the �nite Abelian extensions Kp | Kp be
given such that Gal(Kp | Kp) may be embedded into G. Then there exists a global
Abelian extension K | K with Galois group G such that K has the given completions
Kp for all p ∈ S.

The following proposition is proved in [5]. We repeat the proof here because it
plays a crucial role in proving our main result.

Proposition 3.2. [5, Proposition 6.1] Let S be a �nite set of primes of K contain-
ing the Archimedean primes. Then there exists a sequence {Ln} of distinct number
�elds such that each Ln is a Z/pZ extension of K and such that for every n ≥ 1,

rp(ClS(Ln)) ≥ n.

Proof. Set r1 and r2 to denote the number of real and the number of pairs of
complex places of K. Let S1 be a set of primes of K containing S such that

|S1| = |S|+ r1 + r2 + δ + 1,

where δ = 1 if K contains a primitive p-root of unity, and is 0 otherwise.
By the Grunwald-Wang theorem, there exists a Z/pZ extension L1/K such that

it is rami�ed at all �nite places of S1 and is unrami�ed outside of it. Using [8,
Proposition 10.10.3],

rp(ClS(L1)) ≥ |S1| − |S| − r1 − r2 − δ = 1.

Repeat the above process; choose a set S2 containing S1 with the property

|S2| = |S1|+ 1 = |S|+ r1 + r2 + δ + 2.

By Grunwald-Wang theorem, there exists a Z/pZ-extension L2/Krami�ed at all
the �nite places of S2 and unrami�ed outside of it. L2 is distinct from L1 by
construction. For this �eld,

rp(ClS(L2)) ≥ 2.

Since K has in�nitely many primes, we can continue this process inde�nitely. Each
of the Li's are distinct by construction. This proves the proposition. �

Remark 3.3. Proposition 3.2 implies the following:
With the same setting as Lemma 2.2,

sup{rp
(
RS

p (A/L)
)
| L/K is a cyclic extension of degree p} =∞.

Here sup is over the conductor of L/K.

The above remark shows that the p-�ne Selmer group of an Abelian variety A/K
becomes arbitrarily large on varying over all Z/pZ-extensions of K. The proof of
Proposition 3.2 suggests that it should be possible to �nd an e�ective estimate on
the conductor. Indeed, we can prove the following theorem.
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Theorem 3.4. Let A be an Abelian variety of dimension d, de�ned over a number
�eld, K. Let S be a �nite set of primes as de�ned above. Suppose A(K)[p] 6= 0.
Given a non-negative integer N , there exists a Z/pZ extension L/K with norm of
the conductor, NK/Q(f(L/K)) ∼ κN where κ is a constant depending on S, A and

K, such that rp(R
S
p (A/L)) ≥ N .

When K = Q, the notation simpli�es considerably. We prove the above theorem
in detail for the special case K = Q.

Theorem 3.5. Let A/Q be an Abelian variety of dimension d. Let S be a �nite set
of primes containing the Archimedean primes, the primes above p, and the primes
of bad reduction of A. Suppose A(Q)[p] 6= 0. Given a non-negative integer N , there
exists a Z/pZ extension L/Q of conductor f(L/Q) ∼ κN where κ is a constant
depending on S and A, such that rp(R

S
p (A/L)) ≥ N .

Proof. Let L/Q be a Z/pZ-extension and let P be the set of rational primes which
ramify in L. Since L/Q is a Galois extension, there is a unique p above p, if p is
rami�ed in L. The conductor, f(L/Q) =

∏
q∈P fq where

fq =

{
qp−1, when (q, p) = 1

pp−1+sp|p , otherwise.

Here, 1 ≤ sp|p ≤ valp(p) = p. The �rst case is called tame rami�cation, and the
second is the case of wild rami�cation (see [7, Chapter VII] or [6]).

Taking natural log,

(2) log(f(L/Q)) = (p− 1)
∑
q∈P

log q + sp|p log p.

The goal is to �nd the minimal conductor of L for which rp(R
S
p (A/L)) is un-

bounded, i.e. rp(R
S
p (A/L)) ≥ N for any given non-negative integer, N . From

Lemma 2.2, it is enough to �nd a Z/pZ-extension Ln(N)/Q such that

rp(ClS(Ln)) ≥
2d+N

rp(A(Ln)[p])
=: n(N) = n.

Note that rp(A(Ln)[p]) is a positive constant, less than or equal to 2d.
Let S = {v1, . . . , vk}∪S∞ be the �nite set of primes containing the Archimedean

primes, the primes above p, and the primes of bad reduction of A. We construct
Sn as in the proof of Proposition 3.2. Here, r1 = 1, r2 = 0 and δ = 0. Therefore
we must choose Sn such that |Sn| = |S|+ 1 + n.

De�neM =
∏k

i=1 vi. To construct Sn from the given set S, we need to add n+1
many primes. Choose the �rst prime p1 - M . By the Prime Number Theorem we
know that we can �nd p1 ∼ logM . Now choose p2 -Mp1; here p2 ∼ log(M logM).
We have S∪{p1, p2} = S1. We continue to choose, in the same way, as many primes
as required to form Sn. Using Equation 2, as n→∞,

log(f(Ln/K)) ∼ (p− 1)n log logM.

Equivalently, f(Ln/Q) ∼ cn with c a constant that depends on the given set S. By
de�nition of n(N), f(Ln(N)/Q) ∼ κN for a constant κ that depends on the set S
and the Abelian variety A. �



6 DEBANJANA KUNDU

The computation for proving the general case is similar. We point out some
similarities and di�erences. Consider the tower of number �elds L ⊃ K ⊃ Q where
[L : K] = p. By hypothesis, L/K is Galois. If q | q is a prime in K that rami�es
in L, there will be a unique prime Q|q. The de�nition of the conductor carries
through. But now, we are interested in the NK/Q(f(L/K)) so as to be able to do
estimates. De�neM =

∏
iN(vi) and construct Sn from S by adding r1+r2+δ+n

many primes. Choose p1 - M as before and the required element of Sn is p1 | p1.
From here, the proof follows as before.

Remark 3.6. By Equation 1, rp
(
Selp(A/K)

)
≥ rp

(
RS

p (A/K)
)
. Thus, Theo-

rem 3.4 holds on replacing rp(R
S
p (A/K)) ≥ N by rp(Selp(A/K)) ≥ N .

4. Unboundedness of the fine Shafarevich-Tate group in
Z/pZ-extensions

In this section, we provide answers to the following question asked in [5].

Question 4.1. Let A be an Abelian variety de�ned over a number �eld K. Suppose
A(K)[p] 6= 0. Is

sup{rp
(
�p∞(A/L)

)
| L/K is a cyclic extension of degree p} =∞?

For elliptic curves, the answer to this question is precise. It is a corollary of
results proved in [2] and [11]. We record these previously known results.

Lemma 4.2. [11, Lemma 3.1] Let v | p and Kv/Qp be a �nite extension of degree
nv. Then

#
(
E(Kv)/p

k
)
= pk·nv ·#

(
E(Kv)[p

k]
)
.

The lemma follows from the observation that Ê(ma
v) has �nite index in E(Kv)

where, Ê stands for the formal group associated to E and ma
v is any power of the

maximal ideal in the ring of integers in Kv. Therefore,

#E(Kv)/p
k

#E(Kv)[pk]
=

#Ê(ma
v)/p

k

#Ê(ma
v)[p

k]
.

For su�ciently large a, Ê(ma
v) ' ma

v where the isomorphism is given by the formal
logarithm [10, Theorem IV.6.4b]. The lemma follows since Ê(ma

v)[p
k] = 0 and

Ê(ma
v)/p

k = pk·nv .
Recall that the quotient of X(E/K)[pk] and �pk(E/K) is contained in the

cokernel of the map E(K)/p→ ⊕v|pE(Kv)/p
k, denoted by Cpk . Lemma 4.2 shows

that the codomain of this map has size bounded by pk[K:Q]
∏

v|p #E(Kv)[p
k]. Thus,

Proposition 4.3. [11, Proposition 3.2] The index of�pk(E/K) insideX(E/K)[pk]
is bounded by

(3) [X(E/K)[pk] : �pk(E/K)] ≤ pk[K:Q]
∏
v|p

#E(Kv)[p
k]

The focus is on the case k = 1, ie the p-�ne Shafarevich-Tate group. When E is
an elliptic curve de�ned over a number �eld, K, and L/K is a degree p-extension,
there are only �nitely many w|p in L. For each w|p,#E(Lw)[p] is �nite and bounded
[10, Corollary III.6.4b]. Therefore, #

∏
w|pE(Lw)[p] is �nite and bounded as we

vary over all Z/pZ-extensions, L/K.
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Theorem 4.4. [2] Let E/K be an elliptic curve. For any positive integer r, there
exists Z/pZ �eld extensions L/K such that X(E/L) contains at least r elements
of order p i.e. there exists a Z/pZ �eld extension L/K such that X(E/L)[p] is
unbounded.

The above two results provides a positive answer to Question 4.1.

Theorem 4.5. Let E be an elliptic curve de�ned over the number �eld K. Varying
over all Z/pZ-extensions, L/K, �p(E/L) is unbounded.

Remark 4.6. In the case of elliptic curves, the question asked in [5] does not need
the assumption E(K)[p] 6= 0.

In general, we know that �p(A/K) is a subgroup of X(A/K)[p] with quotient
in Cp. We have

#Cp ≤
∏
v|p

#A(Kv)/pA(Kv) ≤
∏
v|p

#H1(Kv, A[p]).

The right hand side of the inequality is �nite and bounded [8, Theorem 7.1.8(iii)].
The next result now follows immediately.

Proposition 4.7. Let A be an Abelian variety de�ned over the number �eld K.
Varying over all Z/pZ-extensions L/K, �p(A/L) is unbounded if and only if
X(A/L)[p] is unbounded.

Remark 4.8. (1) Theorem 4.5 is also seen to follow from Proposition 4.7 and
the theorem of Clark-Sharif without using the results of [11].

(2) In [4], Creutz has proven results on the unboundedness of X(A/L)[p].

5. Growth of p-Fine Selmer Groups in Quadratic Extensions

We are unable to prove that the p-(�ne) Selmer group can be arbitrarily large
in quadratic extensions of Q, but there are reasons to believe it should be true. In
this section, we prove that this question is equivalent to a well-known conjecture
about class groups of quadratic extensions.

Theorem 5.1. Fix an odd prime p. Let E/K be an elliptic curve such that
E(K)[p] 6= 0. Let S be a �nite set of primes in K containing the primes above
p, the primes of bad reduction of E and the Archimedean primes. As we vary over
all Z/2Z-extensions L/K,

sup{rp
(
RS

p (E/L)
)
| L/K is a quadratic extension} =∞

if and only if

sup{rp
(
Cl(L)

)
| L/K is a quadratic extension} =∞.

To prove the theorem, we need to �rst prove some lemmas.

Lemma 5.2. With the same setting as Theorem 5.1,

rp

(
RS

p (E/L)
)
≥ rp

(
Cl(L)

)
rp
(
E(L)[p]

)
+O(1).

Proof. It follows immediately from Lemma 2.2 upon observing that

(4)
∣∣∣rp (Cl(L))− rp (ClS(L))∣∣∣ = O(1).
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Indeed, this di�erence depends only on
∣∣S(L)∣∣, where S(L) is the set of �nite primes

of L above the primes of S in K. Note that
∣∣S(L)∣∣ is �nite and bounded, in fact

less than |S|2. �

Set B = E(L)[p]. De�ne RS
p (B/L) by replacing E[p] with E(L)[p] in the de�ni-

tion of the p-�ne Selmer group (see (1)).

Lemma 5.3. With the setting as Theorem 5.1,∣∣∣∣rp (RS
p (B/L)

)
− rp

(
RS

p (E/L)
)∣∣∣∣ ≤ rp (ClS(L))+O(1).

Proof. If B = E(L)[p] = E[p], there is nothing to prove. So, assume B 6= E[p].
Consider the following commutative diagram

0 → RS
p (B/L) → H1(GS(L), B) →

⊕
vH

1(Lv, B)ys yf yg
0 → RS

p (E/L) → H1(GS(L), E[p]) →
⊕

vH
1(Lv, E[p])

where v runs over all the primes in the �nite set S(L).
By hypothesis, E has an L-rational p-torsion point. This gives the short exact

sequence

(5) 0→ B → E[p]→ µp → 0.

This is because, if E has an L-rational p-torsion point, this point gives an injection
Z/pZ ↪→ E[p]. Therefore,

0→ Z/pZ→ E[p]→M → 0.

By Cartier duality and the Weil pairing, the short exact sequence turns into

0→M∨ → E[p]→ µp → 0,

where µp is viewed as a quotient of E[p]. Since the Weil pairing is alternating, the
orthogonal complement of Z/pZ is Z/pZ, thus M∨ = Z/pZ as a subgroup of E[p].

Taking the GS(L)-cohomology of (5), ker(f) = H0(GS(L), µp). As
∣∣µp

∣∣ is �nite
and bounded, rp

(
ker(s)

)
≤ rp

(
ker(f)

)
= O(1). A similar argument for the local

cohomology yields rp
(
ker(g)

)
= O(1).

Therefore, to prove the lemma, it su�ces to prove

rp
(
coker(s)

)
≤ rp

(
coker(f)

)
+O(1) ≤ rp

(
ClS(L)

)
+O(1).

Indeed, by Lemma 2.1 applied to the map s,∣∣∣∣rp (RS
p (B/L)

)
− rp

(
RS

p (E/L)
)∣∣∣∣ ≤ 2rp

(
ker(s)

)
+ rp

(
coker(s)

)
= rp(coker(s)) +O(1).

Let O×S be the set of S-units of LS , the maximal unrami�ed outside S extension
of L. We know µp ⊆ O×S and there exists a short exact sequence [8, Theorem 8.3.18]

0→ µp → O×S
p−→ O×S → 0.

This yields a long exact sequence which can be rewritten as

(6) 0→ O×L,S/
(
O×L,S

)p
→ H1

(
GS(L), µp

)
→ ClS(L)[p]→ 0,
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where O×L,S is the notation for the S-units of L. We remark, (6) follows from

standard results H0
(
GS(L), O×S

)
' O×L,S and H1

(
GS(L), O×S

)
' ClS(L) [8,

Theorem 8.3.11]. Therefore, (p-rank of) coker(f) = H1(GS(L), µp) is �nite. Fur-
thermore, ∣∣∣rp (coker(f))− rp (ClS(L))∣∣∣ ≤ rp(O×L,S

/(
O×L,S

)p) .
Since

∣∣S(L)∣∣ is bounded by an absolute constant, the S-units analogue of Dirichlet's
Unit Theorem yields ∣∣∣rp (coker(f))− rp (ClS(L))∣∣∣ = O(1).

Equivalently,
rp
(
coker(f)

)
= rp

(
ClS(L)

)
+O(1).

Therefore, ∣∣∣∣rp (RS
p (B/L)

)
− rp

(
RS

p (E/L)
)∣∣∣∣ ≤ rp (ClS(L))+O(1).

This �nishes the proof. �

Proof of Theorem 5.1. In Lemma 5.2, we showed

rp

(
RS

p (E/L)
)
≥ rp

(
Cl(L)

)
rp
(
E(L)[p]

)
+O(1).

This proves: if rp(Cl(L)) is arbitrarily large then so is the rp(RS
p (E/L)). Equiva-

lently, if rp(RS
p (E/L)) is bounded then so is rp(Cl(L)).

We now prove the other direction.
Claim: If rp(Cl(L)) is bounded, the same is true for the rp(RS

p (E/L)).
Justi�cation: Suppose rp

(
Cl(L)

)
= O(1). By Equation 4, rp

(
Cl(L)

)
is bounded if

and only if rp
(
ClS(L)

)
is bounded.

By hypothesis, the Galois action of GS(L) on E(L)[p] is trivial; the argument in
Remark 2.3 yields

rp

(
RS

p (B/L)
)
≤ 2rp

(
ClS(L)

)
= O(1).

By Lemma 5.3, if rp
(
ClS(L)

)
is bounded,∣∣∣∣rp (RS

p (B/L)
)
− rp

(
RS

p (E/L)
)∣∣∣∣ ≤ O(1).

From the above two inequalities, the claim follows. This �nishes the proof. �
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