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 p-adic families
 of Siegel modular cuspforms

 By Fabrizio Andreatta, Adrian Iovita, and Vincent Pilloni

 Abstract

 Let p be an odd prime and g > 2 an integer. We prove that a finite slope
 Siegel cuspidal eigenform of genus g can be p-adically deformed over the
 g-dimensional weight space. The proof of this theorem relies on the con
 struction of a family of sheaves of locally analytic overconvergent modular
 forms.
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 1. Introduction

 After its glorious start in 1986 with H. Hida's article [Hid86], the theory
 of p-adic families of modular forms was developed in various directions and
 was applied in order to prove many strong results in Arithmetic Geometry.
 One of its first applications was in the proof of the weight two Mazur-Tate
 Teitelbaum conjecture by R. Greenberg and G. Stevens in [GS93] and the
 proof of certain cases of the Artin conjecture by K. Buzzard, M. Dickinson,
 N. Shepherd-Barron, R. Taylor in [BDSBT01]. An important turn in its history
 was marked by R. Coleman's construction of hnite slope p-adic families of
 elliptic modular forms ([Col96] and [Col97]) and by the construction of the
 eigencurve by R. Coleman and B. Mazur in [CM98]. The eigencurve is a
 p-adic rigid analytic curve which parametrizes overconvergent elliptic modular
 eigenforms of finite slope.

 During the last fifteen years many authors have contributed to set up a
 general theory of p-adic automorphic forms on higher rank groups. Some of
 them used an approach based on the cohomology of arithmetic groups initiated
 by Hida and Stevens. Hida's idea, later on developed by Emerton ([Eme06]),
 was to amalgamate (more precisely, take the projective limit, or as in [Eme06],
 alternatively consider the inductive limit followed by p-adic completion of) co
 homology groups with trivial (Zp) coefficients of a chosen tower of Shimura
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 625

 varieties. One obtains a large Qp-Banach space with an action of an appro
 priate Galois group of the Qp (or even adelic, depending on the choice of the
 tower) points of the group and of a certain Hecke algebra. These data were
 used by H. Hida in order to produce a construction of the ordinary part of the
 eigenvariety for a large class of Shimura varieties.

 In [Eme06] there is also a construction of finite slope eigenvarieties but so
 far it cannot be proved that the eigenvarieties thus constructed have the right
 dimension except in the cases already known: for elliptic modular forms and
 modular forms on Shimura curves. Nevertheless, the very rich structure of the

 completed cohomology of towers of Shimura varieties was successfully used to
 prove results about the p-adic local (and global) Langlands correspondence.

 Stevens' approach is different; namely, he uses the cohomology of one
 Shimura variety (of level type To (Alp) with (N,p) = 1) with complicated co
 efficients (usually certain locally analytic functions or distributions on the Zp
 points of the group) as the space (called overconvergent modular symbols or
 p-adic families of modular symbols) on which the Hecke operators act. These
 data were used by A. Ash and G. Stevens to produce eigenvarieties for GL9/Q
 in [AS09]. Recently E. Urban ([Urbll]) developed this method to construct
 equidimensional eigenvarieties of the expected dimension for modular eigen
 symbols of finite slope associated to reductive groups G over Q such that G(R)
 admits discrete series.

 Finally, in constructing the eigencurve some authors (including Hida and
 Coleman) used a geometric approach based on Dwork's ideas and Katz's the
 ory of p-adic modular forms and overconvergent modular forms. Namely, they
 interpolated directly the classical modular forms seen as sections of certain au
 tomorphic line bundles on the modular curve (of level prime to p) by defining
 overconvergent modular forms and allowing them to have essential singulari
 ties in "small p-adic disks of very supersingular points." So far this geomet
 ric approach has only been successful, in the case of higher rank groups, in
 producing ordinary families ([Hid02]) or one-dimensional finite slope families
 ([KL05]). The main theme of our work is to bypass these restrictions. In the
 articles [AIS10] and [Pill3] we explained new points of view on the construc
 tion of the eigencurve of Coleman and Mazur. Namely, we showed that over
 the open modular curve (of level prime to p), which is the complement of a
 disjoint union of "small disks of very supersingular points," one can interpo
 late the classical automorphic sheaves and even construct p-adic families of
 such sheaves. We showed that Coleman's p-adic families can be seen as global
 sections of such p-adic families of sheaves.

 The present paper is a development of these ideas for Siegel varieties. We
 prove that a cuspidal automorphic form that occurs in the H° of the coherent
 cohomology of some automorphic vector bundle on a Siegel variety can be
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 626 FABRIZIO ANDREATTA, ADRIAN IOVITA, and VINCENT PILLONI

 p-adically deformed over the (/-dimensional weight space. We believe that the
 methods used in this paper would certainly apply to any PEL Shimura variety
 of type A and C and maybe even to those of type D (see also [Bral3]).

 We now give a more precise description of our main result. Let p be an odd

 prime, g > 2 and N >3 two integers. We assume that (p, N) = 1. Let Y[w be
 the Siegel variety of genus g, principal level N and Iwahori level structure at p.
 This is the moduli space over Spec Q of principally polarized abelian schemes
 A of dimension g, equipped with a symplectic isomorphism T[AT] ~ (Z/iVZ)29
 and a totally isotropic flag Fil.v4[p] : 0 = Filo^4[p] C • • • C Fil9^4[p] C A\p)
 where FiljA[p] has rank pl. To any p-uple n = (k\,..., kg) £ Jß satisfying

 > k<i > • • • > kg, one attaches an automorphic locally free sheaf lok on Y|w.
 Its global sections H°(Yiw, ujk) constitute the module of classical Siegel modular

 forms of weight k. It contains the submodule of cuspidal forms H°usp(Yiw, ojk)
 that vanish at infinity. On these modules we have an action of the unramified
 Hecke algebra TNp and of the dilating Hecke algebra Up = Z[f7P;i,..., Up,g\
 at p. Let / be a cuspidal eigenform and O f : T,:Vp <8) Up —> Q be the associated
 character. Since / has Iwahori level at p, Qf(Up^) ^ 0 and / is of finite
 slope. We fix an embedding of Q in Cp and denote by v the valuation on Cp
 normalized by v(p) = 1.

 THEOREM 1.1. Let f be a weight k cuspidal eigenform of Iwahori level at p.

 Then there is an afßnoid neighbourhood U of /t £ W = Homcont ( (^p )9, ), a
 finite surjective map of rigid analytic varieties

 w: £f -4 U

 and a faithful, finite Ûf} -module M that is projective as an -module, such
 that

 (1) £j is equidimensional of dimension g.
 (2) We have a character 0 : TNp g> Up —>• Ggf ■
 (3) M. is an ûgf -module consisting of finite-slope locally analytic cuspidal

 overconvergent modular forms. The modular form f is an element of

 M. (£)gu Cp, where the notation means that the tensor product is taken with
 respect to the Gu-module structure on Cp given by the ring homomorphism
 Gu —> Cp that is evaluation of the rigid functions on U at k.
 There is a point Xf 6 £r, with w(xf ) = k and such that the specialization
 of 0 at Xf is Of.
 For all g = (m\,... ,mg) € Z9 PI U satisfying m\ > > • • ■ > mg,
 v(Qf(Upf)) < mg-i - mg_j+i + lforl<i<g—1 and v(ßf(Up,g)) <
 mg ~~ 9^92^ the following hold:

 • there is an inclusion M. Cp «-»• HçUsp(Y[w, a/1);
 • for any point y in the fiber w (g), the character 0y comes from a

 weight g cuspidal Siegel eigenform on Yiw.
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 627

 The rigid space £f is a neighbourhood of the point Xf in an eigenvariety £.
 We actually prove the following

 Theorem 1.2.

 (1) There are an equidimensional eigenvariety £ and a locally finite map to
 the weight space w: £ —» W. For any k G VV, is in bijection with
 the eigensystems of TNp Up acting on the space of finite slope locally
 analytic overconvergent cuspidal modular forms of weight k.

 (2) Let f be a finite slope locally analytic overconvergent cuspidal eigenform of
 weight n and Xf be the point corresponding to f in £. Ifw is unramified at
 Xf, then there are a neighbourhood £f of Xf in £ and a family F of finite
 slope locally analytic overconvergent cuspidal eigenforms parametrized by
 £f and passing through f at Xf.

 We expect w to be unramified at all classical points xj that satisfy the
 slope conditions of Theorem 1.1(5), but we do not have any general result in
 this direction. See Section 8.3 for a more detailed discussion.

 A key step in the proof of these theorems is the construction of the spaces
 of analytic overconvergent modular forms of any weight k € VV. They are
 global sections of sheaves wjf that are defined over some strict neighbourhood
 of the multiplicative ordinary locus of Xjw, a toroidal compactification of Vjw.
 These sheaves are locally in the étale topology isomorphic to the analytic
 induction, from a Borel of GLg to the Iwahori subgroup, of the character /t.
 They are particular examples of sheaves over rigid spaces that which we call
 Banach sheaves and whose properties are studied in the appendix. We view
 these sheaves as possible rigid analytic analogues of quasi-coherent sheaves in
 algebraic geometry.

 One important feature of the sheaves coff is that they vary analytically
 with the weight k. One can thus define families of analytic overconvergent
 modular forms parametrized by the weight and construct Banach spaces of
 analytic overconvergent modular forms of varying weight. We have been able
 to show that the module of cuspidal families is a projective module. (The
 ^/-module M. appearing in the theorem above is a direct factor defined over
 U of this module of cuspidal families.) Therefore one can use Coleman's spec
 tral theory to construct (/-dimensional families of cuspidal eigenforms proving
 Theorems 1.1 and 1.2; see Section 8.1.3 for a more detailed discussion. The
 fifth part of the Theorem 1.1 is a special case of the main result of [BPS],
 where a classicity criterion (small slope forms are classical) for overconvergent
 modular forms is proved for many Shimura varieties.

 As mentioned above, E. Urban has constructed an eigenvariety using the
 cohomology of arithmetic groups. Following Chenevier ([Che05]), one can
 prove that the reduced eigenvarieties constructed in [Urbll] and in our paper
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 coincide. One way to think about our theorem is that every cuspidal eigenform
 gives a point on an equidimensional component of the eigenvariety of dimen
 sion g. In loc. cit. this is proved in general when the weight is cohomological,
 regular and the slope is noncritical. One advantage of our construction is that
 it provides p-adic deformations of the "physical" modular eigenforms and of
 their (/-expansions. For the symplectic groups, these carry more information
 than the Hecke eigenvalues.

 The paper is organized as follows. In the second section, we gather some
 useful and now classical results about the p-adic interpolation of the algebraic

 representations of the group GLf/. The idea is to replace algebraic induction
 from the Borel to GL9 of a character by analytic induction from the Borel to
 the Iwahori subgroup. This is important because the automorphic sheaf uK is
 locally over Afw the algebraic induction of the character k. Thus, locally for the

 Zariski topology over Ajw, interpolating the sheaves coK for varying k is equiv
 alent to interpolating algebraic representations of GLS. The third and fourth
 sections are about canonical subgroups. We recall results of [AM04], [AG07]
 and [Far 11]. Using canonical subgroups we construct Iwahori-like subspaces in
 the GLp-torsor of trivializations of the co-normal sheaf of the universal semi
 abelian scheme. They are used in Section 5, where we produce the Banach
 sheaves u4f. Section 6 is about Hecke operators. We show that they act on
 our spaces of analytic overconvergent modular forms and we also construct a
 compact operator U. In Section 7 we relate classical modular forms and an
 alytic overconvergent modular forms. This section relies heavily on the main
 result of [BPS]. In Section 8 we finally construct families. We let the weight
 k vary in W and study the variation of the spaces of overconvergent analytic
 modular forms.

 We were able to control this variation on the cuspidal part; i.e., we showed
 that the specialization in any p-adic weight of a family of cuspforms is surjective
 onto the space of cuspidal overconvergent forms of that weight. The proof of
 this result is the technical heart of the paper. The main difference between
 the cases g > 2 and g = 1 (see Section 8.1.3 for more details) is the fact that
 the strict neighbourhoods X\w(v) of width v of the multiplicative ordinary
 locus, in some (any) toroidal compactification of the Siegel modular variety
 of Iwahori level, are not affinoids. Therefore, inspired by [Hid02], we studied
 the descent of our families of Banach sheaves cujf"" from the toroidal to the
 minimal compactification. The key observation is that the image of the strict
 neighbourhood X\w(v) in the minimal compactification is an afhnoid, and we
 managed to show the acyclicity of certain Banach sheaves on affinoids. This
 allows us to prove the desired results — namely, that one can apply Coleman's
 spectral theory to the modules of p-adic families of cusp forms and obtain
 eigenfamilies of finite slope. Moreover, that any overconvergent modular form
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 629

 of finite slope is the specialization of a p-adic family of finite slope — in other
 words, that any overconvergent modular form of finite slope deforms over the
 weight space.

 Aknowledgements. We thank Michael Harris, Benoît Stroh and Jacques
 Tilouine for many inspiring discussions on subjects pertaining to this research.
 We are grateful to Gaétan Chenevier for explaining to us his proof of the
 unramifiedness of the map from the eigenvariety for certain unitary groups
 to the respective weight space at certain classical noncritical points and for
 suggesting how the same proof would work in the Siegel case. We are also
 grateful to the referee for the careful reading of the paper and useful suggestions
 that hopefully led to its improvement. Finally, we would like to thank Peter
 Scholze, who pointed out a mistake in the appendix of the paper.

 2. Families of representations of the group GLg

 We recall some classical results about Iwahoric induction using the BGG
 analytic resolution of [Jonll] (see also [Urbll]).

 2.1. Algebraic representations. Let GLfl be the linear algebraic group of
 dimension g realized as the group of g x g invertible matrices. Let B be the
 Borel subgroup of upper triangular matrices, T the maximal torus of diagonal
 matrices, and U the unipotent radical of B. We let B° and U° be the opposite
 Borel of lower triangular matrices and its unipotent radical. We denote by
 -X"(T) the group of characters of T and by X+(T) its cone of dominant weights
 with respect to B. We identify X(T) with Iß via the map that associates to a
 p-uple (k[, kg) G Iß the character

 0

 • tk® l9 ■

 With this identification, X+(T) is the cone of elements (fci,..., kg) G Iß such
 that k\ > k<2 > ■ ■ ■ > kg. Till the end of this paragraph, all group schemes are
 considered over Spec Qp. For any k G X+(T), we set

 VK = {/: GLg —> A1 morphism of schemes s.t.

 f(gb) = K(b)f(g) V(g,b)e GL,xB}.

 This is a finite-dimensional Qp-vector space. The group GLg acts on VK by the

 formula (g ■ f)(x) = /(g_1 • x) for any (g, f ) G GL9 X VK. If L is an extension
 of Qp, we set VKtL = VK <S>qp L.

 2.2. The weight space. Let W be the rigid analytic space over Qp associ
 ated to the noetherian, complete algebra ZP[[T(ZP)]]; recall that T is the split
 torus of diagonal matrices in GLg. Let us fix an isomorphism T ~ Gfn. We
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 630 FABRIZIO ANDREATTA, ADRIAN IOVITA, and VINCENT PILLONI

 obtain an isomorphism T(Zp)^»T(Z/pZ) x (1 +pZp)9, which implies that we
 have natural isomorphisms as Zp-algebras

 Zp[[T(Zp)]](Zp[T(Z/pZ)]) [[( 1+pZp)5]] —*■(Zp[T(Z/pZ)]) [[Xi, X2,...

 where the second isomorphism is obtained by sending (1,1,..., 1 + p, 1..., 1)
 with 1 + p on the i-th component for 1 < i < g, to 1 + AQ.

 It follows that the Cp-points of VV are described by

 W(Cp) = Homcont(T(Zp),Cp ),

 and if we denote by T(Z/pZ) the character group of T(Z/pZ), the weight

 space is isomorphic to a disjoint union, indexed by the elements of T(Z/pZ),
 of ^-dimensional open unit polydiscs.

 More precisely, we have the following explicit isomorphism:
 9

 W^T(Z/pZ) x
 i=1

 « (kIt(z/pz), «((1 + P, 1,.. •, 1)), k((1, 1 +P, ■ . ■, 1)), • ■ •

 ...,/e((l,...,l,l+p))).
 The inverse of the above map is defined as follows: >ss) £

 T(Z/pZ) x B( 1,1~) is assigned to the character which maps (A, xi, • • • , xg)
 G T(Z/pZ) x (1 + pZp)9 to

 s

 i= 1

 log(l+p)

 The universal character. If we denote by Ûyç the sheaf of rigid analytic
 functions on W, we have a natural continuous group homomorphism, obtained
 as the composition

 «un : T(Zp) —► (ZptrT(ZP)]])X —> ^w(W)x,

 where the first map is the tautological one. We call /îun the universal character.

 It can alternatively be seen as a pairing nun : W(CP) x T(ZP) —> <CX satisfying
 the property: for every t G T(ZP), k G >V(CP), we have Kun(t)(K) = n(t). If
 U = Spm A C W is an admissible affinoid open, we obtain a universal character

 for U, T(Zp) —> Ax that is the composition of k"" with the natural restriction
 homomorphism Ûw(W)x —)> Ax. This character will be also denoted by Kun.
 and it may be seen as an A-valued weight, i.e., Kun G W(A).

 Definition 2.2.1. Let w G Q>o- We say that a character n G W(CP) is
 w;-analytic if k extends to an analytic map

 K- T(Zp)(l + pwOcp)9 —> Cx.
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 631

 It follows from the classical p-adic properties of the exponential and the
 logarithm that any character n is '(«-analytic: for some w > 0. In fact, we have
 the following proposition.

 Proposition 2.2.2 ([Urbll, Lemma 3.4.6]). For any quasi-compact open
 subset U C W, there exists wu G M>o such that the universal character

 /tun: U x T(Zp) —> C* extends to an analytic function

 nun : U x T(Zp)(l +pWuOCp)9 -► Cp .

 In what follows we construct an admissible affinoid covering Ua)>oW(io)
 of the weight space W with the property that for every w, the restriction of
 the universal character Kun to W(w) is «(-analytic.

 We start by fixing w G]n — 1, n] PI Q, and we choose a finite extension K
 of Qp whose ring of integers, denoted Ok contains an element pw of valuation
 w. We set 2U(«;)° = Spf Ok ((Si,... ,Sg)); it is a formal unit polydisc over
 Spf Ok- The formal scheme W(w)° does not depend on w, but the character
 it carries will depend on w.

 We let T be the formal torus associated to T and define the formal sub

 torus %u by

 %U(R) = Ker T(R) -» T(R/pwR)
 for any flat, p-adically complete algebra R.

 We let X[,..., X'g be the coordinates on Tw (so that 1 + Xt = 1 + pwX'i),
 and we attach to 2Ü(«i)° a formal universal character

 Koun : %w x %Xt(w)° —> Gm

 J _ly_) ét

 (1 + pwX[,..., 1 + pwX'g, Su .. ■, Sg) h- n(l + pwX'i)sp-1.
 1=1

 Let W(w)° be the rigid analytic generic fiber of W(w)°. We define W(w)
 to be the fiber product:

 HomCont((l+PnZP)9,Cp J

 where the maps used to define the fiber product are the following: W —>

 Homcont((l + pnZp)9,Cp ) is restriction and the map

 W(w)° —► Homcont ((1 + pnZp)9, Cp )

 is given by
 9 2

 (si,s2, • • • ,Sg) —t ({l+pnXi, 1 +pnx2, 1 +pnXg) —» f[(l+pnXi)SiP P_1 ).
 i=1

 Then W = Uw>oW(re) is an increasing cover by affinoids. By construction,
 the restriction of the universal character k"" of VV to W(w) is to-analytic.
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 632 FABRIZIO ANDREATTA, ADRIAN IOVITA, and VINCENT PILLONI

 2.3. Analytic representations. Let I be the Iwahori subgroup of GLs(Zp)
 of matrices whose reduction modulo p is upper triangular. Let N° be the
 subgroup of U°(Zp) of matrices that reduce to the identity modulo p. The
 Iwahori decomposition is an isomorphism B(Zp) x N —> I. We freely identify
 n . . 9(9-1) 9(9-1)

 N with (j>Zp) 2 c A an 2 , where Aan denotes the rigid analytic affine line
 defined over Q„. For e > 0, we let N° be the rigid analytic space

 . . 9(9-1)

 y B(x,p e) C Aan2 .
 „ 9(9-1)

 xe(pZp) 2

 Let L be an extension of Qp and T^N0, L) the ring of L-valued functions on
 N°. We say that a function / G N°, L) is e-analytic if it is the restriction to
 N° of a necessarily unique analytic function on N®. We denote by ,F£~an(N0, L)
 the set of e-analytic functions. A function is analytic if it is 1-analytic. We
 simply denote by .Fan(N0, L) the set of analytic functions. We let J-"'"an(N°, L)
 be the set of locally analytic functions on N°, i.e., the direct limit of the sets
 j»a"(N°, L) for all e > 0.

 Let e > 0 and k E W(L) be an e-analytic character. We set

 V^={f:l^L, W) = K(b)f{i) v(»,fr)e IxB(Zp), /|No€ J-£-an(N°,L)}.

 We similarly define and V^"£n. They are all representations of the Iwahori
 group I.

 2.4. The BGG resolution. Let W be the Weyl group of GLÖ; it acts on
 X(T). We set g and t for the Lie algebras of GLg and T. The choice of
 B determines a system of simple positive roots A C X(T). To any a G A
 are associated an element Ha E t, elements Xa E Qa and X-a E g~a such
 that [Xa,X-a] = Ha and a co-root av. We let ,sQ G W be the symmetry
 A I-)- A — (A,cX)a. For any w EW and A G -X"(T), we set w A = w(\ + p) — p,
 where p is half the sum of the positive roots. By the main result of [Jonll],
 for all k G A f(T), and any field extension L of Qp, we have an exact sequence
 of I-representations:

 (2.4.A) 0 —» VK,L ® v:i A ®
 a£A

 Let us make explicit the differentials. The map do is the natural inclusion,
 the map d\ is the sum of maps 0Q : V^nL —>• L whose definitions we
 now recall. We let I act on the space of analytic functions on I by the formula
 (®*/)0') = fU'i) f°r any analytic function / and i, j G I. By differentiating we
 obtain an action of g and hence of the enveloping algebra U(g) on the space of

 analytic functions on I. If f G we set 0Q(/) = '+' */. We now show
 that ©<*(/) G Vita**, L■ First of all let us check that 0a(/) is U(Zp)-invariant.
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 633

 It will be enough to prove that Xß * 0a(/) = 0 for all ß € A. If ß / a, this
 follows easily for [Xß, X_a] = 0. If ß — a, we have to use the relation

 [Xa,X^f]] = (<k,ov) + l)X.a(Ha - (k,av)).
 We now have

 xa*ea(f) = [xa,x{_KaaV)+1}*f
 = ((«, av) + 1 )X-a{Ha - (k, av)) * /
 = 0.

 Let us find the weight of 0a(f). For any t £ T(Qp), we have

 t*ea(f)=Ad(t)(x{_Kf)+1)t*f

 Since we have a~^K,a k = sa • k, the map 0a is well defined.

 2.5. A classicity criterion. For 1 < i < g — 1, we set di = ° ^ G
 G~Lg(Qp). The adjoint action of di on GLf//Qp stabilizes the Borel subgroup B.
 The formula (Si • f)(g) := f(dtgd^v) defines an action on the space VK for any
 K G X+(T). We now define the action on the spaces Vj5"pn for any k G W(L).
 We have a well-defined adjoint action of di on the group N°. Let / G VjTar'
 and j G I. Let j = n ■ b be the Iwahori decomposition of j. We set Stf(j) :=
 /(dtnd^1b). We hence get operators St on V^'fa and V^~fn. Let z^j be the (k, l)~

 matrix coefficient on GLp. If we use the isomorphism V^fn —> J"£"an(N°,L)
 given by the restriction of functions to N°, then the operator <5,; is given by

 Si : J^-an(N°, L) L)
 f<-^[(zk,l)k<l ^ f(pnk'lzk,i)\,

 where = 1 \î k > g — i + 1 and l < g — i and rik.i — 0 otherwise. The
 operator ôj is norm decreasing and the operator fj, S-i on V^~an is completely
 continuous.

 If k G X(T)+, the map do in the exact sequence (2.4.A) is <5j-equi variant.
 Regarding the map d\ , we have the following variance formula:

 SiSa = a(di)^'QV>+1©„4i.

 Indeed for any / 6 V^D, we have

 5l(%(f) = dl-(d~i1X{_Kf)+1*f)

 = a(di)^+1di ■ (X{_Kf)+id~l * /)

 = a(di)^+1ea(Slf).
 Let v — («i,..., ns_i) 6 M9_1. We let vl an,<- be the union of the generalized
 eigenspaces where Si acts by eigenvalues of valuation strictly smaller than V{.
 We are now able to give the classicity criterion.
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 634 FABRIZIO ANDREATTA, ADRIAN IOVITA, and VINCENT PILLONI

 Proposition 2.5.1. Let k — (ki,...,kg) e X+(T). Set vg-i = ki -
 hi-i-i + 1 for 1 < i < g — 1. Then any element f G VlK £an'<- is in Vk L.

 Proof. One easily checks that any element / G VlK ^m,<- ig actually an
 alytic because the operators Si increase the radius of analyticity. Using the
 exact sequence (2.4.A), we need to see that d\.f — 0. Let a be the simple
 positive root given by the character (t\,..., tg) i-> U.tf+V Since 5g-i@a(f ) =
 pki\ 1~ki~1(-)a5g_i(f), we see that Oa(/) is a generalized eigenvector for 6g-i
 for eigenvalues of negative valuation. But the norm of Sg-i is less than 1, so
 0a(/) has to be zero. □

 3. Canonical subgroups over complete discrete valuation rings

 3.1. Existence of canonical subgroups. Let p > 2 be a prime integer and
 K a complete valued extension of Qp for a valuation v. K —> IU {oo} such
 that v(p) = 1. Let K be an algebraic closure of K. We denote by Ok the ring
 of elements of K having nonnegative valuation and set v : Ok/pOk —> [0,1]
 to be the truncated valuation defined as follows. If x G Ok/pOk and x
 is a (any) lift of x in Ok, set v(x) = inf{v(x),l}. For any w G v(Ok),
 we set m(w) = {x G K,v(x) > w} and Ok,w = Cffir/m(u;). If M is an
 ÖA'-module, then Mw denotes M ®oK ®K,w ■ If M is a torsion CV-module of
 finite presentation, there is an integer r such that M — ©[=i for real
 numbers a, G v(Ok)- We set deg M = v(ai).

 Let H be a group scheme over Ok , and let ujjj denote the co-normal sheaf
 along the unit section of H. If H is a finite flat group scheme, ojh is a torsion
 öft—rriodule of finite presentation and the degree of H, denoted deg H, is by
 definition the degree of ujh- (See [Far 10], where the degree is used to define
 the Harder-Narasimhan filtration of finite flat group schemes.)

 Let G be a Barsotti-Tate group over Spec Ok of dimension g. (For exam
 ple, the Barsotti-Tate group associated to an abelian scheme of dimension g.)
 Consider the 0/^i-module Lie G\p\. We denote by a the Frobenius endomor
 phism of Ok,l- The module Lie G\p\ is equipped with a cr-linear Frobenius
 endomorphism whose determinant, called the Hasse invariant of G, is denoted
 Ha(G). The Hodge height of G, denoted Hdg(G), is the truncated valuation
 of Ha(G).

 Canonical subgroups have been constructed by Abbes and Mokrane, An
 dreatta and Gasbarri, Tian, and Fargues. In the sequel we quote mostly results
 of Fargues.

 Theorem 3.1.1 ([Farll, Thm. 6]). Let n € N. Assume that Hdg(G) <
 2pn-i (resp. 3pl-i if p = 3). Then the n-th step of the Harder-Narasimhan
 filtration of G\pn], denoted IIn, is called the canonical subgroup of level n of
 G. It enjoys the following properties:
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 635

 (1) Hn(K) ~ (Z/pnZ)9.

 (2) degtfn = n5-Çf±Hdg(G).
 (3) For any 1 < k < n, Hn\pk] is the canonical subgroup of level k of G.

 (4) In GI Spec Ojf,i_Hdg(G) we have that I Spec e>K,i_Hdg(G) is the kernel of
 Frobenius.

 (5) For any 1 < k < n, Hdg(G/H^) = pfcHdg(G) and Hn/Hk is the canon
 ical subgroup of level n — k of G/H^.

 (6) Let Gd be the dual Barsotti-Tate group of G. Denote by H,f the anni
 hilator of Hn under the natural pairing G\pn] x GD\pn] —> ppn. Then
 Hdg(G^) = Hdg(G) and is the canonical subgroup of level n ofGD.

 The theorem states, in particular, that if the Hodge height of G is small,
 there is a (canonical) subgroup of high degree and rank g inside G\p\. The
 converse is also true.

 Proposition 3.1.2. Let H G[p] be a finite flat subgroup scheme of
 G\p\ of rank g. The following are equivalent:

 (1) degH> g- \ if p ± 3 oràegH > g- \ ifp = 3;

 (2) Hdg(G) < I if p ^ 3 or Hdg(G) < | if p = 3, and H is the canonical
 subgroup of level 1 of G.

 Proof. In view of Theorem 3.1.1, we only need to show that the first point

 implies the second. Set v — g — deg H. It is enough to prove that v < \ if
 p / 3 or u < | if p = 3 implies that Hdg(G) < v. Indeed, by Theorem 3.1.1,
 G will admit a canonical subgroup of level 1, which is a step of the Harder
 Narasimhan filtration of G\p\. On the other hand, Proposition 15 of [Farll]
 shows that H is a step of the Harder-Narasimhan filtration of G\p]. It follows
 that H is the canonical subgroup of level 1 of G.

 Let H and G\p\ denote the restrictions of H and G\p] to Spec Ok,i- Note
 that there are canonical identifications ~ log\p\ — ^c/p^G and ujh ~ log.
 We use the superscripts to denote base change by the Frobenius map
 (7 : Ok, l —> Ok, i- We have a functorial Vershiebung morphism V : H^' —> H
 and V : G\p]^ —> G\p\. Taking the induced map on the co-normal sheaves we
 obtain the following commutative diagram with exact rows:

 uG\p}/H uG\p\

 V*  V*  v

 ,,(P) .,.(P) ÜL,,W , n G\p]/H UG\p] UH U
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 636 FABRIZIO ANDREATTA, ADRIAN IOVITA, and VINCENT PILLONI

 We have an isomorphism OgK1 ~ uJg\p\ ail(i Ker (f> C p1 v^g\j>] since
 deg G\p]/H = v by [Far 10, Lemma 4]. As a result, there is a surjective map

 ujfi —> 09Kl_v. We thus obtain a surjective map ®oK ua Ok,i —>

 ®K,1-V — OgK1. The map <f> ® 1: -> is a surjective
 map between two finite Ok,\-modules that are isomorphic, so it is an isomor
 phism. As Hdg(G) can also be computed as the truncated valuation of the

 determinant of V* on , we conclude that Hdg(G) = degUq^) =
 deg(a^'/V*u)ß). We are thus reduced to compute the map V* at the level of
 the group H.

 After possibly extending K, we can find an increasing filtration of II k
 by finite flat subgroups {FiljH#}o<j<ff where Fil,## has rank p%. Taking
 schematic closures we obtain an increasing filtration of H by finite flat sub
 groups {FiljiL}o<i<5 where Fil,H has rank p%. We set Gr= Filfciî/Filfc_i II■
 This is a finite flat group scheme of order p for every k. We let (Fil, H }o<i<g be

 the filtration of H obtained via base change to Spec Ok,i and {Fil,/f(p^}o<i<g
 be the filtration of H^ induced by pullback under a. We obtain a decreasing
 filtration on the differentials by setting F\\luip = Kev(ujfj —> wFil.#). Tak
 ing differentials in the exact sequence 0 —> Fil^_iH —» Fil^11 —> Gr^H —> 0

 provides an isomorphism Grkujff := F\\k~~lujfj/F\\kup ~ uJCrkI{. Similarly,

 we set FiVco^ — Ker(u>^ —> and there is a surjective map —»
 Grk(uj(I'). But as before, it is easy to see that both modules are isomorphic
 to Ok, l and this map is an isomorphism.

 The map V* respects these filtrations, and a straightforward calculation

 using Oort-Tate theory shows that deg(co^k^/V*uGTkg) = 1 — deg(GrkH).

 Hence, deg/V*uB) < degGvkuf/V*GrkuR = g - deg(Grfctf).
 Since ^deg(GrfcfL) = deg H, we conclude that Hdg(G) = deg/V*uR) <
 g — deg H = v as claimed. □

 3.2. The Hodge-Tate maps for Hn and G\pn]. In this section we work
 under the hypothesis of Theorem 3.1.1; i.e., let us recall that G was a Barsotti

 Tate group of dimension g such that v Hdg(G) < 2 n-i (resp. 3pn_i ifp = 3)
 and we denoted by Hn C G\pn] its level n canonical subgroup. We now define
 the Hodge-Tate map for Hf' (viewed as a map of abelian sheaves on the fppf
 topology),

 HThd : H® -> ^h„,

 by sending an S1-valued point x G H//(S), i.e., a homomorphism of S-group
 schemes x: Hnto the pullback x*(dt/t) G cüHn(S) of the invariant
 differential dt/t of ßpnts- (See [Mes72, p. 117] for a more complete discussion.)
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 637

 Following the conventions of Section 3.1 we write 0JG\pn]jtu, resp. 0JHn,w for

 wG[pn] ®oK Ok,w, resp. (jJHn ®oK Ok,w

 Proposition 3.2.1.

 (1) The differential of the inclusion Hn c—>■ G\pn] induces an isomorphism

 WG(pn],n—v~r * U Hn,n-vP~ '

 (2) The linearized Hodge-Tate map

 HTfjD 0 1 : (K) 02 Cr- —> 0o^ 0^

 has cokernel of degree ^.

 Proof. We have an exact sequence

 0 —> Hn —> G[pn] —>• G[pn]/iîn —> 0

 that induces an exact sequence

 o wG[p™]/Hn ->■ wG[pn] UHn -> 0.

 We know that ug^j ~ C^- n and that deg G [pn]/iïn = ~Eyv-> so ^he ßr8t
 claim follows.

 There is a commutative diagram

 Hn(K) ojHn ®oK O
 HTifD®l

 k ^ K

 HThDC
 Hi (K) Ofç —^ uhx ®ok Oj<.

 We know by the proof of Theorem 4 of [Farll] that HThd 8> 1 has cokernel of

 degree ^-j-. The same holds for the Hodge-Tate map HTHp <g> 1. □

 Although the results of Proposition 3.2.1 are all that we need for later
 use, we would like to go further and analyze the Hodge-Tate map for the
 group G\pn]:

 HTn: G\pn](öR) —> <8>ok Or

 The following result is implicit in [Farll]. (See also [AG07, §13.2] when n = 1.)

 Proposition 3.2.2. We use the notation of Proposition 3.2.1. Assume
 that v < Then the following natural sequence is exact:

 0 Hn(K) -> G\pn](K) HT^n] u>GDlpn] ®oK Or.

 Furthermore, the cokernel of the map HTG[pn] (g> 1: G\pn](K) <8>z Or —>■

 wGD[pn] ®oK Or is of degree
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 638 FABRIZIO ANDREATTA, ADRIAN IOVITA, and VINCENT PILLONI

 Proof. An easy calculation using Oort-Tate theory shows that for any
 group scheme H —> Spec of order p and degree at least 1 — t, the Hodge

 Tate map HT// : H(K) —> ujhd is zero. By hypothesis we have deg Hn > ng— ^
 and we can thus filter Hn by group schemes such that each graded quotient
 is of order p and has degree at least 1 — t. A straightforward dévissage now

 proves that the map HTh„ ■ Hn(K) —> ujhd <S>ok 15 zero an<l so the map
 HT(j[pn] : Hn(K) —> (jJGD\p„j is also zero. The rest of the proposition follows
 from the proof of Theorem 4 of [Farll] as in Proposition 3.2.1. □

 Applying this proposition to GD and using the fact that H,f is the canon
 ical subgroup of GD, we obtain a map

 HT : (K) —> <nG[pn] <g>oK Ok,

 which is a lift of the map HT^o.

 Remark 3.2.3. There is a rationality issue with the map HT. If K' is the
 finite extension of K fixed by an open subgroup T of Gal(K/K), we obtain an
 induced map,

 HT: HZ(K') (u;G[pnj <g>oK 0Rf.

 There is an injection tc*G[p»] ®oK Ok' (^G\Pn} ®öK O Kf that may be
 strict, and there is no reason for HT(H®(K')) to lie in u>G\pn] ®oK Ok'- But if

 we reduce modulo pn " "-1 , then HT coincides with HT up in n vpn~l

 3.3. Canonical subgroups for semi-abelian schemes. We will need to apply
 the results of the last section in the setting of semi-abelian schemes. Let S be
 a noetherian scheme and U a dense open subset. We will use the notions of
 1-motives over U and Mumford 1-motives over U S as follows.

 Definition 3.3.1 ([Del74, Def. 10.1.1], [StrlO, Def. 1.3.1]). A 1-motive over
 U is a complex of fppf abelian sheaves [Y —>■ G] concentrated in degree — 1 and
 0. where

 (1) G —>■ U is a semi-abelian scheme that is an extension
 A^O

 with T a torus and A an abelian scheme;
 (2) Y —»• U is an isotrivial sheaf.
 A Mumford 1-motive over U S is the data of

 (1) A semi-abelian scheme G —» S1 that is an extension

 with T a torus over S and A an abelian scheme over S,
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 639

 (2) Y —» S an isotrivial sheaf,
 (3) [Y(j —>■ G(j] a 1-motive over U.

 Given M = [V —> G] a 1-motive over U and an integer n, we define the
 n-torsion of M as the H-1 of the cone of the multiplication by n map M —» M.
 It comes with a filtration Fil». The group G is an extension 0 —» T —> G —>
 A —» 0, and Filo = T[n], Filj = G[n], FÜ2 = M[n].

 Assume that S = Spec Ok and that U = Spec K. We say that a Mumford
 1-motive M = [Y —> G\ over U S has a canonical subgroup of level n if G
 has a canonical subgroup of level n.

 4. Canonical subgroups in families and applications

 4.1. Families of canonical subgroups. We start by introducing some cate
 gories of (D^-algebras. We let Adm be the category of admissible öjy-algebras,
 by which we mean flat CV-algebras that axe quotients of rings of restricted
 power series Ok{X\, ..., Xr) for some r > 0. We let NAdm be the category
 of normal admissible Ö/(-algebras.

 Let R be an object of Adm. We have a supremum semi-norm on R[l/p]
 denoted by | |. If R is in NAdm, then | | is a norm and the unit ball for this
 norm is precisely R.

 For any object R in Adm, we let R — Adm be the category of Jî-algebras
 that are admissible as ©^--algebras. We define similarly R — NAdm.

 If w G v(Ok), we set Rw = R(&oK &K,w as before. For any i?-module M,
 Mw means M R.w .

 Till the end of this section we fix an object R of NAdm. We set S =

 Spec R, and Srig is the rigid analytic space associated to i2[^]. We will study
 the p-adic properties of certain semi-abelian schemes over S and their canonical
 subgroups. We make the following assumptions.

 Let U be a dense open subscheme of S and G a semi-abelian scheme over S
 such that G\u is abelian. We assume that there exist G. a semi-abelian scheme
 over S with constant toric rank, Y an isotrivial sheaf over S and M = [Y —> G]
 a Mumford 1-motive over U ^ S such that M\pn] ~ G\pn] over U and that
 G\pn] ®—>■ G[f)n\. For x € 6Vig, we write Hdg(x) for Hdg(G'.x[jjoc]).

 Remark 4.1.1. The group G\pn] is not finite flat in general (unless G has
 constant toric rank over S), but under the hypothesis above it has a finite flat
 subgroup G\pn], which we use as a good substitute.

 Remark 4.1.2. In our applications R will come from the p-adic completion
 of an étale affine open subset of the toroidal compactification of the Siegel
 variety. If this open subset does not meet the boundary, then the semi-abelian
 scheme G will be abelian and the situation is simple. On the other hand, we
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 640 FABRIZIO ANDREATTA, ADRIAN IOVITA, and VINCENT PILLONI

 can cover the boundary by étale affine open subsets such that G comes by
 approximation from a semi-abelian scheme constructed out of a 1-motive M
 (by Mumford's construction). In the approximation process it is possible to
 preserve the j/l-torsion of M as explained in [StrlO, §2.3].

 Using the previous notation and assumptions on S and G, we now make

 further assumptions on the Hodge height. Let v < 2pn-i (resp. v < 3 „_i
 if p = 3) such that for any x G Sr ig, Hdg(x) < v. For any point x € S'rig )
 G has a canonical subgroup of order n. By the properties of the Harder
 Narasimhan filtration there is a finite flat subgroup Hn x C G|,s'rig interpolating
 the canonical subgroups of level n for all the points x G »S'rig

 Proposition 4.1.3. The canonical subgroup extends to a finite flat sub
 group scheme Hn <—» G\pn} over S.

 Proof. We first assume n = 1. Let Gr —> S = Spec R be the proper
 scheme that parametrizes all finite flat subgroups of G[p] of rank p9 over S.
 We have a section s : Sk —> Gr« given by the canonical subgroup. Let T be
 the schematic closure of s(Sk) in Gr. The map T —> S is proper. We let
 H —> T be the universal subgroup. We first show that T —>• S is finite. Let k
 be the residue field of Ok- It is enough to prove that for all x G Tk, Hx is the
 kernel of the Frobenius morphism; indeed, this will imply that T —>■ S is quasi
 finite, hence finite. So let x G Tk, and let xi x be a sequence
 of immediate specializations of maximal length. Clearly, x\ G T/< since T is
 the closure of its generic fiber. So let Xj and x3+\ be such that x3 G Tk and
 Xj+1 G Tfc. Let V be the closure of Xj in T, V' be the localization of V at
 Xj+1 and V" be the normalization of V'. Then V" is a discrete valuation ring
 of mixed characteristic. So Hyu is generically the canonical subgroup, and by
 the general theory over discrete valuation rings (see Theorem 3.1.1), HXk is
 the kernel of Frobenius. As a result Hx is the kernel of Frobenius as well. Now
 set T = Spec B. By construction B is torsion free, and hence it is flat, as
 0/f-module. Furthermore, it is a finite R-module and Rk = Bk- Since R is
 normal, B = R.

 By induction, we assume that the proposition is known for n — 1 and
 prove it for n > 2. We define Hn by the cartesian square (where Hn/H\ is the
 canonical subgroup of level n — 1 for G[i>n]/II\ by Theorem 3.1.1):

 Hn G\j/<

 Hn/H\ ^G\pn\/Hv,

 all vertical maps are finite flat. Since Hn/H\ is finite flat over S, we are
 done. □
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 641

 4.2. The Hodge-Tate map in families. In this paragraph we investigate
 the properties of the map of fppf abelian sheaves HThd : Hçf —> oj/in. We
 work using the notation and assumptions of Section 4.1.

 Proposition 4.2.1. Letw G v(Ök), withw < n — v~Y- The morphism
 of coherent sheaves log ~► ^>Hn induces an isomorphism loq,w —t uHn,w

 Proof. Possibly after replacing R with an open affine formal covering,
 we may assume that log is a free ft-module. Fix an isomorphism uoq — R9 ■
 Consider the surjective map a: R9 = loq —» coHn,w given by the inclusion
 Hn C G. It suffices to show that any element (xi,... ,xg) G Ker(a) satisfies
 Xi G pwR for every i = 1,... ,g. As R is normal, it suffices to show that for
 every codimension-1 prime ideal ip of R, containing (p). we have xt G pwRp
 or equivalently Xj G pwR\p. Here, ftp is a discrete valuation ring of mixed
 characteristic and .ftp is its p-adic completion. We are then reduced to prove
 the claim over a complete discrete valuation ring and this is the content of
 Proposition 3.2.1. □

 Proposition 4.2.2. Assume that H^(R) ~ (Z/pnZ)9. The cokernel of
 the map

 HThd ® 1 : R-n (R) ®z R —> a>Hn

 is killed by pp-1 .

 Proof. Possibly after localization on R, we may assume that ujq is a free
 R-module of rank g. We have a surjection R9 ~ ujq —> ojhu- If we fix a
 basis of H®(R), we also have a surjection R9 —» H^(R) &z A — A®. In
 these presentations, the map HT Hu g 1 is given by a matrix 7 G Mg(R). Let
 d G R be the determinant of the matrix 7. Then d annihilates the cokernel

 V

 of 7. It suffices to prove that pp-1 G dR. As A is normal, it suffices to prove
 V

 that pp-1 G ci Asp for every codimension-1 prime ideal of R containing p. It
 1) -t

 follows from Proposition 3.2.1 that pp-1 G ci/A _ pn_t. As < n — vvvPl , v p—1 " "
 p _

 we conclude that pp-1 G dRy as wanted. □

 4.3. The locally free sheaf F. We work in the hypothesis of Section 4.1;
 i.e., let us recall that we have fixed R G NAdm and a semi-abelian scheme G
 over S Spec (A) such that the restriction of G to a dense open subscheme

 A of A is abelian. We also fix a rational number v such that v < 2pn-i
 (resp. v < 3 n-t if P = 3) with the property that for any x G SVig, Hdg(x') < v.

 Here Hdg(x) := Hdg(G;r[p0C]). Let Hn denote the canonical subgroup of G of
 level n over S. From now on, we also assume that H^(R) ~ (Z/pnZ)9. We
 then have the following fundamental proposition.
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 Proposition 4.3.1. There is a free sub sheaf of R-modules T of uq of
 v n

 rank g containing pp-1 uq that is equipped, for allw E]0, n — vjf J, with a map

 HTV HZWI/pV^FÇïrK,
 deduced from HTH i>, which induces an isomorphism

 HT„, <g> 1 : H^(R[l/p]) <8>z Rw —* F ®r Rw

 Proof. Set wo = n—vpp 7^ ■ Let x\,... ,xg be a Z/pnZ-basis of H^{R[l/p\).
 Let W£HD(xi) be lifts to ujq of HT^d(tî) G WHn- We set T to be the sub
 module of lüq generated by

 {HThd(xi), ... ,HThd(x9)}.

 This module is free of rank g. Indeed, let Ylï= 1 -^HTHD(xi) = 0 be a nonzero
 relation with coefficients in R. We may assume that there is an index io

 111 — v

 such that Aj0 p 0 p~lR. Projecting this relation in ujg,w0 — <^H„,w0 (see
 Proposition 4.2.1), we contradict Proposition 4.2.2. By Proposition 4.2.2,

 V

 pp~lujG C J~ and the module T is independent of the choice of a particu
 lar lifts HT#o(xj). Let r\ ujjjn —> ojg,w0 denote the projection. The map
 HT#d o r factors through F / F H pw°ujG- For all w 6]0, n — v}, we have
 Tflp'"°uiq C p"'T. We can thus define HTU, as the composite of IITnp or and
 the projection T/RT\pWou>G —> J~ /pwJ~- Finally, the last claim follows because
 the map HT,i; ® 1 is a surjective map between two free modules of rank g over
 Rw and so has to be an isomorphism. □

 Remark 4.3.2. The sheaf J- is independent of n > 1; it is functorial in
 R, and it coincides with the sheaf constructed using p-adic Hodge theory in
 [AIS10, Prop. 2.6], where it was denoted Fq.

 Remark 4.3.3. Let f! be an algebraic closure of Frac(R). Let R be the
 inductive limit of all finite, étale Ä-algebras contained in if, and let R denote its

 p-adic completion. Assume that G is ordinary. Let H0Q C G be the canonical

 subgroup of order "oc" and Tp(H^)(R) be the Tate module of its dual H^.
 We have an isomorphism

 HThd ® 1 : Tp{H°)(R) R —>■ ug <S>r R■

 Proposition 4.3.1 is a good substitute for this isomorphism in the non ordinary
 case.

 4.4. Functoriality in G. We assume the hypothesis of Section 4.1. More
 over, we suppose that we have an isogeny </>: G —» G' over S, where G' is a
 second semi-abelian scheme over S satisfying the same assumptions as G; i.e.,
 for all x € Srig, Hdg(Gx), Hdg(G^) < v.
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 643

 By functoriality of the Harder-Narasimhan filtration the isogeny induces
 a map (f): Hn —> H'n, where Hn and H'n are the canonical subgroups of level n
 of G and G'.

 We assume further that H^(R[l/p]) ~ (Z/pnZ)a and that H'nD{R\l/p\) ~
 (Z/pnZ)9. We let T and T' be the subsheaves of loq and ujq' constructed in
 Proposition 4.3.1.

 Proposition 4.4.1. Letw €]0, n — The isogeny (j) gives rise to the
 diagram

 H'nv(R[l/p})^HD{R[1/p])

 Proof. Set wo = n — vr'p l . We check that (p*(P') C P. Let uj G 0Jc'
 such that u mod pw° belongs to the i?-span (RTWo(H'nD (R[l/p\)). Then (p*oo
 mod pWo belongs to the R-span (H.T Wo(cpD H'nD (R[l /p])}. The rest now follows
 easily. □

 4.5. The main construction. In this section we work in the hypothesis of

 Section 4.1, and we make the further assumptions that v < 2p„_i (resp. v <

 if p = 3), that H„(R[l/p]) ~ (Z/p"Z)9 and that w G]0, n - v^].
 Let ÇTLt —> S be the Grassmannian parametrizing all flags FiloJ7 = 0 C
 FiliJ7 C C FilgP = P of the free module P; see [Kol96, §1.1.7] for the
 construction. Let GR-jr be the T-torsor over GRj that parametrizes flags
 Fil.7-" together with basis Ldt of the graded pieces GrjJ7.

 We fix an isomorphism if: (Z/pnZ)9 ~ H^(R[l/p]) and call X\,..., xg the
 Z/pnZ-basis of H^(R[l/p}) corresponding to the canonical basis of (Z/pnZ)ff.
 Out of if, we obtain a flag Fil]f = {0 C (xi) C (xi, X2) C • • • C (xi,..., xg) =
 (R[l/p\)}. We also have a basis Xj mod Filf_1 of the graded piece Gr^.
 Let R' be an object in R — Adm. We say that an element Fil,J7 (du R' G
 GRr(R') is ^-compatible with if if F il, J7 ®r R'w = HTU)(Fil^) R'w.
 We say that an element (Fil, J7 ®r R', {wi}) € GRr(R') is ttf-compatible
 with if if FH»PiS>rR'w = HTu,(Fil]f,)®z.R(1, and mod pwP®rR'+Fi\i-iP®R
 R' = WTw{xi mod Filf..!).
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 644 FABRIZIO ANDREATTA, ADRIAN IOVITA, and VINCENT PILLONI

 We now define functors:

 3Ww : R - Adm -» SET

 R' i-> — compatible Fil. J7 <S>r R' € GR-t(R') }■

 aOXT+ : R - Adm -> SET

 R! t-> {«; — compatible (Fil.J7 ®r R', {tci}) 6 GR^{R')}

 These two functors are representable by affine formal schemes, which can

 be described as follows. Let fi, , fg be an R-basis of J~ lifting the vectors
 HT11)(xi),...,HTw(xs).

 The given basis identifies Ç7Z? with GL9/B x S and 3%Xfw with the set of
 matrices

 1 0

 pw23(0,1) 1
 Xspf Ok Spf R,

 Kpw<B(0,1) pw%(0,1) ... ly

 where we have denoted by 05(0,1) = Spf Ok{X) the formal unit ball.
 Similarly, the given basis identifies ÇTZjr with GLg/U x S and 32II+ with

 the set of matrices

 '1 + p^f8(0,1) 0 ... 0
 pw»(0,l) l+pw93(0,l) ... 0

 *Spf Ok Spf R.

 P™03(0,1) P™03(0,1) ... 1+^03(0,1),
 We let T —> Spf Ok be the formal completion of T along its special fiber.

 Let %w be the formal torus defined by

 %W(R') = Ker (T(R') -> T{R'/pwR'))

 for any object R' € Adm. The formal scheme 32H^ is a torsor over 32Utt!
 under %w.

 All these constructions are functorial in R. They do not depend on n but
 only on w. We denote by XWw and the rigid analytic generic fibers of
 these formal schemes. They are admissible opens of the rigid spaces associated

 to QTZand GRjr respectively.

 5. The overconvergent modular sheaves

 5.1. Classical Siegel modular schemes and modular forms. We fix an in
 teger N > 3 such that (p. N) = 1. Recall that K denotes a finite extension
 of Qp, Ok its ring of integers and k its residue field. The valuation v of K is
 normalized such that v(p) = 1.
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 645

 The Siegel variety of prime to p level. Let Y be the moduli space of princi
 pally polarized abelian schemes (A, A) of dimension g equipped with a principal
 level N structure ipw over Spec Ok- Let X be a toroidal compactification of
 Y and G -> X be the semi-abelian scheme extending the universal abelian
 scheme (see [FC90]).

 The Siegel variety of Iwahori level. Let yjw -» Spec Ok be the moduli
 space parametrizing principally polarized abelian schemes (A, A) of dimension
 g, equipped with a level N structure ifjN and an Iwahori structure at jr. this
 is the data of a full flag Fil.Al[p] of the group A\p\ satisfying FilJ~ = Fil29_#.
 Let X\w be a toroidal compactification of this moduli space (see [StrlO]). We
 choose the polyhedral decompositions occurring in the constructions of X and
 Xyw in such a way that the forgetful map Y[w —> Y extends to a map X[w —J X.

 The classical modular sheaves. Let uq be the co-normal sheaf of G along its

 unit section, T=Homx(G9x,ojg) be the space of ujq and Tx =Isomx^xi^g)
 be the GLs-torsor of trivializations of log- We define a left action GLS x T —>• T

 by sending u : Gx —> ujq to uj o h~l for any h € GL9.
 We define an automorphism k' of X(T) by sending any K — (ki,..., kg)

 G -X"(T) to k' — (—kg, —kg-1,..., —k\) G This automorphism stabilizes
 the dominant cone X+(T). Let 7r: Tx —> X be the projection. For any
 k G X+(T), we let coK be the subsheaf of of /t'-equivariant functions for
 the action of B (with GLS acting on the left on 7r* G-jy by /(w) I-» f(uig) for
 any section / of it* G-jy. viewed as a function over the trivializations lo and any

 g G GLff). The global sections H°(W uK) form the module of Siegel modular
 forms of weight k over X.

 5.2. Application of the main construction: the sheaves We denote
 by X the formal scheme obtained by completing X along its special fiber Wfc
 and by Xrig the associated rigid space. We have a Hodge height function
 Hdg: Wig —t [0,1] (see Sections 3.1 and 4.1). Let v G [0,1]. We set X(y) =
 {,x G Xng, Hdg(x) < u}; this is an open subset of Wig- Let v G v(Ök)
 Consider the blowup X(v) = ProjCjfW Y\/(ilaX + p" Y) of X along the
 ideal (Ha, pv). Let X(v) be the p-adic completion of the normalization of the
 greatest open formal subscheme of X(v) where the ideal (Ha, pI!) is generated
 by Ha. This is a formal model of X{v).

 Let n G N>o and v < ~=\ G v(Ok) (resp. v < G v(Ok) if p = 3).
 We have a canonical subgroup Hn of level n over X(y). Let X\ (pn)(v) =
 Isom<^(j,}((7j/pn7j)9, H^) be the finite étale cover of X(v) parametrizing trivi
 alizations of H^ . We let if be the universal trivialization over X\ (pn)(v). Let
 Xi(pn)(v) be the normalization of X(v) in W(pn)(v). The group GL9(Z/p"Z)
 acts on Xi(pn)(v). We let liw(p'")(n) be the quotient X\ (pn)(v)/B(Z/p"Z). It
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 646 FABRIZIO ANDREATTA, ADRIAN IOVITA, and VINCENT PILLONI

 is also the normalization of X(v) in Ai(pn)(u)/B(Z/pnZ). We also denote by
 j£Iwt-(pn)(v) the quotient Xi(pn)(v)/\J(Z/pnZ).

 5.2.1. Modular properties. The formal schemes Xi(pn)(v) and Xiw(pn)(v)
 have nice modular interpretations away from the boundary. Let 2)i(pn)(v) and
 ?)lw(pn)(^) be the open formal subschemes that are the complements of the
 boundaries in X\(pn)(v) and Xiw(pn)(v) respectively.

 Proposition 5.2.1.1. For any object R 6 NAdm,
 (1) %)i(pn)(v)(R) is the set of isomorphism classes of quadruples (A, \,if^,if)

 where (A —»■ Spf R, A) is a principally polarized formal abelian scheme of

 dimension g such that for all rig-points x in R, we have HdgfAjlp00]) < v;
 ifi\r is a principal level N structure; if: Z /pnlß -> is a trivialization
 of the dual canonical subgroup of level n over R[l/p\.

 (2) 2}iw(t")(p)(jR) is the set of isomorphism classes of quadruples (A, X,ipN>Fil.)
 where (A —> Spf R. A) is a principally polarized formal abelian scheme of

 dimension g such that for all rig-points x in R, we have Hdg(Ax[p°°]) < v;
 ipN is a principal level N structure; Fil, is a full flag of locally free Z/pnZ
 modules of the dual canonical subgroup of level n over R[l/p\.

 Proof. The proof is similar to the proof of [AIS 14, Lemma 3.1]. □

 5.2.2. The modular sheaves . Let w G u(ö/f)n]n — 1 + n — v-^fl\.
 By Proposition 4.3.1 there is a rank g locally free subsheaf F of ojg/
 It is equipped with an isomorphism

 (HTu, o if) <g> 1: (Z/pnZ)9 tg>% &Xi(pn)(v)/PW— -A <g)oK Ok,w

 Remark 5.2.2.1. The hypothesis w G]n— 1 + n — is motivated by
 Proposition 5.3.1. This entire paragraph would make sense under the hypoth
 esis 0 < w < n — but in this way we normalize n and our construction

 Tb ■ 1

 only depends on k, w and v. Remark that if w < n — 1 — vpp l , we could use
 £i(pn-1)(u) as a base.

 By Section 4.5 we have a chain of formal schemes:

 32ÏJ+ 4 m, 4 Xi(pn)(v) 4 XIw(pn)(v) ^ XIw(p)(v).

 We recall that 32BW parametrizes flags in the locally free sheaf T that are
 ^-compatible with ip and that 32U^ parametrizes flags and bases of the graded
 pieces that are rc-compatible with t/>.

 We recall that 32U^ is a torsor over 3Ww under the formal torus 1W. We
 also have an action of the group B(Z/pnZ) on (jfl)(v) over Xiw(pn)(v). We
 let *BW be the formal group defined by

 53,„(R) = Ker (B(R) -► B(R/vwR))

 for all R E Adm.
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 647

 There is a surjective map 03«, —> T«, with kernel the "unipotent radi
 cal" it«,. All these actions fit together in an action of B(Zp)03«, on over
 jEiw(jpn){v). (The unipotent radical it«, acts trivially.)

 The morphisms 7Ti, 7r2,7r3 and 7T4 are affine. Set ir = 7r4 o 7r3 o 7r2 o m. Let

 At G W(K) be a w-analytic character. The involution At k' of A(T) extends
 to an involution of W, mapping '«.'-analytic characters to w-analytic characters.

 The character At': T(Zp) —> extends to a character Ac': T(ZP)T«, —A GmOyK
 and to a character At': B(ZP)03«, —A <Gm with U(Zp)it«, acting trivially.

 We use the notion of formal Banach sheaf given in Definition A. 1.1.1.

 Proposition 5.2.2.2. The sheaf jgu+M is a formal Banach sheaf
 Proof. Let At°' be the restriction of At' to T«,. Since the map tt\ is a torsor

 under the group 1«,, the sheaf (tti)*^^ [ac0/] is an invertible sheaf. Since the
 map 7T2 is affine, (712070 [n°'\ is a formal Banach sheaf. It remains to take
 the pushforward by the finite map 7740773 and the invariants under T(Z/pnZ) for
 the action twisted by At as in the paragraph preceeding Proposition A.2.2.4. □

 Definition 5.2.2.3. The formal Banach sheaf of w-analytic, u-overconver
 gent modular forms of weight At is

 roi, — 77* ^Km+ [ac 'W  mid

 5.2.3. Integral overconvergent modular forms.

 Definition 5.2.3.1. The space of integral «.'-analytic, ?,'-overconvergent, mod
 ular forms of genus g, weight At, principal level N is

 M^(£Iw(p)(u)) = H °(Xlw(p)(v),nlK).
 An element / of the module

 H° (S)Iw (jp) (u), to Jf),

 called weakly holomorphic modular form, is a rule that associates functorially

 to a septuple (i?, A, A, ifn, if, Fil.J^, {oj, } j ) an element

 f(R,A,\,ifN,if,Fi\.FR, {wj})) G R.
 Here R is an object in NAdm, the quadruple (A, A, ipN,if) defines a point of
 2)i(pn)(v)(R), Fil. J7# is a ru-compatible flag of Fr and {u>i} is a ^-compatible
 basis of each Gr^J-R.

 Moreover this association satisfies the functional equation

 f(R, A, A, ifN, b.if, Fil .Fr, b ■ {wi}) = K'(b)f(R, A, A, ifN, if, Fil .Fr, {ru;})

 for all b G B(Zp)»w(i2).

 5.2.4. Locally analytic overconvergent modular forms. Let k G W(K) and

 v, w > 0. Suppose that k is ^-analytic. If there is n G N satisfying v < 2pn-i

 (resp. v < 3p j if p = 3) and w G]n - 1 + ^zy,n — v—^], then we have
 constructed a sheaf tujf on £iw(t>). As a result for all k, if we take v > 0
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 648 FABRIZIO ANDREATTA, ADRIAN IOVITA, and VINCENT PILLONI

 sufficiently small and to £ N big enough (so that /t is to-analytic), there is a
 unique n € N satisfying the conditions above, and so the modular sheaf tufy
 exists. Let k,n,v,w satisfy all the required conditions for the existence of the
 sheaf tujfy Clearly, if v' < v, then k,n,v',w also satisfy the conditions and the
 sheaf toj^ on 3qw(o') is the restriction of the sheaf on 3qw(o).

 If k is to-analytic, it is also to' analytic for any to' > to. Let n' G N and
 v > 0 such that k, n, v, to and k, n', v, to' satisfy the conditions, so that we have

 two sheaves tufy and ro^y over 3£[w('o).
 There is a natural inclusion

 32D+ ^ 32D+ xXl(pB)(w) *i(pn>),

 which follows from the fact that '(//-compatibility implies re-compatibility.

 This induces a natural map —» tu|(/ and thus a map Mj^(j£iw(e)) —>
 M^(3fiw(u)). We are led to the following definition.

 Definition 5.2.4.1. Let k 6 W. The space of integral locally analytic
 overconvergent modular forms of weight k and principal level N is the inductive
 limit

 M^K(Xiw(v)) = lim M^{Xi w(p)(v)).
 V-+(J,W-XOC

 5.3. Rigid analytic interpretation. We let Tan, 7^, GLS)an be the rigid
 analytic spaces associated to the CV-scheiries 7~, Tx and GLg. We also let
 X, Tx and GLa be the completions of T, Tx and GLa along their special
 fibers and 7rig, Tt(„ and GL^g be their rigid analytic fibers. We have actions

 GL9)an x 7ân —> Ta.n, GLg x 7ng —> Tig and GLg x T —> T. When the context

 is clear, we just write GLg instead of GLgan, GLgrjg or GLg. For example, we

 have 7^jg/B = 7^„/B, because Tx/B is complete. Over '7jx/B, we have the
 following diagram:

 Tnxg/U -Taxn/U

 TV-B.

 where 7^/U is a torsor under Urig/Brig = Trig and '77^/II is a torsor under
 Uan/Ban = Tan.

 We let TW+ and ZWw be the rigid spaces associated to and 32ÏÏ,,,
 respectively. We have a chain of rigid spaces

 ZW+ -> 1WW -> Xi(pn)(v) XiM(v).

 The natural injection T coaxy (pn)(v) lfi an isomorphism on the rigid
 fiber. More precisely, we can cover X\(pn)(v) by affine open formal schemes
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 649

 Spf R such that T and ujq are free R modules of rank g. We choose a ba
 sis for R compatible with ip and a basis for ujq such that the inclusion is
 given by an upper triangular matrix M G Mg(R) with diagonal given by
 diag(/3i,...,ßg) where ßt € R, and v(J\ißi(x)) — ^rjHdg(Gx) for all closed
 points x of Spec R[l/p] (see Proposition 3.2.1).

 We thus obtain an open immersion

 XWw ^ %ig/^x1(pn)(v) "g'

 This immersion is locally isomorphic to the inclusion

 1 0 • •• 0\

 M
 pwB(0,l) 1 ••• 0
 : : 0

 KpwB( 0,1) PWB(0,1) 1 /

 (GLff)rig/B

 Similarly, we have an open immersion

 that is locally isomorphic to the inclusion

 'l+p™B(0,l) 0 ••• 0
 p™B(0,l) 1 +p™B(0,1) ••• 0

 M J . . . ) <->(GL9)an/U.

 pwB( 0,1) ••• PWB(0,1) l+pwB(0,l)/
 Let X\w(pn)(v) = X\ (pn)(-;;)/B(Z/pn 1 ) be the rigid space associated to

 £lw(Pn){v), and let Xlw+(pn)(v) = Xi(pn)(v)/\J(Z/pnZ). The map Xlw+(pn){v)
 —» X\w(pn)(v) is an étale cover with group T(Z/pnZ). The action of B(Z/pnZ)
 on X\(pn)(v) lifts to an action on the rigid space XWw —> Xi(p")(v) since
 the notion of ic-compatibility of the flag only depends on ip mod B(Z/pnZ).
 Taking quotients we get a rigid space XW°w —> X\w(pn)(v). Similarly, the
 action of U{Z/pnZ) on X\ (pn)(v) lifts to an action on the rigid space IIV^ —>■
 X\ (pn)(v) since the notion of m-compatibility of the flag and the bases of the
 graded pieces only depends on ?/> mod U(Z/pnZ). Taking quotients we obtain
 a rigid space —» Xïw+(pn)(v). From the open immersions above we get
 open immersions

 XW°w ®—> ^/Biïlw(pn)(î;) and IW°+ ^ ^n/U^Iw+(pn)(^),

 where B^Iw(pn)(u) and +(p«)(t)) are the base changes of the algebraic groups
 B and U to ^Iw+(p")(n).IW

 Proposition 5.3.1. Since w > n — 1 + the compositions IW°

 ^/bTiw(p")(i;)-*7ri^/B*iw(p)(i>) and, xlv,(p^){v)^T^/V xlv,(p){v)
 are open immersions.
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 650 FABRIZIO ANDREATTA, ADRIAN IOVITA, and VINCENT PILLONI

 Proof. We can work étale locally over X\w(p)(v). Let S be a set of rep
 resentatives in the Iwahori subgroup I(ZP) C GLs(Zp) of I(Z/pnZ)/B(Z/pnZ).
 Over a suitable open affinoid U of X\ (pn)(v), the map

 (IVOu -» (T*g/BXMv))\u

 is isomorphic to the following projection:

 1 0

 TT . pw B(0,1) 1 ••• _ .
 h: fi M . . . .7 -» (GL„)lls/B.

 7 £S

 KpwB{ 0,1) ••• PWB(0,1)

 There is a matrix M' with integral coefficients such that M' ■ M = pp~l Ids. It
 is trivial to check that M' o h is injective and so h is injective. The proof of
 the second part of the proposition is similar. □

 We have the following diagram:

 T*/VxUp){v) 1W°W+ ^ Xlw+(Pn)(v)

 ^ *iAPn)(v)

 91

 Ï2

 The maps i\ and fa are open immersions, and the maps fa and fa have
 geometrically connected fibers. The torus T(Zp) acts on IW°+ over 1W°w■
 This action is compatible with the maps fa and fa and the action of T(Z/p"Z)
 on X-lw+(pn)(v) over X\w(pn)(u). It is also compatible with the maps i\ and 12

 and the action of Tan on 72/U*Iw(p)(v) over T*jBx^(v){v).
 Set g = <72°5i- Let n be a ^-analytic character. Then = g*û.jyy°+ [t'] is

 the projective Banach sheaf of in-analytic, u-overconvergent weight k modular
 forms over X\w(p)(v). It is the Banach sheaf associated to the formal Banach
 sheaf toft by Proposition A.2.2.4.

 Remark 5.3.2. Let Tw be the rigid-analytic torus that is the rigid analytic

 fiber of 1W. For example, we have T„,(CP) = (1 +pwOcp)9- The rigid space
 ZW°+ is a T(Zp)Tw-torsor over TW°w. By Lemma 2.1 of [Pill3], it makes no
 difference in the definition of uj]^ to take «/-equivariant functions for the action

 of T(Zp) or of the bigger group T(Zp)T,t,.
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 651

 Definition 5.3.3. Let k G W. The space of analytic, u-overconvergent
 modular forms of weight k is

 mL"W„(p)(»)) = h»(*Iww(b),4").

 The space of locally analytic overconvergent modular forms of weight n is

 MtK(Xiw(p)) = colim„_>0 ,w-+oo

 The space Mj^(«Tiw(p)(u)) is a Banach space for the norm induced by the
 supremum norm on ZW°+. Its unit ball is the space M^(£iw(p)(u)) of integral
 forms.

 Proposition 5.3.4. If k G X+(T), then there is a canonical restriction
 map

 w*Uiw(p)(tO ^ <4?

 induced by the open immersion ÎW°+ T&a/\Ixlvr(p)(v) ■
 This map is locally isomorphic, in the étale topology, to the inclusion

 VK> V^~an

 of the algebraic induction into the analytic induction.

 Corollary 5.3.5. For any k G X+(T), we have an inclusion

 H°(XIw,u>K) -A Mt5K(A-Iw(p)(p))

 from the space of classical forms of weight k into the space of w-analytic,
 v-overconvergent modular forms of weight k.

 5.4. Overconvergent and p-adic modular forms. We compare the notion
 p-adic modular forms introduced by Katz and used by Hida ([Hid02]) to con
 struct ordinary eigenvarieties to the notion of overconvergent locally analytic
 modular forms. Let 3ù(p°°)(0) be the projective limit of the formal schemes
 Xi(pn)(0). It is a pro-étale cover of 3Eiw(p)(0) with group the Iwahori sub
 group of GL9(Zp), denoted by I. In particular, we have an action of B(ZP) on
 the space H°(3Ei(p°°)(0), ^i(p°°)(o))- Any character k G W can be seen as a
 character of B(ZP), trivial on the unipotent radical.

 Definition 5.4.1. Let k € W(K) be an Op-valued character of the group
 T(Zp). The space of p-adic modular forms of weight k is

 M°~ := H°(jEiö>~)(0), ^l(p»)(o))M.

 Over 3ù(p°°)(0), we have a universal trivialization ip: Z^ ~ Tp(GD\pca})
 of the p-adic étale Tate module of GD [p°°] and a comparison theorem

 HTgo : lPp ^£i(P°°)(o) ug

 et
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 As a result, for all w E]n — 1, n], we have the following diagram:

 Xi(pn)(0).

 Let iin(Zp) be the subgroup of U(Zp) of matrices that are trivial modulo
 pn7jp. The map i factorizes through an immersion X j(p°° ) (0 ) /iln (Zp ) <—>■ 3211,J;

 that is equivariant under the action of B(Zp). This provides a map

 -> m°°k.

 Remark 5.4.2. A space analogue to Mj(f (X|w(p)(0)) appears in the work
 [SU06] of Skinner-Urban for GSp4 . The space of semi-ordinary modular forms
 is a direct factor of M]^(£iw(p)(0)) cut out by a projector.

 Proposition 5.4.3. There is a natural injective map

 MtK(Tiw(p)) c—> M°°K.

 As a result, locally analytic overconvergent modular forms are p-adic modular
 forms.

 Proof. This map is obtained as the limit of the maps MjJJK(j£iw(p)(n)) —¥
 Mtf(3fiw(p)(0)) —> M°°K. All spaces are torsion free O^-module so the injec
 tivity can be checked after inverting p. The injectivity of M|^(Aiw(p)(n)) —>
 Mff (Ajw(p)(0)) for v small enough follows from the the surjectivity of the map

 on the connected components IIo(Ajw(p)(0)) -» IIo(Ajw(p)(i;)). The injectivity
 of the map M|^(Ajw(p)(0)) —» M°°K[l/p] can be checked locally over Ajw(p)(0).
 This boils down to the injectivity of the restriction map: —> J70(I) where
 •F°(I) is the space of continuous, Ok-valued functions on I. □

 5.5. Independence of the compactiftcation. We will see that our modules of
 overconvergent modular forms are in fact independent of the compactifications.

 If S is a rigid space, we say that a function / on S is bounded if the supre

 mum norm supxe5 |/(.x)| is finite. If S is quasi-compact, then this property is
 automatically satisfied (see [Bosl5, p. 23]). We now recall the following result.

 Theorem 5.5.1 ([Liit74, Thm. 1.6.1]). Let S be a smooth, quasi-compact
 rigid space and Z a co-dimension > 1 Zariski-closed subspace. Then any
 bounded function on S\Z extends uniquely to S.

 Let be the analytification of ljw. (See, for example, [Bosl5, §1.13].)
 Set Ajw(p)(u) PI Ijj"1 = Tiw (''')• The space Tiw(^) does not depend on the
 compactification. We say that / E H°(Tiw(^)> wjf) is bounded if it is bounded
 when considered as a function on the rigid space TWff xTiw(")■
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 653

 Proposition 5.5.2. The module ofw-analytic and v-overconvergent mod
 ular forms is exactly the submodule of bounded sections of H°(Tiw(p)) u\ff). In
 particular, M]^(<Liw(p)(i>)) is independent on the choice of the toroidal com
 pactification.

 Proof. The map (X\w(p)(v)) —> H°(Tiw^ÎD is clearly injective.
 Let

 /eH0CMO,4f)

 be a bounded section. This is a bounded function on XW°+ Xxïw(v) ^iw(n),
 homogeneous for the action of the torus T(Zp). By Theorem 5.5.1, it extends
 to a function on TW°^, which is easily seen to be homogeneous of the same
 weight. □

 Remark 5.5.3. The module M^(<Tiw(p)(u)) could thus have been defined
 without reference to any compactification. Nevertheless, compactifications will
 turn out to be quite useful in the last sections, allowing us to prove properties
 of these modules.

 5.6. Dilations. For our study of Hecke operators, it is useful to define
 slight generalizations of the spaces IW°+. This section is technical and may

 be skipped at the first reading. Let n G N,v < 2pn-i (resp. v < 3 „_i if p = 3),

 and let w = (m,j)l<j<i<g G], n - ' satisfying wi+ij > witj and
 Wi 'ij-1 > wij- We will call (iwlj) a dilation parameter. Let be the open
 subset of 7an/U^Iw(p)(B) such that for any finite extension L of K, an element
 in TW"+ (L) is the data of

 • an ©L-point of X\w(p)(v), coming from a semi-abelian scheme G —» Öl,
 with Hn its canonical subgroup of level n, and a flag Fil,Hn

 • a flag of differential forms Fil.J7 G 7rig/B(0£,) and for all 1 < j < g, an
 element uij G GrjT such that there is a trivialization ip : H^(K) ~ Z/pnZ9
 where ip is compatible with Fil.fdi, and the following holds:

 — Denote by ei,..., eg the canonical basis of set wq = n — v -2-j-,
 and by abuse of notation set HTWo for the map HTU,0 o 1/;; then for all
 1 < i < 9, we have

 uji mod F'ùi-iT + pWoF = ^a^HT^ßj),
 j>i

 where aJjt € Öl and v(aja) > Wjj if j > i and v(ah, — 1) > w%^.

 When Wij = w for all 1 < j < i < g and there exists n G N such that w G
 ]n-1 + ~,n-v ], we have ZW°+ = ÎW°+. The spaces TW"+ are dilations
 of the space IW°"J in the sense that we relax the wo-compatibility with ip and
 impose a weaker condition. The rigid space 2TV°+ is locally isomorphic in the
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 654 FABRIZIO ANDREATTA, ADRIAN IOVITA, and VINCENT PILLONI

 ■I/U(ZP).

 étale topology over X\w(p)(v) to

 '1 + pWl'1B(0,1) 0 ••• 0
 p^,iB(o,l) 1+PW2.2B(0,1) ••• 0

 : : 0

 p",91B(0,1) ••• p^,9-ib(0,1) 1 +p"'9'sB(0, 1),

 If k is an infj }-analytic character, we can define Banach sheaves wjf

 and the space (Xiw(p)(v)"j of w-analytic, w-over convergent modular forms
 as in Section 5.3.

 Remark 5.6.1. If w and u/_ are two dilation parameters satisfying Wij =

 w'ij as soon as i ^ j, and if k is a infij{wij,Wjj} analytic character, then the
 sheaves wjf and are canonically isomorphic.

 6. Hecke operators

 In this section we define an action of the Hecke operators on the space of
 overconvergent modular forms and we single out one of these operators that is
 compact.

 6.1. Hecke operators outside p. Let g be a prime integer with (q,p) — 1,

 and let 7 G GSp2ff(Q9) flM25(Z9). Let C1 C ljw x Yjw x Spec K be the moduli
 space over K classifying pairs (A, A') of principally polarized abelian schemes
 of dimension g, equipped with level N structures (fyv, ip'N), flags Fil..4[p] and
 Fil.^4'[p] of A[p\ and A'[p], and an isogeny ir: A —> A' of type 7, compatible
 with the level structures, the flags and the polarizations (see [FC90, Ch. 7]).
 We have two finite étale projections pi, P2' C7 —> • They extend to pro
 jections on the analytifications pi, p2- C®n —> Y^K. There is an issue with
 the boundary: in general, it is not possible to find toroidal compactifications
 for C\ and ljw in such a way that the projections p\ and P2 extend to finite
 morphisms. Moreover, if one varies 7, it is not possible to find toroidal com
 pactifications of Y\w and the C7's such that all projections extend to the com
 pactifications. Therefore, we will define Hecke operators on H0(3^iw(w), wjf )
 and show that these Hecke operators map bounded functions to bounded func
 tions, thus defining an action on (Tjw(p)(v)) (see Section 5.5).

 The isogeny 7r induces a map 7r* : u>a Wa'> hence a map 7r* : p^fyn/U —>

 Pi7~an/U that is an isomorphism. Let n G N, v < 2 „-i (resp < if p — 3.
 Set C^n(v) = Cfy xpi yiw(v) = Cfy1 xP2 yiw(v). The last equality follows from
 the facts that level prime-to-p isogenies are étale in characteristic p and that the

 Hodge height is preserved under étale isogenies. Let w G]n — 1 + , n — v ifyj-].

 Lemma 6.1.1. The map it* induces an isomorphism

 7T* : P*2lW°w+\yUv) ~ ptlW°w+\yUv).
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 655

 Proof. We can check the equality at the level of points. Let L be a finite
 extension of K, and let A, A! be two semi-abelian schemes over Spec Ok
 with canonical subgroup of level n, say Hn and H'n. Enlarging L. we may
 assume that Hn(L) ~ H'n(L) ~ Z/pnZs. Let n: A —» A! be an isogeny of
 type 7. It induces a group isomorphism Hn{L)^H'n(L). We have the following
 ommutative diagram (see Section 4.4):

 F' >■ F

 jr'/pw ^ jr/p™.

 HTu, HTU

 (H'n)D(L)^HZ(L)
 Since the bottom line is an isomorphism and the maps HTW <g) 1 are isomor
 phisms, it follows that it* is an isomorphism. □

 We let 7r*_1 be the inverse of the isomorphism given by the proposition.

 We can now define the Hecke operator T7 as the composition

 r7: H°(Mw(tO,<4")

 6.2. Hecke operators at p. We now define an action of the dilating Hecke
 algebra at p. For i = 1,..., g, let Ci be the moduli scheme over K parametriz
 ing principally polarized abelian schemes A, a level N structure tpN, a self
 dual flag Fil,A[p] of subgroups of A\p\ and a lagrangian subgroup L c A\p2\ if
 i = 1,..., g — 1 orte A\p\ if i = g, such that L\p] © FifiH[p] = A\p], There
 are two projections p\, pi : Q —> Y[w x. The first projection is defined by
 forgetting L. The second projection is defined by mapping (A. -0/v, Fil.vl[p] )
 to (A/L, tp'N, Fil,A/L\p]), where ip'N is the image of the level N structure and
 Fil,A/L\p\ is defined as follows:

 • for j = 1,..., i, FiljA/L\p] is simply the image of FiljH[p] in A/L;
 • for j = i + 1,... ,g, FiljA/L\p] is the image in A/L of FiljH[p] +
 p_1(FiljH[p] fl pL).

 As before we consider the analytifications p\, p2 ■ Cfn —> Fj'™.

 6.2.1. The operator U1hg. We start by recalling the following result.

 Proposition 6.2.1.1 ([Farll, Prop. 17]). Let G be a semi-abelian scheme

 of dimension g over Ok, generically abelian. Assume that Hdg(G) < JjPT
 Let Hi be the canonical subgroup of level 1 of G, and let L be a subgroup of

 Gk\p\ such that H\® L = Gk\p]• Then Hdg(G/L) = ^Hdg(G), and G\p]/L
 is the canonical subgroup of level 1 ofG/L.
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 656 FABRIZIO ANDREATTA, ADRIAN IOVITA, and VINCENT PILLONI

 Let Cg(v) = Cgn xpi y an 3^|w(î;). If v < by the previous proposition,
 we have the diagram

 Cg(v)

 ^w(v) dm*:

 Let 7r: A —* /!' be the universal isogeny over Cg{v). It induces a map tt* : loa'
 —> loa and a map n* : p^T^/V —> P*7^„/U. This map is an isomorphism. Let

 n G N and i> < inf"{ 4pl-i }■ Let w e]n — 1 + — v^[]. We have the
 lemma whose proof is identical to the proof of Lemma 6.1.1:

 Lemma 6.2.1.2. The map n* induces an isomorphism

 vr* : p*2lW°w+\ylw{v) pXTW°w+\ylAvy

 We let 7T*—1 be the inverse of this map. Let k be a ru-analytic character.

 We now define the Hecke operator UP)9 as the composition

 hVi»^),^") ^ H°(Cs(«),p54")
 -9(9+1)

 ^ H0(CSW,P;4«) h°ow»),"Ï)
 The operator UP:g hence improves the radius of overconvergence. Remark also

 g(g-j-1)

 that we normalize the trace of the map p\ by a factor p~~ 2 that is an
 inseparability degree (see [Pill2, § A. 1] ). By a slight abuse of notation we also
 denote by UP:9 the endomorphism of H°(Tiw(u), uijf ) defined as the composition
 of the operator we just defined with the restriction map H°(Tiw(^)) w]ff) —>

 H°(3wp,c4r).
 6.2.2. The operators UPti, i = 1,... ,g — 1. Let F be a finite extension of

 K and (A, ipw, Fil#.A[p], L) be an F-point of Ci. Let (A' — A/L, if'N, Fil#J4'[p])
 be the image by p2 of {A, ipw, Fil.Afp], L). Set 7r: A —> A/L for the isogeny.

 Proposition 6.2.2.1. 7/Hdg(^4[p°°]) < andY\\gA\p] is the canon
 ical subgroup of level 1, then Hdg(.A[p0O]/L) < Hdg(A[p°°]) and FilgA'\p] is
 the canonical subgroup of level 1 of A!.

 Proof. We assume that Hdg(^4[p°°]) < JjP-p' and we are reduced by
 Proposition 3.1.2 to show that Fil9v4'[p] has degree greater or equal to g —
 Hdg(A[p°°]). Let H'2 be the canonical subgroup of level 2 in A and x 1...., xg
 be a basis of H2(K) as a Z/p2Z-module. We complete it to a basis xi,..., x2g
 of A\j)2](k). We can assume that Fil.vlfp] is given by 0 C (px 1) C C
 {px 1,... ,pxg) = Hi and that L is given by (pxi+1,... ,px2g-i, x2g-i+1,..., x2g).
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 657

 Set H\ = (pxi,... ,pxi,Xi+i,... ,xg). With this notation, F\\gA'\p] = H\/L.
 We will show that deg H\/L > g — Hdg(A[p°°]). We have a generic isomor
 phism

 H2/Hi diag(pl"lg-a)> Hi/(pxi+i,...,pxg),

 which implies that deg H\/{pxi+i,... ,pxg) > g — pHdg(A[p°°]) (by [FarlO,
 Cor. 3, p. 10]). By Proposition 3.1.2,

 Rdg(A\p°°}/{pxi+u ... ,pxg)) < pHdg(A[p°°])

 and Hi/(pxi+i,... ,pxg) is the canonical subgroup of A/(pxl+1,..., pxg) of
 level 1. At the level of the generic fiber, we have

 A/{pxi+i,.. .,pxg)\p\ = {pxg+1,... ,px2g) © Hi/ipxi+i,... ,pxg).

 By Proposition 6.2.1.1 we obtain degHi/(pxi+i,... ,px2g) > g — Hdg(A[p°°]).
 We conclude, since the map H\/(pxi+i,... ,px2g) -» H\/L is a generic isomor
 phism. □

 We set Ci(v) = Cfn xpiym If v < 1 we have the diagram

 Ci( v)

 Tlw(î>) Tlw(^)

 Let 7r: A —>■ A/L be the universal isogeny over Ci{v). We have a map

 7T* : (jJy\/L —> W.4- It induces a map tt* : p^n ~^ Pi%m that sends a basis
 U)'i ,...,Ug of uA/L top-17rV1,...,p"17r*a;9_i,7r*a;g_i+1,...,7r*a;^. This map
 is an isomorphism; we call 7T*"1 its inverse and by the same symbol denote the
 quotient map ir*"1 : p*T^/U -> p\T£JU.

 Let n <E N, v < inffg^r, and w = (wi,j)i<j<k<g be a dilation
 parameter such that €]0, n — 2 — v•

 Proposition 6.2.2.2. We have ïï^pllWff C p^LW^p, where

 w'k,j = WkJ tf3 <k<h

 w'kj = 1 + wkj if j < i and k > i + 1,

 w'k,j = wk,j if j >i + 1.

 Proof. Let (A, Fil,A\p],ipN,L) be an F-point of C,(u). We set A' = A/L
 and assume that F is large enough to trivialize the group schemes Hn, Hff,

 H'n and H'nD. There are Z/pnZ-basis ei,..., eg for Hn{F) and e'l5..., e'g for
 H'n(F) such that the flags on H\ (F) and H[(F) are given by

 Filj = {pn~1eg,pn~1eg-i,... ,pn~leg-j+1)
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 658 FABRIZIO ANDREATTA, ADRIAN IOVITA, and VINCENT PILLONI

 and

 Filjf = ■ ■ ■ ,pn~ eg_j+i),
 and the isogeny it induces a map Hn(F) —> H'n(F) given by diag(pld9_j, Id,)
 in the basis. Let xi,...,xg and x[,...,x'g be the dual basis of H^(F) and
 H!nD(F) (for a choice of a primitive pn-th root of unity). The flags on Hy (F)

 and H[D(F) are given by Filj = (xi, X2, ■ ■ ■, Xj) and Fil^ = (x'y, x'2,..., x'j),
 and the map ttd : H'nD(F) —> H^(F) is given by diag(pldff_j, Idj). Set wq —

 ng commutative d:

 T' — F

 n — We have the following commutative diagram:

 jr>/pwo ^ jr/p
 HT

 ,®o

 HTW0  L™o

 (K)°(L)^HZ(L)
 Let (Fil,J7', {u[ G Gi^J7'}) be an element of p^T^/U over A'. We assume

 that 7T*(Fil,Jr', {oj[ G GrjJ7'}) = (Fil.-F, {wj G GrjJ7}) G p]lW°+. This means
 9

 akjETWo(xk) mod pW0F + Filj-i-F for 1 < j < g - i,
 k=j

 9

 7T*uj'j = ^2 ak,jHTWo(xk) mod p^J7 + Filj_iF for g - i + 1 < j < g,
 k=j

 g(a+1)

 where (akij)i<j<k<g G Ol 2 satisfy v(ak>k - 1) > wkjk and v(akj) > wkj for
 k > j. We obtain, for 1 < j < g — i,

 g—i g

 Tr*u'j = ^2ak>jETWo(nDx'k)+ ^2 pakjWTWo(irDx'k) mod pWoJr+FilJ_iJr
 k=j k=g—i+1

 and for g — i + l<j<g,
 9

 Jj = Y1 afejHT»o(irDx'k) mod pW0Jr + Filj-i-F.
 k=j

 7T*Ufj

 Since pi C it*I', we now get that, for 1 < j < g - i,

 u'j = Y,ak,jÏÏTW0(x'k)+ Y pakijHTW0(4) mod pw°~l I' + FiL,_iI'
 k=j k=g-i+1

 and for g — i + 1 < j < g,

 uj'j = Y afcjHTW0 (4) mod pw°'1 I' + Filj_iI'. □
 k=j
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 659

 Let w and w' be as in the proposition. Let k be a infj {wjj [-analytic
 character. We now define the Hecke operator Up t as

 UPti: H°(^w(«),wï) H°(C7(n),p^J)

 H°(C»,prf) r"(g+1)lY^> H°(Ww(^),4k).
 This Hecke operator improves analyticity. Note the normalization of the

 trace map by a factor p~(9+1h that is an inseparability degree. We also denote

 by Up,i the endomorphism of (X]w(p)(v)") obtained by composing the above
 operator with the restriction

 M^(TIw(p)(n)) -> Mj£(*iw(p)(t;)).

 6.2.3. The relationship between Uvj and Si. In this paragraph we establish
 the relationship between the operators UPj and the operators S% of Section 2.5.
 Let 1 < i < q — 1, and consider the correspondence p\, »2 : CAv) —» X\w(v).

 Proposition 6.2.3.1. Let L be a finite extension of K, x, y G 3/,iw(t)(P)
 such that y G P2{pf1){x}. Let w > 0 and k be a w-analytic character. There
 exists a commutative diagram where the vertical maps are isomorphisms:

 (<4«)v 04«),.

 VST—C. V'f  an

 k',L k' ,L

 Proof. This follows from the definition; see also Lemma 5.1 of [Pill2]. □

 6.2.4. A compact operator. Let n G N, v < inf, 2p^2p}> w
 J and k a. in-a.nalvtic character

 P n — g — 1 — and k a w-analytic character.

 The composite operator Yli=\Up,i induces a map from Mj^(Ajw(|)) —»
 (?;)), where w' — (w[ fi is defined by

 w'ij = i — j + w.

 The natural restriction map res: M^(T[w(u)) —»■ (T[w(^)) is compact. We
 let U = n?=i Up,i ° res- This is a compact endomorphism of Mj(f(T|w(?;)).

 6.3. Summary. For all q \ pN, let T(/ be the spherical Hecke algebra

 Z [GSp2ff (Qq)/ GSp2g (Zg )].

 Let TNp be the restricted tensor product of the algebras Tq. We have defined
 an action of TNp on the Frechet space M^K(Xiw). Consider the dilating Hecke
 algebra, Up, defined as the polynomial algebra over Z with indeterminates
 Xi,..., Xy. We have also defined an action of Up, sending Xt to Upp. We
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 proved that the operator U = Hi Up,i is compact. Let us denote by the
 image of T,Vp Up in End(MtK(Xjw)) and call it the overconvergent Hecke
 algebra of weight k.

 7. Classicity

 7.1. Statement of the main result. Let n = (k±,..., kg) G X+(T). We
 have a series of natural restriction maps,

 H°(XIw,ü/<) 3- HVIw(p)(u),u;K) H0(*Iw(p)(u),ui*),

 and we establish a criterion for an element in H°(Tiw(p)(t>), u4f ) to be in the
 image of r2 o r\. Let a = (a\,..., ag) G M>0- We set M^(ftiw(p)(u))<- for the
 union of the generalized eigenspaces where Upj has slope < a* for 1 < i < g.

 Theorem 7.1.1. Let a = (ai,... ,ag) with ai — kg-i — fy9_j)+1 + 1 when

 1 < i < S ~ 1 ag = kg — g^g21"1^. Then we have

 Mts(4W)<5CH°(IIw,/).

 The proof of this theorem is split in two parts. We first show that
 Mtt(Xlw(p)(v))<^ C H°(Tiw(p)(v) ,a;'4). This is a classicity statement at the
 level of sheaves, and it is easily deduced from the results of Section 2; see
 Proposition 7.2.1.

 We conclude by applying the main theorem of [BPS] as follows. Since
 UPtg is a compact operator on H°(Aiw(p)(u),uK), for all ag G R>o we can
 define H°(T[w(p)(u),a;'t)<a9, which is the sum of generalized eigenspaces for
 UPtg with eigenvalues of slope less than ag.

 Theorem 7.1.2 ([BPS]). Letag = kg-S&p±. Then H0(*iw(p)(u),wK)<a9
 is a space of classical forms.

 7.2. Relative BGG resolution. We now take w — v^ï\- We re
 mark that for such a w, the fibers of the morphism ir: TW°w —» X\w(p)(u) are
 connected. Consider the cartesian diagram

 -72

 TT 1

 '

 -T2/U
 7T2

 <*lw(p)(u).

 We have an action of the Iwahori subgroup I on JW°+ x 7^, and by differen
 tiating we obtain an action of the enveloping algebra 17(0) on

 (tT2 O 7Tl ) * Gjy^o-V x j-x ,
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 661

 denoted *. We have already defined an inclusion do : ujk —> For all a € A,
 we now define a map Oa : ui]ff —> u\fa*K. We first define an endomorphism of

 (7r2 o ^l)*^xw°JrxT^

 by sending a section / to X_a' * f. It follows from Section 2.4 that this
 map restricted to u\ff produces the expected map 0«. We then set do : 0
 ©a : wjf -0 ©aeAwifQ*K- We have the following relative BGG resolution,
 which is a relative version of the theory recalled in Section 2.4.

 Proposition 7.2.1. There is an exact sequence of sheaves over ftiw(p)(v)
 as follows:

 0 _► 0
 aeA

 Proof. Tensoring-completing the exact sequence (2.4.A) (or more precisely

 its ^.'-analytic version — see the remark below) by ^xïw(p)(v) we get the fol
 lowing sequence:
 (7.2.A)

 0 -+ u.®^lw(p)w ^2!» 0
 aeA

 Note that the image of d\ is closed in 0q£a Vs**»«' ail<t is a direct factor
 of an orthonormalizable Banach module by the main theorem of [Jonll]. It
 follows that there exists an isomorphism of Banach modules Vf/'3,11 = Im(di ) ©
 VKi splitting the sequence 0 —> VK> —» Vf/'11" —> Im(di) —> 0. As a result, the
 sequence (7.2.A) is exact. By Proposition 5.3.4, this exact sequence is locally,
 for the étale topology, isomorphic to the sequence of the proposition, whichis
 exact. □

 Remark 7.2.2. The definition of the map 0Q does not require the condition
 w 1 — but it is needed for the exactness of the sequence.

 The maps Oa do not commute with the action of the Hecke operators UP)l
 for i = 1,..., g — 1. Precisely, we have the following result for v < ■

 Proposition 7.2.3. Fori < i < g—1, we have the following commutative
 diagram:

 &(XiM(v),u>t«) H°(Xîw(p)(v),uis*™)

 a(d9_j)<K'«V>+1C/p,i

 H°(;tW(*),<4f) — H° ( ATIw (p) (V), w+f-•« ).

 Proof. Let / E H°(Ajw(p)(v),ajj^). We need to check that

 eaup,if = a(dg-i)^+1uPiieaf.
 We apply Proposition 6.2.3.1 to reduce to the results of Section 2.5.
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 7.3. Classicity at the level of the sheaves. We now assume only that v
 is small enough for the operators UPti to be defined. We make no particular
 assumption on w.

 Proposition 7.3.1. The submodule o/M^(Ajw(p)(n)) on which UPti acts
 with slope strictly less than kg-i — fcg-i+i + 1 for 1 < i < g — 1 and UP)g acts
 with finite slope is contained in H°(Aiw(p)(n), uK).

 Proof. Let / G M^(dfiw(p)(n)). For simplicity, let us assume that / is an
 eigenvector for all operators UPti with corresponding eigenvalue ai. The opera

 tor Ilf=i UPti increases analyticity. Since we have / = nf=i aP] llf=i we
 can assume that w 1 — Vjfîj]- We endow the space H°(Tiw(p)(n),uj\ff)
 and H°(Tiw(p)(n),a;Jfa,K) for all simple positive roots a with the supremum
 norm over the ordinary locus. This is indeed a norm by the analytic con
 tinuation principle. (But of course H°(T'iw(p)('y), u]ff) may not be complete
 for this norm.) For this choice, the UP}i operators have norm less or equal
 to 1. By the relative BGG exact sequence of Proposition 7.2.1 it is enough

 to prove that @af is 0. Let a be the character (ti,...,tg) ti.tf^. Since
 Up,g-iQa(f) = Pki+1~ki~l<daUPlg-i(f), we see that 0a(/) is an eigenvector for
 UPtg-i for an eigenvalue of negative valuation. Since the norm of Up,g-i is less
 than 1, 0a(/) has to be zero. □

 8. Families

 Recall that the weight space W = Hom(T(Zp), Cp) was defined in Sec
 tion 2.2. For any affinoid open subset U of W, by Proposition 2.2.2 there exists
 Wfj > 0 such that the universal character Knn: T(ZP) x W —> C* restricted to
 U extends to an analytic character k"" : T(ZP)(1 + pWu Ocp ) xW-> Cp.

 8.1. Families of overconvergent modular forms.

 8.1.1. The universal sheaves calf"". Let n 6 N, v < 2pi-i (resP- 3pn-i

 if p = 3) and w £]n — 1 + ~ v^\] satisfying w > %. We deduce
 immediately from Proposition 2.2.2 that the construction given in Section 5
 works in families:

 Proposition 8.1.1.1. There exists a sheaf u]ffan on X\w(p)(v) x U such
 that for any weight k G U, the fiber of w|fun over X\w(p)(v) x {aï} is oj\jf.

 Proof We consider the projection 7r x 1 : TWff x U —> X\w(p)(v) x U. We

 take to be the subsheaf of (it x l)*^Ivvoi yU of (aï'"1)'-invariant sections
 for the action of T(Zp). □

 Let A be the ring of rigid analytic functions on U. Let Mv;w be the
 A-Banach module H0(A[w(n) x U, Passing to the limit on v and w we
 get the A-Frechet space = lim Mv,,

 t;—aO,«j—aoo '
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 663

 It is clear that the geometric definition of Hecke operators given in Sec
 tion 6 works in families. We thus have an action of the Hecke algebra of level
 prime to Np, T,Vp on the space Mvw. We also have an action of Up, the
 dilating Hecke algebra at p, on MVjW for v small enough.

 Let D be the boundary in d^w(n). We let (—D) be the cuspidal
 subsheaf of wjf"" of sections vanishing along D. Let MVjWtcusp be the A-Banach
 module H°(daw(p)(n) xU,ul?(—D)) and MjUSD = lim Mv w cusp. All these ^ d—vfl 11 t—vrv-i ' ' v—^0,h;—>00

 modules are stable under the action of the Hecke algebra. We wish to construct
 an eigenvariety out of this data.

 8.1.2. Review of Coleman's Spectral theory. A convenient reference for the
 material in this section is [Buz07]. The datum we are given are

 • a reduced, equidimensional affinoid Spm A (e.g., U = Spm A is an admis
 sible affinoid open of the weight space W);

 • a Banach A-module M (e.g., the A- module of p-adic families of modular
 forms MVjW defined above for suitable v,w);

 • a commutative endomorphism algebra T of M over A (e.g., the Hecke
 algebra) ;

 • a compact operator U G T (e.g., the operator [], Uv;i).

 Definition 8.1.2.1.

 (1) Let I be a set. Let C(I) be the A-module of functions {/: I —» A,
 liirij^oo f(i) = 0}, where the limit is with respect to the filter of com
 plements of finite subsets of I. The module C(I) is equipped with its
 supremum norm.

 (2) A Banach A-module M is orthonormalizable if there is a set I such that
 M ~ C(I).

 (3) A Banach-A module M is projective if there is a set I and a Banach A
 module M' such that M © M' = C(I).

 The following lemma follows easily from the universal property of projec
 tive Banach modules given in [Buz07, p. 18].

 Lemma 8.1.2.2. Let

 0 ->• M -» Mi Mn -> 0

 be an exact sequence of Banach A-modules, where the differentials are contin
 uous and for all 1 < i < n, Mi is projective. Then M is projective.

 We suppose now that M is projective. Since U is a compact operator,
 the following power series P(T) := det(l — TU\M) E A[T] exists. It is known
 that P(T) = 1 + ]Pn>i CnTn where cn E A and \cn\rn -A 0 when n —> oo for all
 positive r E E. As a result, P(T) is a rigid analytic function on Spm AxAj an*
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 664 FABRIZIO ANDREATTA, ADRIAN IOVITA, and VINCENT PILLONI

 Definition 8.1.2.3. The spectral variety Z is the closed rigid subspace of
 Spm A x A^n defined by the equation P(T) = 0.

 A pair (x, A) £ Spm A x A^n is in Z if and only if there is an element
 m G M <g>,4 k(x) such that U ■ m = A 1 m.

 Proposition 8.1.2.4 ([Buz07, Thm. 4.6]). The map p\: Z —» Spm A is
 locally finite flat. More precisely, there is an admissible cover of Z by open
 affinoids with the property that the map Ui —> p\ (U) is finite flat.

 Let i £ I, and let B be the ring of functions on p\(Ui). To UL is associated
 a factorization P(T) = Q(T)R(T) of P over B[T]. where Q(T) is a polynomial
 and R(T) is a power series co-prime to Q(T). Moreover, Ut is defined by the
 equation Q(T) = 0 in p\(Ui) x A^n. To Ui, one can associate a direct factor
 MiUi) of M. This is the generalized eigenspace of M ®a B for the eigenvalues
 of U occurring in Q(T). The rule Ut t->- M(Ui) gives a coherent sheaf M. of
 ^-modules, which can be viewed as the universal generalized eigenspace.

 Definition 8.1.2.5. The eigenvariety £ is the affine rigid space over Z
 associated to the coherent ûz-algebra generated by the image of T in End^Ad.

 The map w : £ —> Spm A is locally finite, and £ is equidimensional. For
 each x G Spm A, the geometric points of w~1 (x) are in bijection with the set
 of eigenvalues of T acting on M k(x). which are of finite slope for U (i.e.,
 the eigenvalue of U is nonzero).

 The space £ parametrizes eigenvalues. One may sometimes ask for a
 family of eigenforms. We have the following

 Proposition 8.1.2.6. Let x G £ and f G M <8>a k(x) be an eigenform
 corresponding to x. Assume that w is unramified at x. Then there is a family
 of eigenforms F passing through f. More precisely, there exist Spm B, an
 admissible open affinoid of £ containing x and F G M Za B such that

 • for all (j) G T, <j) ■ F — F ® <f>;

 • the image of F in M k(x) is f.

 Proof. Let Spm B be an admissible open affinoid of £ containing x such
 that w : Spm B —» w;(Spm B) is finite unramified. Let C be the ring of rigid
 analytic functions of w(Spm B). Let e be the projector in B<g>cB corresponding
 to the diagonal. The projective Zt-module eM(B) <S>c B is the submodule of
 M(B) <S>c B of elements m satisfying b.m = rri b for all b G B. We have a
 reduction map

 M(B) <g>c B -» M(B) k(x),

 and / is in the image of eM(B)®cB. Any element F of eM(B)®cB mapping
 to / is a family of eigenforms passing through /. □
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 665

 8.1.3. Properties of the module MVtWjCusp. In Proposition 8.2.3.3 we will
 prove the following structure result about the module M„jWjcusp.

 Proposition 8.1.3.1.

 (a) The Banach A-module Mv.w cusp is projective.
 (b) For any the specialization map

 Mv,w,cusp -> H°(X1w(p)(v),ujIk(-D))

 is surjective.

 Granted this proposition, one can apply Coleman's spectral theory as
 described in Section 8.1.2 to construct an equidimensional eigenvariety over
 the weight space. Thanks to Theorem 7.1.1 we also get precise information
 about the points of this eigenvariety. This is enough to prove Theorems 1.1
 and 1.2 of the introduction.

 The rest of this chapter will be devoted to the proof of Proposition 8.2.3.3.

 Let us point out two main differences between the case g ~ I treated in [AIS 10]
 and [Pill3] and the case g > 2 treated in the present article. First of all, the
 ordinary locus in modular curves over a p-adic field is an affinoid, whereas it is
 not an affinoid in the toroidal compactification of Siegel modular varieties of
 genus g > 2. Secondly, for modular curves, the classical modular sheaves are
 interpolated by coherent sheaves, whereas for g > 2, the sheaves cojf are only
 Banach sheaves.

 In the modular curve case, because of the two reasons mentioned above,
 it is easy to see by a cohomological argument that the proposition holds even
 in the noncuspidal case (see [Pill3, Cor. 5.1]). We believe that the cuspidality
 assumption is necessary when g > 2.

 Because the proof of Proposition 8.2.3.3 is quite involved, we will first
 explain the strategy of the proof. (For technical reasons the actual proof
 of the proposition follows a slightly different line of arguments than the one
 sketched below, but the ideas are presented faithfully.) Let X\w(p)* be the

 minimal compactification of >jw(p). Let Aiw(p)*ig be the rigid analytic fiber of
 Xlw(p)* and £ : X\w(p)UR —> Ajw(p)*ig be the projection. We define X\w(p)*(u)
 as the image of Ajw(p)(v) in Xiw(p)*g. If v E Q, this is an affinoid. We have
 a Banach sheaf wjfun on Ajw(p)(v) x U. We will show that there exists an
 affinoid covering if = (A))îe/ of X^{v) such that (1) for every multi-index

 i E P, for 1 < t < ((/ the Banach A-module H°((£ x l)^1^ x £/),u4fun(—D))
 is projective, and (2) the Chech sequence

 0-> M ^ ©iH°((£ x l)"1^ xM),wf(—D))
 is exact. This implies that M is a projective A-module. In other words, the
 first part of the proposition can be checked working locally on the minimal
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 666 FABRIZIO ANDREATTA, ADRIAN IOVITA, and VINCENT PILLONI

 compactification. Of course, locally on the toroidal compactification the pro
 jectivity holds. On the other hand, the acyclicity of the Chech complex relies

 on the fact that Xiw(p)*ig is affinoid. To use both facts we are reduced to
 study the sheaf u)]ff (-D) along the boundary, and we conclude by some ex
 plicit computations. The second point of the proposition follows by similar
 arguments.

 If the sheaf (£ x l)*o4fu" (-D) on X[w(p)*(v) x U were a Banach sheaf
 and we had an acyclicity result à la Kiehl for Banach sheaves relatively to
 affinoid coverings of T[w(p)*(n), the existence of an affinoid covering satisfying

 properties (1) and (2) would be immediately true. Our approach to prove
 this property in this special situation is via formal models as discussed in
 Section A.l.

 8.1.4. An integral family. We consider the map defined in Section 5.2.2:

 £ = 7Ti o 7T2 O 7r3: 32ÏÏ+ -> £i(pn)(u).

 There is an action of the torus 1W on 32B^ over X\(pn)(v). For all k° G
 W(w)°(K), we set tb\£° = C*^a<m+

 Let K G W(w) mapping to k°. Let 774: X\(pn)(v) —» X\w(p)(v) be the
 hnite projection. One recovers by taking the direct image and the
 /t'-equivariant sections for the action of B(Zp)Q5tl) or equivalently the invariants
 under the action B(Z/pnZ) of the sheaf (—«') with twisted action by
 —k'. (After this twist, the action of B(ZP)<SW factors through its quotient
 B(Z/pZ).) The group B(Z/p"Z) is of order divisible by p and has higher
 cohomology on Zp-modules. For this reason, we will implement the strategy
 of Section 8.1.3 at the level of X1 (pn) for a while, and at the very end, invert
 p and take into account the action of B(Z/pnZ); see Proposition 8.2.3.3.

 The sheaves can be interpolated. Consider the projection

 Cxi: 32ÏÏ+ x 23J(u;)0 Xx (pn)(v) x W(w)°

 and the family of formal Banach sheaves

 fir* = (c x
 8.1.5. Description of the sections. We denote by Spf-R an open affine sub

 formal scheme of Xi(pn). We let ip: (Z/pnZ)g —> H^(R{l/p\) be the pullback
 of the universal trivialization. We have an isomorphism

 (HT™ o V>) <g> 1: Z/pnZ9 <g>z R/pwR -> F/pwF.

 We denote by e\,..., eg the canonical basis of (Z/pnZ)9. Let /i,..., fg
 be a basis of F lifting the vectors HT™ o ip(e\),..., HT™ o ip(eg). With these
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 667

 choices, 32IÎ^ |spfR is identified with the set of matrices

 1 0 ... 0\ /l+pW(8(0,1)N
 pw®(0,l) 1 ... 0 \ / 1+^*8(0,1)

 y® (0,1) pw<B{ 0,1) ... 1 / \1+^23(0,1),

 xSpf Ok Spf R,

 where the first gxg matrix parametrizes the position of the flag and the second
 column vector the basis of the graded pieces.

 For 1 < j < i < g, we let be the coordinate of the ball on the z-th line
 and j-th column in the gxg matrix and we let ..., Xg be the coordinates
 on the column vector.

 A function / on 3233^ |spf r is a power series:

 f(Xij,Xk) G R({Xij,Xk,l <j<i<g,l<k< g)).

 Let k° G 2H(u;)0. Then / G tb]ff°(R) if and only if

 f(Xid, X.Xk) = K°'(\)f(Xhj,Xk) VA G 1W(R').

 We deduce the following lemma.

 Lemma 8.1.5.1. A section f G tùj(f0(iî) has a unique decomposition

 f(Xi^Xk) = 5(XyK'(l + fxu ..., 1 + pwxg),

 where g(Xi j) G R((Xij, 1 <i < j < g)). This decomposition sets a bijection

 tbtK°(R)^R((XiJ,l<i<j<g)).
 Similarly,

 Lemma 8.1.5.2. A section f £ tt>lfoun(R®Ok{(Si,Sg})) has a unique
 decomposition

 f(Xij,Xk) = g(Xitj)Kow'(l+pwXu1 +pwXg),
 where g(Xij) G R((Si,..., Sg, XtJ)). This decomposition sets a bijection

 wjfun{R)^R((S1,...,Sg,XiJ)).

 Lemma 8.1.5.3. Let vo E Ok be the uniformizing element. We have

 KOUn((l + p^Xl)1<i<g) € 1 + WÖK({Sl, ...,Sg,XU..., Xg)) X .

 Proof. We have

 (1 +pwXi)s'P~ ¥

 u+^(SiP~w+^ -
 fc! = £ Sip-w+^(Sip-w+^ — !)••• (Sip-w+ï=I - k + 1) Y()fc

 fc>0
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 668 FABRIZIO ANDREATTA, ADRIAN IOVITA, and VINCENT PILLONI

 The constant term of this series is 1. Recall that for any integer k > 1,
 v(k\) < • As a result the k-th coefficient of the series for k > 0 has
 valuation at least kw — kw + f >0. □ p— 1 p— 1

 For all m G N, we let X\ (pn)(v)m, W{w)"n be the schemes over Or jvo"1 Ok

 obtained by reduction modulo wm from X\(pn)(v) and 2TJ{w)°. We let
 (respectively be the quasi-coherent sheaf over X\ (pn)(v)m x W{w)"n
 (respectively Xi(pn)(v)m) obtained by pullback.

 ^j^oun

 Corollary 8.1.5.4. The quasi-coherent family of sheaves tu^ x over

 Xi(pn)(v)i x >V(w)f is constant: the sheaf rowl is the inverse image on
 Xi(pn)(v)i x W{w)° of a sheaf defined on X\(pn'){v)\.

 „ 4. „oun

 Proof. In view of Lemmas 8.1.5.1, 8.1.5.2 and 8.1.5.3, the sheaf x

 equals the pullback of the sheaf uj^f j for any k° G W(w)°(K). □

 8.1.6. Dévissage of the sheaves. We have just given a description of the lo
 cal sections of tujjf . This description depends on the choice of a basis f \..... fg
 of X lifting the universal basis e\,... ,eg of Hfi{R'[\/p]). We would now like
 to investigate the dependence on the choice of the basis /i,..., fg.

 Let (/{,..., fg) be another compatible choice of basis for X with P = Id9 +
 pwM G GL9(i?') the changes of basis matrix from /i,..., fg to /{,..., /'. This
 second trivialization of X determines new coordinates on 32D+|gpf r.

 LEMMA 8.1.6.1. We have the congruences

 X'i j = Xitj + mitj mod pwR((Xs,t, Xu)),

 X'k = Xk + mk mod pwR((XStt, Xu))

 for all 1 < j < i < g and all 1 < k < g, where niij is the coefficient of M
 on the i-th line and j-th column and mk is the coefficient on the k-th diagonal
 entry.

 Proof Let X_ and Xf be the lower triangular matrices with Xij and X't J
 on the i-th line and jr-th column and Xk, X'k on the A:-th diagonal entry. We
 have

 (Id9 + pw M)(ldg + pwX) = Ids +pw(M + X) + 0(p2w).
 There is a unique upper triangular matrix N with 0 on the diagonal such that

 (Idg + pWM)(ldg + PWX)(ldg + PWN) = Id, + PWX'.
 We have

 (Id, + pWM){ldg + PWX){ïdg + PWN) = ldg+pW(M +X+N)+ O^).

 We deduce that N = (—,mi,j)\<i<j<g + 0(pw) and that M + X + N = Xf
 mod pw. □
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 669

 Corollary 8.1.6.2. Let k° G W(w)°(K). The quasi-coherent sheaf W,1

 is an inductive limit of coherent sheaves that are extensions of the trivial sheaf.

 Proof. Covering 3i\(pn)(v) by affine open formal subschemes Spf R and
 choosing a basis (/i,..., fg) of F compatible with ip, we can expand the sec
 tions of th^jlspf it as polynomials in the variables By Lemma
 8.1.6.1, the total degree of a section is independent of the choice of the basis,

 ~ f/c0

 so we can write tt»^ } as the inductive limit as r € N grows of the subsheaves 11),1

 tuj^i |-r of sections of degree bounded by r. In j |-r, we can consider for all

 1 < k, I < g, the subsheaf locally generated by the polynomials of
 degree less than r in the variables for i > k and j < I. This subsheaf is
 well defined by Lemma 8.1.6.1. The sheaves

 t-KL <r,k,l ~tK°\<r,k-l,l , ~ t«° i<r,fc,Z—1 *Vir modw»,ir d^ir
 are isomorphic to the trivial sheaf. □

 In general, one can always write as an inductive limit of coherent
 sheaves in a reasonable way as follows. Let Ujih be a finite Zariski cover of
 (//') by affine formal subschemes = Spf Rt such that over each itj we

 have the description of the sections of (Ri) as in Lemma 8.1.5.1. We let
 Rljn be the reduction modulo zu"1 of R., and f/vm = Spec R^.rn. We have that

 - Ri,m[Xitj, 1 < i < j < g]. We let be the coherent sheaf
 over Ui^m associated to the submodule of of polynomials of degree
 bounded by r. We also let be the subsheaf of tv\fm defined as the kernel
 of

 i hj

 It is a quasi-coherent sheaf as it is the kernel of a morphism of quasi-coherent

 sheaves. Furthermore, for every i the natural map tt>£^r|uim —> is
 injective. As rojA f*' is a coherent sheaf over Uii7n for every i, we deduce

 that tn|^^r|Uim a coherent sheaf as well. Furthermore, as colimrtt)^^ =
 ^w,°m\uj m f°r every j, we conclude that = cohmrtt>^^r. Of course, the
 sheaves roj(JK°^r depend on the choice of the cover Ujilj and on the choice of a
 basis of if rn > 2. If we fix two choices of cover and basis, we get two
 inductive limits:

 = colimrtt»^r'1 = cohmrtng^-r'2.

 It is easy to check that in any case, for all r, there is r' < r" such that

 su]n0<r' ,2 ^K°<r",2
 lvw,m lvw,m 7 lvw,m

 The preceding discussion still makes sense for tn f^oun
 W.TYl '
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 670 FABRIZIO ANDREATTA, ADRIAN IOVITA, and VINCENT PILLONI

 8.2. The base change theorem.

 8.2.1. The boundary of the compactiftcation. Let V = ®^£1Zej be a free

 Z-module of rank 2g equipped with the symplectic form of matrix J — ( q9 ).

 For all totally isotropic direct factor V', we consider C(V/V'~l) the cone of
 symmetric semi-definite bilinear forms on V/V' <g> M with rational radical. If
 V' C V", we have an inclusion C{V/V" ' ) C C{V/V'^). We let £ be the set of
 all totally isotropic direct factors V' CV and C be the quotient of the disjoint
 union:

 II C(F/V"X)
 v"ec

 by the equivalence relation induced by the inclusions C(V/V" ) C C(V/V' ).
 The given basis of V gives a "principal level N structure": tpN '■ h/NT?9 ~

 V/NV. The vectors ei,... ,es give a "Siegel principal level pn structure":

 ip: (Z/pnZ)9 V/pnV.

 Let T be the congruence subgroup of G(Z) stabilizing 'tpjy and Ti(pn) be
 the congruence subgroup stabilizing ip and L>/v- Let S be a rational polyhedral
 decomposition of C that is T-admissible (see [FC90, §IV. 2]).

 We now recall some facts about the toroidal compactifications following
 the presentation adopted in [StrlO] ; see, for example, Sections 1.4.3, 2.1 and
 2.2. For any V' 6 € and a 6 S lying in the interior of C(G/F/J~), there is a
 diagram

 My Mv',<j Mv',S

 By

 Yy,

 urhûrn

 • Yy is the moduli space of principally polarized abelian schemes of dimension
 g — r, with r = rk^F', with principal level N structure.

 • Let Ay be the universal abelian scheme over Yy. The scheme By* —> Yy

 is an abelian scheme. Moreover, there is an isogeny i : By —> Ay, of degree
 a power of N. Over By, there is a universal semi-abelian scheme

 0 —> T y —y G y —y Ayi —> 0,

 where Ty is the torus V &m.
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 671

 A4 y is a moduli space of principally polarized 1-motives with principal
 level N structure, and the map A4y —► By/ is a torsor under a torus with
 character group Sy, isogenous to Hom(Sym2V/y_L, Gm).
 A4 y —> A4y>a is an affine toroidal embedding attached to the cone a G
 C(V/V,J") and the Z-module Sy.
 A4 y —>■ A4 y ß is a toroidal embedding, locally of finite type associated
 to the polyhedral decomposition S. The scheme M y a is open affine in
 A4 y s

 We shall denote by Za the closed stratum in My',a and by Zy the closed

 stratum in My',S- We let Vy be the stabilizer of V' in F: it acts on C(V/V'^)
 and on the toroidal embedding My',s■ We assume that {<S} is a smooth and
 projective admissible polyhedral decomposition. The existence is guaranteed
 by the discussion in [FC90, §V.5]. Let Y be the moduli space classifying
 principally polarized abelian varieties over Ok with principal level N structure.
 Let Y C X be the toroidal compactification associated to S. The hypothesis
 that S is projective guarantees that X is a projective scheme and not simply
 an algebraic space.

 Theorem 8.2.1.1 ([FC90]).

 (1) The toroidal compactiftcation X carries a stratification indexed by <£/T.
 For all V' E £, the completion of X along the V'-stratum is isomorphic to
 the space Myß/Ty where My',S Is the completion of My ß along the
 strata Zy.

 (2) The toroidal compactification X carries a finer stratification indexed by
 S/T. Let <7 E cS. The corresponding stratum in X is Za. Let Z be an affine
 open subset of Za. Then the henselization of X along Z is isomorphic to
 the henselization of My,a along Z.

 The Hasse invariant of the semi-abelian scheme on the special fiber of
 My ß is the Hasse invariant of the abelian part of the semi-abelian scheme.
 We can thus identify Ha with the Hasse invariant defined over the special fiber
 of Yy.

 Recall from Section 5.2 that we have defined a formal scheme X(v) with
 a morphism X(v) —>• X to the formal completion X of X along its special fiber.
 We can now describe the boundary of X(v) — namely, the complement of the
 inverse image 2)(v) of the formal completion 2) C X of Y. We will need some
 notation:

 • ïï)v' is the completion of Yy along its special fiber.
 • 2)v (v) is largest formal open subset of the formal admissible blowup of 2)y

 along the ideal (pv, Ha) where the ideal (pv, Ha) is generated by Ha (see 5.2).

This content downloaded from 
�������������69.70.196.110 on Fri, 06 Nov 2020 04:41:46 UTC������������� 

All use subject to https://about.jstor.org/terms



 672 FABRIZIO ANDREATTA, ADRIAN IOVITA, and VINCENT PILLONI

 • ©y is the completion of By along its special fiber, and ©y(u) is the
 fiber product ©y X-<gv, 2)y(u). We define similarly 9Jly(u), VJlv',a(v) and

 3a(v), 3v(^)

 Proposition 8.2.1.2. The formal scheme 3f(w) has a fine stratification
 indexed by S/F over a coarse stratification indexed by £/F. For all a E S, the
 corresponding strata is For any open affine subscheme 3 o/3p,a(r),
 the henselization ofX(v) along 3 is isomorphic to the henselization ofXdv\a(v)
 along 3- For all V' E £', the completion of X(v) along the V'strata of 3C(v) is
 isomorphic to the completion SDty;s(i>) ofdJXv',s(v) along 3v'(v)

 Proof As admissible blowups commute with flat base change, this follows
 easily from Theorem 8.2.1.1. □

 In Section 5.2 we have introduced a covering £i(pn)(v) —> X(v). We now
 describe the boundary of X\ (pn)(v), i.e., the complement of the inverse image
 of y(v) C X(v). Let £' be the subset of £ of totally isotropic spaces satisfying
 'iJj((Z/pnZ)9) c V'^~. We let C be the quotient of the disjoint union

 II CfV/V'1)
 vet'

 by the equivalence relation induced by the inclusions C{V/V" ) C C(V/V' ).
 Clearly, Ti (//') acts on <£', and the polyhedral decomposition S induces a
 polyhedral decomposition S' of C' that is T i (j/' )-admissible.

 Let V' G £' of rank r. We have an exact sequence

 0 v'/pnv' -> V'L/■[)"■ V'^ -> V'^/V' + pnV'1- -> 0.

 The image of ?/>(Z/pnZ9) in V'-^/V' + p"V' is a totally isotropic subspace
 of rank pg~r. which we denote by W. The map if) also provides a section
 s: W V''1 /pnV'±. By duality, ip provides an isomorphism, which we again
 denote bv ib:

 i!>: (Z/pnZ)9 ~ Wv © V/{pnV + V'1).

 To describe the local charts, we need some notation:

 TV'(v) is the rigid fibre of 2)y (v).
 We let Hnyi be the canonical subgroup of the universal abelian scheme 21 y

 over 2)v'(v)* We denote by Ti (pn)v'(v) the torsor Isom^ (V)(WV, H^v,),
 and we let tpy be the universal trivialisation.
 2)i (Pn) y(v) is the normalization of ïï)v'(v) in Ti(pn)y (u).
 Recall that there is an isogeny i : 23 (u) —> 21^; of degree a power of N. We
 let iCan : 2ly —> 2ly /Hny be the canonical projection. We set

 ®i {pn)v = 53 (u) xi,2T,,i£n (aV'/Hnyi]
 r
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 673

 The abelian scheme 031 (pn) V 2)i (pn) y carries a universal diagram

 yv ^ 21',/ Kv

 Id

 //V

 fccan

 V HLv'/Hnyi,

 which is equivalent to the diagram

 0 Xy (Sy *" 2ly >- 0

 Id j ^can

 0 *■ Xy *■ ®y ^ 21 V'/Hny >- 0.

 The group Ker j is a lift to ®v"[pn] of Hny.
 Over the rigid fiber, we thus have Hn = Ty [pn] © Ker j and =

 V/(pnV + V'L) © Ker jD. The map ipy provides an isomorphism Wv ~
 Ker jD. The map ip now provides an isomorphism 1p: Z/pnZ9 ~ H^.

 • We define Xfli{pn)y (v), Wli(pn)v'Av) and ^i(pn)v',S'(v), 3i(pn)a(v),
 3i(pn)v(u) by the fiber product of 9JlV'(v), 9Jlyia(v), SD1v"i5'(u), 3<t(t),
 "5v(v) with ©i(pn)v over Q3y.

 Proposition 8.2.1.3. The formal scheme Tj(pn)(v) has a fine stratifi
 cation indexed by S'/T\{pn) over a coarse stratification indexed by C'/Ti(pn).
 For all a E S', the corresponding strata is 3i {pn)v,aiv)■ Tor any open affine
 subscheme 3 of 3i(pn)v',a(v), the henselization of Xi(pn)(v) along 3 is iso
 morphic to the henselization of Xfli{pn)v',cr(v) along 3- For all V' E the
 completion of X\{pn)(v) along the V'-strata of X\{pn){v) is isomorphic to the

 completion 9Jli(pn)v, s,(v) of XFi{pn)v',s'{v) along 3i(pn)v'(v).

 Proof. Over the rigid fiber, this is a variant of Theorem 8.2.1.1. In partic
 ular, we know that the rigid fiber of the local charts of level T j (pn) are correctly
 described. It is now easy to check that our formal local charts of level Tj (pn)
 are normal, and as a result, they are the normalization of the formal local
 charts of level T. Since normalization commutes with étale localization, we
 conclude. □

 Remark 8.2.1.4. The process of obtaining toroidal compactifications by
 normalization is studied in [FC90, p. 128], in a different situation.

 8.2.2. Projection to the minimal compactification. There is a projective
 scheme X* called minimal compactification and a proper morphism £ : X —>
 X*. Let us recall some properties of the minimal compactification:
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 674 FABRIZIO ANDREATTA, ADRIAN IOVITA, and VINCENT PILLONI

 THEOREM 8.2.2.1 ([FC90, Thm. V.2.7]). The minimal compactification
 X* is stratified by <£/T, and the morphism £ is compatible with the stratification.

 • For any V' E <£, the V'-strata is Yy.
 • For a geometric point x of the V' strata, we have

 ^5=( II H0(^,£(A)))Fv',
 \esv,nc{v/v'xy

 • &X*,x is the completion of the strict henselization of 6x* along x\

 • By',x Is the formal completion of By along its fiber overx\
 • £(A) is the invertible sheaf over By of X-homogeneous functions

 on My'

 The Hasse invariant Ha descends to a function on the special fiber of X*.
 We let X* be the completion of X along its special fiber. We denote by X*(u)
 the p-adic completion of the normalization of the greatest open subscheme of
 the blowup of X* along the ideal (pv, Ha) on which this ideal is generated by Ha.

 Proposition 8.2.2.2. For all V' € the V'-stratum of X* (v) is2)y(v).

 Proof. This follows from the fact that (Ha,pu) is a regular sequence in
 Yy and in X*. This implies that the blowup along (Ha, pv) is in both cases a
 closed subscheme of a relative one-dimensional projective space with equation
 THa— Spv (where T, S are homogeneous coordinates). □

 We have the following diagram:

 £i(pn)(u)-^X(u)
 ?

 X*(u).

 We let Xx{^){v)m, X*(v)m, Mi(pn)v'Av)m, Bi(pn)v>(v)m,... be the
 schemes obtained by reduction modulo wm from Xi(pn)(v), 9Jli(pn)v',a(v),
 351 (pn)v'(v),.... We will also consider the projection 77 X 1: Xi(pn)(v) x
 2B(w)° —> X*(v) x 2B(w)°. Finally, we use D to denote the boundary in
 *!(?»), (Pn)(v),....

 Theorem 8.2.2.3. Consider the following diagram for l, m G N and
 m > I:

 Vl Vm

 X*(v)i X*(v)m.
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 675

 Then we have the base change property

 In particular, (r/*tx>Pf°(—-D)) is a formal Banach sheaf over X* (v). Similarly,

 (rj x l)*(rDj^°un(—-D)) is also a formal Banach sheaf over X* (v) x %ß(w)°.

 Proof. The property is local for the fppf-topology on X*(v)m. Let x 6
 X*(v)m be a geometric point. We can write as an inductive limit of
 coherent sheaves colimttij^p' by the discussion at the end of Section 8.1.6.
 By the theorem on formal functions [Gro61, §4], and because direct images
 commute with inductive limits, we have that

 (X*(v)m,x) = colimrH°(X1(pn)(v)m>j.,tvfwK^r(-D)),

 where X*(v)m^ is the completion of the strict henselization of X*(v)rn at x and

 X] (pn)(v)m.x is the completion of X\ (pn)(v)m along r/m' (x). This completion

 is isomorphic to a finite disjoint union of spaces A41 (pn)v',S' (V)m,y/r^Pn)v,
 where y is a geometric point in Y\ {p"')v'(v)rn- This space fits in the following
 diagram:

 Ml{pn)v',S'{v)m,y >2Ml(pn)v,S'(v)mty/Ti(pn)Vf X\(pn)(v)m,x

 hi h$

 ß\ (Pn)v>(v)rn y — ^ Yl(pn)V,(v)m,y,

 where Bi(pn)v'(v)my an(i Mi(pn)v',s(v)m y are the formal completions of
 B>\ (p")v' (v)m and Al I (pn)v',s(v)m over their fibers at y. We are thus reduced
 to prove the following

 Claim. The formation of the module

 colimrH° (M10Pn)v',s'(v)m,y/T.l (Pn)v', ^w°r^r(~D))

 commutes with reduction modulo rol for I < m.

 We provide two proofs.

 The first proof. We identify the module in the claim with

 H° (r, (pn)v, colimrH° (v)m>5, h*2to^r(-D

 We remark that we have a formal semi-abelian scheme <Sy over B\ (pn)v'(v)rn y>
 extension of the universal g — r-dimensional formal abelian scheme 21 y by the
 r-dimensional formal torus Ty := V 0 Gm. It admits a canonical subgroup
 scheme Hn C 0y[pn] extension of the canonical subgroup Hny C 21 v'\pn]
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 676 FABRIZIO ANDREATTA, ADRIAN IOVITA, and VINCENT PILLONI

 by Tyi\pn] and, as explained in Propositions 4.2.1 and 4.2.2, the tautolog
 ical principal p"-level structure and the Hodge-Tate morphism for Hn pro

 vide a morphism HT : (Z/pnZ)s —» u>^^//pw. Thus, proceeding as in Proposi
 tion 4.3.1, we obtain a sheaf T C and an isomorphism HT?U : (7</pnZ)9 <S>
 G —> Tw. The Levi quotient of Ti (pn)v is a subgroup of GLg(V')
 Bl(j>n)v'(v)m,y ' '
 X GSp(Vr'J"/y). We let I"' (pn)y be the projection of Ti (pn)y onto its

 GLg(V) factor. As B\ (pn)y(v)m y classifies extensions by 2ly and Ty with

 a level TV-structure, the group r'1(pn)y acts on T'y, on B\ (pn)v' (v)m y and
 on J7 and we get an induced action of the group Pi(pn)y through the nat
 ural morphism Ti(pn)y —> r'l (pn)y. We thus obtain an action of P i (pn)y
 on T so that HTU, is Pi (pn)y-equivariant. The functoriality of T and IIT.„,
 implies that their base change via h\ coincide with the base change via /12
 of the sheaf T and the map IIT,„ for the universal degenerating semi-abelian

 scheme over X\{pn){v)m^- As in Section 4.5 we get an affine formal scheme

 32ïï+ m —> B\ (pn)v'(v)m fp with an equivariant action of P| (pn)y, such that
 its base change via h\ is the reduction modulo wm of the base change via of

 the formal scheme naturally defined over Xj (pn)(v)m,x- Taking k' invari
 ant functions on m as in Definition 5.2.2.3, we introduce a quasi-coherent

 sheaf over Bi(pn)y(v)m with an equivariant action of Pj(pn)y and
 hence of Pi(pn)y. As explained in Section 8.1.6, we can write tpj^m as an in

 ductive limit of coherent sheaves cohmrtûj^„yr. Then, each colimrh*to 7 is
 naturally a Pi(pn) y -equivariant sheaf through the diagonal action of T1 {pn)y
 on c()liinrttiî,K„fT and 011 G — —— . Due to the definition of tujfCrr in r~w'm

 Section 8.1.6 it follows that we have a Ti(pn)y-equivariant isomorphism of

 quasi-coherent sheaves over M\{pn)v' ,S'{v)m,y'

 colimr/i2 (tt)^-r) = colimrh\ (râ£~r) ■

 By the projection formula, we have that

 ColimrH° (M i (pn)v,S' (v)m,y/ r 1 (pn)v, n>w°r^r(-D))

 = H0(r1(p")y^cohmrH0(A^r(p^K^)m,y,^â£^r(-£')))

 = (colimr H0(£i(pn)y(u)mj,£(A) <8>w£^r)) iP )v .
 AG5^nC(V/V'-L)v,A>0

 The action of Fi(pn)y> on Sy and on the product above factors via T'i(jpn)yi.
 Furthermore, V^p^y acts freely on the elements À G S'y fl C(V/V'X)v that
 are definite positive. (Indeed, the stabilizer of an element would be a compact
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 677

 group, hence finite, but r'1(pn)y/ has no finite subgroups because of the prin
 cipal level N structure.) Let So be a set of representative of the orbits. We
 then have

 (colimr [] E°{Bi(pn)v{v)m,y,C(X) gtù^-r))
 \es'vnc(v/v,±y ,\>o

 = colimr U H°(Bi(pn)v>(v)m,y,CW ® ^w,mV)
 Aes0

 So it remains to see that the formation of ff°(ß| (pn)v'(v)Tn,ïj, £(A)g>

 &£*) commutes with reduction modulo zul for I < m. We have an exact

 sequence of sheaves over Bi(jpn)y{v)m,y'•

 0 -> £(A) g t^ ® 1^w,mr ® ^W,l ~r 0
 By induction, we may assume that I — m — 1. It is enough to show that

 H1 (B\{jP)v>{v)x,y, £(A) g) Ä^-r) = 0.

 Note that £(A), for A 6 So, is a very ample sheaf on the abelian scheme
 {pn)v'(v)i due to the principal level iV-structure with N > 3; see the proof of

 [FC90, Thm. V.5.8]. The vanishing of the cohomology follows by the vanishing
 theorem of [Mum70, §111.16], the theorem of formal functions [Gro61, §4] and
 the fact that is an iterated extension of the trivial sheaf as seen by
 Corollary 8.1.6.2 and its proof.

 The second proof. In order to prove the claim, it suffices to consider the
 case I = m — 1. From the local description of the sheaves xo\f"ryr(—D) (see

 Section 8.1.6) it follows that the kernel of colimrtt>£jc^r —> colimrtt)|^rr^r1 is

 isomorphic to The latter is an inductive limit of coherent sheaves that

 are extensions of the trivial sheaf &X\(pn)(v)i by Corollary 8.1.6.2. To prove the
 claim it then suffices to show that R1ri*Ô'x1(pn){v)i(~D) = ffi and this follows
 from Proposition 8.2.2.4 below.

 The proof of the second part of the proposition goes exactly along the
 ^|^oun

 same lines since the family of sheaves , is trivial over the weight space by
 Corollary 8.1.5.4. □

 Recall that X\ (pn)(v) is defined by the choice of a smooth and projective
 admissible polyhedral decomposition in the sense of [FC90, Def. V.5.1]. In
 particular, for every V' as above, there exists a Ti (pn)y-admissible polarization
 function h: Cy —> R, i.e., a function satisfying

 (i) h{x) > 0 if x 7^ 0 and h(tx) = th{x) for all t E R>o and every x E Cy.
 (ii) h is upper convex; namely, h(tx + (1 — > th(x) + (1 — t)h(y) for every
 x and y E Cy' and every 0 < t < 1.
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 678 FABRIZIO ANDREATTA, ADRIAN IOVITA, and VINCENT PILLONI

 (iii) h is 5-lineax; i.e., h is linear on each E G S.
 (iv) h is strictly upper convex for S; i.e, S is the coarsest among the fans

 S' of C'y for which h is iS'-linear. Equivalently, the closure of the top
 dimensional cones of S are exactly the maximal polyhedral cones of Cy
 on which h is linear.

 (v) h is Z-valued on the set of N times the subset of Cy consisting of sym
 metric semi-definite bilinear and integral valued forms on V/Vl±.

 Consider the morphism 77: X\ (pn)(v) -» X*(v) from a toroidal to the
 minimal compactification. Then,

 Proposition 8.2.2.4. We have RqV*&x1(pn)(v)(~~D) = 0 for every q > 1.

 Proof. We use the notation of the proof of Theorem 8.2.2.3. We write

 Zy := Mi(pn)v',S'(v)l,y and Zv' "•= Zy/T1 (pn)y to simplify the nota
 tion. By the theorem of formal functions [Groöl, §4] it suffices to prove that

 Hq(Zy, (—D)^ — 0 for every q > 1.
 We recall the construction of Zy. We have fixed a smooth I'i (j/1)in

 admissible polyhedral decomposition S of the cone Cy C(V/V'J~) of sym
 metric semi-definite bilinear forms on V/V'± (g) M with rational radical. Every
 S e<S defines an affine relative torus embedding Z% over the abelian scheme
 Bi(pn)v'{v)ity, which we view over the spectrum of the local ring underlying

 Yl(pn)v'(v)l,y- The Zjf s glue to define a relative torus embedding Zy stable
 for the action of Ti{pn)v'- For every E, we let Wy, := fZpyi:(\)° Rp be the
 relative Cartier divisor defined by the set E(l)° of one-dimensional faces of S
 contained in the interior Cy, of the cone Cy. Put Wy UyWy,. Write Zy
 (resp. Zy) for the formal scheme given by the completion of Zy (resp. Zy)

 with respect to the ideal @Zy {—Wy} (resp. @zv, (—Wy)). Then, Zy — UyZy.
 Fix a P1 (;/') v/'-admissii)le polarization function h: Cy' —> IR>o- As in

 [FC90, Def. V.5.6], we define

 D'y.,h '■= ~ ^2 apDp, D'h := Us£>s,/i,
 pes(i)

 where the sum is over the set £(1) of all one-dimensional faces of £ (not simply
 over the set £(1 )° as in the definition of We). More explicitly, for every £ £ S
 and every p £ £(1), there exists a unique primitive integral element n(p) £ £

 such that p = M>onp. We then set ap h(n(p)^. As h(x) / 0 if x ^ 0 and
 h(x) £ Z for integral elements x £ Cy, we deduce that ap is a positive integer
 for every £ and every p £ £(1). Moreover, the Cartier divisor D'h of Zy is
 T i (pn ) y -invariant.

 Take a positive integer s. As the set of integers {ap} is F | {pn) v'-invariant,
 it is finite. Thus there exists i £ Z such that 0 < sap < £ for every p. Recall
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 679

 that given a Q-divisor E := ^2pepDp, with ep G Q, one defines the "round
 down" Cartier divisor [E\ := \ep\ Df) by setting \ep\ to be the smallest
 integer < ep. In particular, we compute

 [rhD'h\= Y. -Dp:=-D,
 pe£( i)

 where D defines the boundary of Zy. Multiplication by I on the cone C'y
 preserves the polyhedral decomposition S and for every E G S defines a finite
 and flat morphism ■'Zy —> Zy over B\ (pn)y(v)i}y. As s ( Wy ) = iWy,
 the morphism Q^y induces a morphism on the completions with respect to
 the ideal Ozs(~Wy) and we get finite and flat morphisms §t,y : Zy —» Zy.
 They glue to provide a finite flat, Ti (pn)y '-equivariant, morphism of formal

 schemes <lv: Zy —» Zy> over Bi(pn)y(v)i}y. After passing to the quotients by
 T [ (pn)y, we get a finite and flat morphism of formal schemes

 : Zy —y Zy.

 As sD'h—&e(—D) = J2p{£—sap)Dp is an effective Cartier divisor, by adjunction
 we have natural inclusions of invertible sheaves

 if. ffzv,{~D) -> $e,*(&zv,(sD'h)), Te: ^J-D) de^JsD'h)).
 In [CLS11, Lemmas 9.2.6 and 9.3.4] a canonical splitting of te as ffzvrmodules
 is constructed in terms of the cone Cy and the integers {ap\p € S(l)}. In par
 ticular, it is Ti(pn)y-equivariant and it defines a I'l(pn)v-equivariant, splitting
 of Te as (h, -modules after passing to completions. Taking the quotient un

 der T\(pn)v', we get a split injective map Te: (-D) -> f(sD'h) of
 -modules. Taking cohomology for every q G N, we get a split injective

 Zjy!
 map

 (-£>)) -+W(Zvl,*e40zv,(*D'h)) =W(Zv,,^v/(sD'h)).

 If we show that there exists s G N such that Hg(Zy, G~ (sD'h)J = 0 for every
 q > 1, we are done. This follows if we prove that there exists s such that

 G~ ^ {sD'h) is a very ample invertible sheaf.
 It follows from [FC90, Thm. V.5.8] that the map rj : X\ (p"')(v) —> X*{y) is

 the normalization of the blowup of X*(v) defined by a sheaf of ideals J such

 that rf(J) restricted to Zy is G~ ^(d.D'h) for a suitable d. In particular, as
 rj is the composite of a finite map and a blowup, the sheaf rj*{J) is ample
 relatively to r]. We conclude that G~ (dD'h) is an ample sheaf on Zy<. In

 particular, there exists a large enough multiple s of d so that G~ ^ (sD'h) is
 very ample, as claimed.
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 680 FABRIZIO ANDREATTA, ADRIAN IOVITA, and VINCENT PILLONI

 Alternatively, to prove that G~ t(D'h) is ample, it suffices to prove that

 its restriction to the boundary dZy is ample. As dZy = Wy /T\ (pn)y is

 proper over Yi(pn)v,(v)m,y, it suffices to prove ampleness after passing to the

 residue field k(y) of Yi(pn)v,(v)mjy. It then follows from the Nakai-Moishezon
 criterion for ampleness [Kle65] that it suffices to prove that the restriction of

 G~ ^ (D'h) to the fiber of the boundary Wy of Zy over y is ample in the

 sense that the global sections of ^k^(dD'h) for d > 1 form a basis of
 the topology of Wy <g) k(y). (See the footnote to [FC90, Def. 2.1, appendix].)
 This follows if we prove the stronger statement that Gzv, (dD'h) is very ample

 for every d > 1, i.e., that the elements of H°(Zy, Gzv,(dD'h)J form a basis
 of the Zariski topology of Zy. If /: Zy —» B\ (pn)v'{v)i,y is the structural
 morphism, then f*(yGzv,{dD'h)) = ©A>d/iT(A), where the sum is taken over all

 integral elements A G S y fi C(V/V' such that for every X G S and every
 p G S, we have A(p) > dh(p); see [Dem70, §IV.4], In particular,

 H°(Zy, GZv,(dD'h)) = ©A><ttH°(B1(pn)v(t;)i>i?,£(A)).

 Assuming conditions (i), (iii) and (v) in the definition of polarization function
 given above, then condition [Dem70, Cor. IV.4.1 (iii)] is equivalent to con
 ditions (ii) and (iv) above. As dh is also a polarization function, we con
 clude from [Dem70, Cor. IV.4.1(i) and proof of Thm. IV.4.2] that the mor

 phism Zy -» Proj ( © s f*(Gzv,{dD'h)) ^ ) of schemes over Bi(pn)v'(v)i,y de
 fined by f^{^Gzv,(dD'h)) is a closed immersion. The sheaf £(A) is very am
 ple on the abelian scheme Bi(pn)v'(v)i,y f°r every integral, nonzero element
 A G Sv' C C(V/V'Ly due to the principal level A'-strueture with N > 3; see
 the proof of [FC90, Thm. V.5.8]. As the condition A > dh implies A > 0, the
 very ampleness of Gzv, (dD'h) follows. □

 8.2.3. Applications of the base change theorem: the proof of Proposi
 tion 8.2.3.3. We let it = (Tfi)i<i<r be an affine covering of 3c*(v). We let
 i = {hihbe a multi-index with 1 < i\ < • ■ ■ < in> < r. We
 let be the intersection of 53^, Th2,... ,23in, • This is again an affine for
 mal scheme. We denote by Vijn the scheme obtained by reduction modulo

 wm. We let Mhm = H°(^m x W(w)^,(r, x 1 )*wj£7(-£>)) and Mi>0O =
 H°(53j x TO(w)°, (t) x l)#tt>j^°un(—D)) = \imm Finally, let A be the alge
 bra of W(w)°.

 Corollary 8.2.3.1. The module Mj;00 is isomorphic to the p-adic com
 pletion of a free A-module.

 Proof. The module Mj;00 is p-torsion free and the reduction map Mhoa —>
 Miti is surjective. The 2l/cco4-module Mh\ is free by Corollary 8.1.5.4. Fix
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 p-ADIC FAMILIES OF SIEGEL MODULAR CUSPFORMS 681

 a basis (ei)iei for this module. We lift the vectors to vectors e, in MhOC.

 We let A1 be the p-adic completion_of the module A1. Now consider the map
 A1 —> Mj;00 that sends (aj)jg/ G A1 to YZiaiei- We claim that this map is
 an isomorphism. It is surjective by the topological Nakayama lemma. It is
 injective, for if ]Tj ajej is 0 and (aj)jej ^ 0, there is n G N, € A1
 such that tuna^ = and an index îq such that a[Q (/L zu A. Since Ml)00 is tu
 torsion free, we have Y2i aiei = 0, and reducing this relation modulo w we get
 a contradiction. □

 „-li
 Set M = H° (Xi(pn)(v) x 2UH°>tfOUn("£>)) I?"1} and Ml^Mii00\p

 Corollary 8.2.3.2. The module M is a projective Banach-A[^]-module.
 For any kEW(w)°, the specialization map M —>H°(Xi(pri)(n), Z?)) [p^1]
 is surjective.

 Proof. Notice that tvhf°un(—D) is a small formal Banach sheaf thanks
 to Corollary 8.1.6.2. It follows from Propositions 8.2.2.4 and A.l.3.1 that
 (7) x l)*tr)J(foun(—D) is also a small formal Banach sheaf. Since X*{v) x W° is
 affinoid and £*(?;) is a normal integral formal scheme by construction, Theo
 rem A. 1.2.2 implies that the Chech complex associated the covering it of 3£*(u)
 provides a resolution of the module M by the projective A-modules M, and as
 a result M is projective.

 We now prove the surjectivity of the specialization map. Let PKo be the
 maximal ideal of k° in A\p~l\. We consider the Koszul resolution of A\p~1]/PKo:

 Ko(/c°) : 0 —> A[p_1] —> A\p~1]9 —>•••—>■ A\p~1]9 —> A[p_1] —> A\p~l}/PKo —» 0.

 For any multi-index i, the tensor product Ko(k°) <g> (rj X l)+röjjt°un(—

 is a resolution of (—£>) (QJjJ [p-1] by A-modules that are isomorphic to

 direct sums of the A-modules (r\ x l)*rö^°un(—D)(Q3,)[p-1].
 We consider the following double complex, obtained by taking the Chech

 complex Ko(ac) ® (rj x l)*tt>£f°un (-D) (Tb) attached to the covering 11 = (QJ,)
 (we think of Ko(/t) ®(r]X as a vertical complex for fixed i) :

 0 -> Ko(k°) ® (V x 1 )*tofwK°an(-D)(X*(v))

 —» ©iKo(/c°) ® (77 x 1 )* tü j^°un(-D) (OJj) ->•••.

 For any multi-index i, the complex Ko(/t°) ® (r/ x (-D)) (53, j is exact,
 as remarked above. All the rows of the double complex are exact by the
 acyclicity Theorem A.1.2.2. It follows that the first column is also exact,
 proving the claim on specialization. □

 We now prove Proposition 8.2.3.3. Let B be the algebra of rigid analytic
 functions on W(rc).
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 Proposition 8.2.3.3.

 (a) The module H°(Ajw(u) x W(w),u4f"n(—£))) is a projective Banach
 B-module]

 (b) for every k G W(w), the specialization map

 H°(Ajw(p) x WH,4kU"(-D)) ->

 is surjective.

 Proof. We use the notation of the Corollary 8.2.3.2. By definition,

 H°(*iw(i;) x W(w),JwKm(-D)) = (M0a[ij B(-K™'))B{Z/pnZ).

 Here, B(—Kun') is the free B-module with action of B(Z/pnZ)Bw via the char
 acter —Kun'. Then, M 0a B(—Kun') is viewed as a B(Z/pnZ)Bw-module with
 diagonal action. This action factors through the group B(Z/pnZ), and the
 invariants are precisely H°(T[w(Vj x W(w),u4fun(—D)). Thus, this module
 is a direct factor in a projective ß-module by Corollary 8.2.3.2, so it is pro
 jective. Now, let k G W(w). We let k° be its image in W(w)°. Let mK be
 the maximal ideal of k in B. Set MK° = H°(3Ci(pn)(u), £>)) [p-1]. The
 specialization map M —ï MKo is surjective thanks to Corollary 8.2.3.2. The
 map M <8>a B(—K,un) —» MKo 0A B/mK(—n) is surjective, and the map

 (M <g>A B(-Kun'))m/pnZ) -> (Mko 0a B/mK(-K'))m/pnZ)

 is still surjective since B(Z/pnZ) has no higher cohomology on Qp-modules.
 As

 H0(-Tiw(u),a;^t(-T))) = (MKo 0A B/mK(-*/))B(Z/p"Z),
 the claim concerning the specialization follows. □

 8.3. Properties of the morphism from the eigenvariety to the weight space.
 We end with some comments concerning the unramifiedness hypothesis in The
 orem 1.2. We would like to rise the following question.

 OPEN problem 1. Let Xf € £ be a classical point. Is the map w: £ —> W
 unramified at Xf ?

 When <7 = 1, the tame level is trivial, / is of weight k and v{Up{xj)) ^
 Coleman and Mazur have proved that the answer is positive (see [CM98,

 Cor. 7.6.3]). Coleman and Mazur's approach is purely Hecke theoretic. It
 relies on the duality between the Hecke algebra and the cuspidal modular
 forms provided by the first Fourier coefficient in the (/-expansion. This duality
 does not exist when g > 2. When g = 1, M. Kisin ([Kis03, Thm. 11.10]) proved
 that the answer is positive in many cases using Galois deformation theoretic
 methods. Moreover, G. Chenevier studied this problem for certain unitary
 groups in [Chell] and also obtained a positive answer in many cases. His
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 method uses multiplicity results for automorphic forms on unitary groups and
 some properties of the Galois representations attached to these automorphic
 forms. As he suggested to us, his results should hold in our (Siegel modular

 forms) case if we knew certain facts about the automorphic forms for GSp2(y • To
 conclude this paper, we state a result for level 1 forms and g = 2 in this spirit.

 Remark 8.3.1. In the paper at hand, we have so far worked using an
 auxiliary tame level N > 3 structure in order to have the representability
 of the Siegel variety. It is easy to define the level 1 eigenvariety as a closed
 subvariety of the level N eigenvariety as follows.

 We freely use the notation of Section 8.1.1 and fix an integer N > 3. Let
 Mv,in,cusp be the A-Banach module of u-overconvergent, ru-analytic cuspidal
 modular forms of tame level N. This module carries an action of the finite

 group GSp2g(Z/iVZ), which commutes with all Hecke operators of level prime
 to Np. Let NV}W,cusp be the direct factor of MVjW}CUSp fixed by GSp2g(Z/WZ).
 We define Nn.WtCUSp to be the A-Banach module of u-overconvergent, re-analytic
 cuspidal modular forms of tame level 1. We remark that taking invariants by
 this finite group commutes with any base change on A (the weight space), so
 there is no ambiguity in the definition and, moreover, NVtWjCUSp is independent
 on the choice of N. One can apply the recipe of Section 8.1.2 to NVjWjCUSp in
 order to obtain the tame level 1 spectral variety and the tame level 1 eigenva
 riety. Finally, let us remark that the classicity theorem holds for tame level 1
 forms as well. Indeed, let / be a classical form of level N whose restriction to
 the space of overconvergent, locally analytic modular forms has tame level 1

 (or equivalently, is invariant under GSp2g(Z/./VZ)). Then / has tame level 1.

 Proposition 8.3.2. Let £ be the tame level 1 eigenvariety for GSp4.
 Let Xf G £ be a classical point of weight (k\, kfi) G Z2 that satisfies the slope
 condition

 v(Qf(Up,i)) < k2 - ki + 1 and v(ßf(Up,2)) < k2- 3.

 Lei 7r(/) 6e an irreducible constituant of the automorphic representation gen
 erated by f. Assume that 7r(/) is tempered and that r(f)p is an unramified
 principal series with distinct Satake parameters. Then w is étale at xj.

 Proof. We recall that the eigenvariety and the map w can be described as

 follows, using affinoid neighborhoods of xj and w{xg):

 • Spm A is an admissible affinoid open of W containing w(xf).
 • M is a free ^-module of finite rank. It consists of locally analytic overcon

 vergent finite slope modular forms and / 6 M (Aia k(w(xf)).
 • C is a finite ^-algebra (a quotient of the Hecke algebra) that acts faithfully

 on M, and Spm C is an admissible affinoid open neighborhood of xj in £.
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 Because local rings in rigid geometry are henselian, we may also assume
 that Xf is the only point of Spm C over w{xf). Let IIj be the global L-packet
 associated to /. By [Art04, theorem on p. 76], all tt € 11/ are tempered and
 occur with multiplicity one. Now, M <S>a k(w(xf)) is included in the space
 of classical cuspidal forms of weight and Iwahori level at p by the
 classicity theorem. Moreover, it consists of the generalized eigenvectors for
 0/. We claim that M has dimension 1. This implies that C = A, and the
 conclusion of the proposition follows. Let K = \\tpv GSp4 (Z^) x I. with I the
 Iwahori subgroup of GSp4(Zp). Let tx 6 II/ such that irK ^ 0. For such a 7r,
 TT/ is an unramified principal series for all £ ^ p and must be equal to

 At p, 7tp is tempered, has Iwahori fixed vectors, and 7rrp contains an eigenvector
 for Upp and Upp with eigenvalues 0/(I/P)i ) and (~)f(Upp). An examination of
 Tables 1, 2 and 3 of [Sch05] tells us that if np had no spherical vectors, this
 would contradict the temperdness of 7r(/)p. It follows that irp = 7r(/)p. Finally,
 7Too is a holomorphic discrete series. Thus 7T = ir(f) is uniquely determined.

 It follows that M tg>A k(w(x)) can be identified with a subspace of 7r(f)p. The
 vector space 7r(f)p has dimension 8 and by assumption, the operators UP: 1 and
 UPy2 act semi-simply on it with distinct systems of eigenvalues. The character
 0f encodes the choice of one system of eigenvalues (the p-stabilisation of /)
 and thus, the generalized eigenspace for 0/ in ir(f)p is one dimensional. In
 other words, M <%>a k(w(x)) is generated by /. □

 Appendix A. Banach and formal Banach sheaves

 A.l. Formal Banach sheaves and their properties.

 A. 1.1. Definition. Let A be a flat formal scheme of finite type over Spf Ok ■
 Let zu be a uniformizing element in Ok- We denote by Xn the scheme over
 Spec Ok/zvuOk deduced from X by reduction modulo zvn.

 Definition A. 1.1.1. A formal Banach sheaf on X is a family of quasi
 coherent sheaves d = (dn)neN where

 (1) dn is a sheaf on Xn, flat over Ok /tun ;
 (2) for all n>m,iîi: Xm "—t X„ is the closed immersion, we have i*dn = dm

 For il ^ X an open formal subscheme, we set 5"(il) := limnSrn(il). It is
 the sheaf on X defined by the inverse limit limn dn.

 If / : X! -¥ X is a morphism of formal schemes and if $ is a formal Banach
 sheaf over X, then f*d (f*3n)n is readily verified to be a formal Banach
 sheaf.

 We say that a formal Banach sheaf Î? = (dn)n(_j:, on A is a sheaf of flat
 ^-modules if dn is a flat ^^-module for every n G N.
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 A.1.2. An acyclicity criterion for formal Banach sheaves. Let X be a flat
 formal scheme, locally of finite type over Spf Ok- We say that X is normal (re
 spectively integral) if there exists a covering by open affine formal subschemes
 ifi = Spf Ai such that Aj is a normal ring (respectively an integral domain).
 We say that X is quasi-projective if there exists an immersion (namely, an
 isomorphism onto an open formal subscheme of a closed formal subscheme) of
 ru-adic formal schemes from X into the formal scheme associated to

 We now introduce a finiteness condition.

 Definition A. 1.2.1. We say that a formal Banach sheaf S is small if there
 exists a coherent sheaf <£ on X\ such that

 (a) Si can be written as the direct limit of coherent sheaves !imJf=j>} Sljj
 (b) Si,o and for every j € N, the quotient Sij+i/Sij are direct summands

 of Sf.

 The following acyclicity result justifies the definition of a small formal
 Banach sheaf.

 THEOREM A. 1.2.2. LetX be an integral, normal, quasi-projective formal
 scheme over Spf Ok such that the rigid analytic generic fiber X of X is an
 affinoid. Let $ be a small formal Banach sheaf on X. Let if = {iU}iel be a
 finite, open, affine covering ofX. Then the augmented Chech complex tensored
 with K,

 cmi/p\ ■■ o -> h°(£,3)[i/p] ->•••,
 is exact.

 Proof. (1) Assume first that there exists a projective morphism of formal
 schemes 7: X —> 3 with 3 = Spf/1 affine formal scheme, where A is a flat and
 topologically of finite type ö^ -algebra. Let £ be an ample invertible sheaf on

 X relatively to 3 such that EP(Xi,£f ® £| ) = 0 for all i > 0. It follows that

 (g) £1)= 0 for all i > 0 and j > 0, and hence, <g) £1) = 0
 for all i > 0. As the cohomology groups IP (X\, <g) £) are computed by the
 Chech complex

 it follows that C*(3i ® £1) is exact. Moreover, we have

 C'(Si <8 £1) S C*(> ® £) ®0k Ok/wOk,

 and as C* ® £J is a complex of flat and ro-adically complete and separated
 (9/<-modules, it follows that it is exact.

 Let £ be the invertible sheaf on X associated to £. We denote H°(A, £)
 = L and H°(X,öx) = B. As X is an aflinoid and £ is coherent, £ is the
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 sheaf associated to the ß-module L. It follows that L is a projective, rank one
 B-module. Moreover, since X\ is quasi-projective, it is separated as a scheme
 and, therefore, all the opens ,ik appearing in the Chech complex are
 affine. It follows that we have a natural isomorphism of ß-modules,

 c'(d®m/p\=c(m/p\

 which implies the claim.

 (2) We now show that, under the assumptions of the theorem, there ex
 ists a projective morphism of formal schemes 7: X —> 3 as claimed. Since
 X is assumed to be affinoid, there exits an affine formal scheme 3 = SpL4
 with A flat and topologically of finite type as ö/^-algebra such that X is the
 associated rigid analytic fiber. In particular, using Raynaud's description of
 quasi-compact and quasi-separated rigid varieties as the category of formal
 schemes localized with respect to admissible blowups, we deduce that there
 exits a formal scheme 2) and admissible blowups / : 2) —> 3 and g : 2) —> X. In
 particular, the rigid analytic fibers of / and g are isomorphisms.

 Let il C X be an open affine formal scheme with il = SpfC and C
 an integral normal domain. Since g is an admissible blowup, its restriction
 g~1(il) —> il is the map of formal schemes associated to an algebraic blowup
 of schemes g:Yg^U = Spec(C). As C is normal and g is birational, then
 5*(CVU) = ö(j by Zariski's Main Theorem. Furthermore, g is surjective as
 its image is closed and dense since U is irreducible. This implies that g is
 surjective as a map of topological spaces and that g* (ö<g j = Ox- We conclude
 that the map / factors via g, i.e., that there exists a morphism h: X —> 3 such
 that f = hog- it is defined on each formal affine subscheme 11 = SpfC of A by
 the map of C/^-algebras

 A -> C = Ox(il) -> g*(Oy)(!d) =

 defined by the map of ringed spaces /.
 The map of schemes hi : X\ —> Z\ Spcc(A/roA), defined by h modulo

 w, is separated and of finite type as X\ is quasi-projective over k. It is also
 universally closed as / is projective and, hence, universally closed, and g is
 surjective. We conclude that h\ is proper. Since X is quasi-projective over
 Ok, then h factors via an immersion into the formal scheme associated to P^,
 and by the properness of hi it is a closed immersion. Thus h is projective.

 □

 A.1.3. Direct images of formal Banach sheaves. Let (f: X —> 2) be a
 proper morphism between two flat formal schemes, locally of finite type over
 Spf Ok- As before we denote by Xn and Yn the schemes obtained by reduction
 modulo wn and by <pn : Xn —> Yn the induced map.
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 Let 5" = (3n)neN be a small formal Banach sheaf on X. In particular, there
 exists a coherent sheaf ^ on such that is the direct limit of coherent

 sheaves limjg^Jij and S in and, for every j 6 N, the quotients Sij+i/Slj are
 direct summands of êf.

 For all n > m, we have the following cartesian diagram:

 Xn^^Xv

 Y Y 1 n 1 m

 Proposition A. 1.3.1. Assume that for all n > m, we have the base
 change property

 j — 4'n,*'Sn
 and that

 RV>i,*ê? = 0Vi > l.
 Then (p*,X is a small formal Banach sheaf.

 Proof. Indeed, </>*# = (f/v*3>t)nÇl:{ *s a formal Banach sheaf. Furthermore,
 = hmn </>i,*3i,n and, moreover, (ßit*di,n and (h are coherent for all n.

 By induction on i one proves that RVi,*3l,n = 0 for every n and every i > 1.

 This implies that (j>i,*$i,n+i/(t>i,*$i,n — <t>i,*($i,n+i/$i,n) and the latter is a
 direct summand in </>i;*ëf. The claim follows. □

 A.2. Banach sheaves.

 A.2.1. Banach modules. Let A be a AT-affinoid algebra equipped with a
 norm |_|, and let M be an A-module. We say that M is a normed A module
 if there is a norm function |_| : M —» M>o such that

 (1) \m\ = 0 for some m G M implies that m, = 0;
 (2) \m + n\ < sup{|m|, |n|} for every m and n G M;
 (3) |om| < |o||m| for every a G A and every m G M.

 If |_| satisfies only conditions (2) and (3), we call it a semi-norm. We say
 that M is a Banach A-module if M is a complete normed A-module. It may
 be useful to recall the open mapping theorem:

 Theorem A.2.1.1 ([Bou81, Chap. I, §3.3, Thm. 1]). A surjective contin
 uous map (f>\ M —>• N between Banach A-modules is open.

 If (M, |_|) is a Banach A-module, then any other norm |_|' on M inducing
 the same topology on M is equivalent to |_|. For this reason, from now on, we
 will not consider that our Banach modules are equipped with a specific norm.

 If M is an A-module, and if Ao is an open and bounded sub-ring of A and
 Mo is p-adically complete sub-Ao-module of M such that Mq[1/p) = M, then
 M is naturally an A-Banach module, with unit ball Mq.
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 Ii M and M are two A-Banach modules, we dehne an A-Banach module

 M®aM' as follows. Let | j and |_|' be norms on M and M'. Denote by M<8uM'
 the separation and completion of the semi-normed A-module M <S>a Mf, where
 the semi-norm of an element x is the infimum over all the expressions x =
 J2i mi ® m'i °f the supremum sup,

 J I'

 A Banach A-module is called projective if it is a direct factor in an or
 thonormalizable Banach A-module.

 We now make the following dehnition.

 Definition A.2.1.2. Let A be a rigid space and & be a sheaf of Gx
 modules on X. We say that & is a Banach sheaf if

 (I) for every affinoid open subset U of X, the ^(fY)-module &(U) is a
 Banach module;

 (II) the restriction maps are continuous;
 (III) there exists an admissible affinoid covering il = of X such that for

 every i E I and for every affinoid V C Ut, the map induced by restriction,

 is an isomorphism of ^(V)-Banach modules.

 If the admissible affinoid covering in (III) can be chosen in such a way that
 is a projective Banach Öx(Ui)-module for all i, then & is called a

 projective Banach sheaf.

 A.2.2. The rigid, analytic generic fiber of a formal Banach sheaf Let X
 be a flat formal scheme, locally of finite type over Spf Ok- Let X be its rigid

 analytic fiber. Let 5 = (3n)neN be a formal Banach sheaf over X. We associate
 to 5 a sheaf & on X, valued in the category of iL-vector spaces, by setting

 U !—t J?(U) := 5(H) ®oK K.

 For every open subset U <—» X, with rigid fiber U, the ^(ii)-module &(if) is
 a Banach module for the norm for which 5(11) is the unit ball of

 We recall that if 5 were a coherent sheaf, then & would extend uniquely
 to a sheaf on X. The main goal of this section is to prove a similar result for
 the class of flat formal Banach sheaves. We start with the following technical
 lemma.

 Lemma A.2.2.1. Let h: X' —> X be an admissible blowup of X, and let 5

 be a flat formal Banach sheaf. Then h*$ := (h*5n)ngN is a flat formal Banach
 sheaf on X'.

 Moreover, the adjunction maps 5n h*h*$n =: 5« give rise to a map
 5 —> limn whose kernel and cokernel are annihilated by a power of w.
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 Proof. The fact that h*$ is a flat formal Banach sheaf follows directly
 from the flatness of For the other statements, we can work locally on X,
 and therefore we may assume that X — Spf R is affine. Put Rn R/wnR.
 Let Fn — $n(X) so that $(X) = F = limn.F„. By assumption, Fn is a flat
 /?.n-module for every n G N. Let R' = H°(j£', û#) and R'n = H°(T^, (?x'n).
 Thus, R! = limn R'n. Since h is an admissible blowup, it is the map of for
 mal schemes defined by an algebraic blowup h : X' —» Spec R concentrated on
 the special fiber. In particular, R' is a finite Ä-module as h is a projective
 morphism, and the map a : R —> R' is injective with cokernel killed by wN for
 some integer N as h is an isomorphism after inverting w. Hence multiplication
 by wN on R' factors via an R-linear morphism ß: R' -4 R. Since R and R' are
 flat öif-modules, the composite maps ßoa and aoß are multiplication by m
 on R (resp. on R'). As X' is flat over Spf Ok, the map R'/wnR' —» R'n is injec

 tive with cokernel contained in (Rlh*ûx')(£)- The latter is a finite, tu-torsion
 R-module so that it is annihilated by zuM for some M. We deduce that the
 cokernel of R'/wnR' —> R'n is annihilated by wM. Reducing a and ß modulo
 wn, we get maps an : Rn —> R'n and 7n '■= ßn • '■ R'n Rn, compatible for
 varying n, and such that o an and an o 7„ are multiplication by zuN+M.

 Write $'n := hji*$n. We claim that H°(X, 5'n) = Fn ®nri R'n (projection

 formula). Let us remark that it is enough to prove that H°(X', IT(grn)) =
 Fn R'n; therefore let {ll( = Spf At}l be a finite covering of X' by open
 affine formal subschemes. (The topological space of X' is quasi-compact.) As
 h is separated, the intersections of lb and if, are still affine formal schemes
 Spf Bij. Let Ai n and Bi j.n be the reductions modulo zun of these rings. We
 tensor the exact sequence 0 —> R'n —> ©jAjin —> by Fn over Rn, and
 we use on the one hand the flatness of Fn as /irt-module and on the other hand

 the fact that we have natural isomorphisms H°(u,;, h*(Sn)) — <?:)nn Fn and

 h*(dn)) = Bi jn (ARn Fn. The claim follows.
 We can now show that the map a : F —> limri Fn ®an R'n has kernel and

 cokernel killed by wN+M. Using the maps limn 1 <8> an, we get the adjunction

 map a: F = lim„ Fn —» limn(Fn0^n Rß 'j := F', and using the maps limn l<8>7n
 we get a map b : F' —ï F such that a o b and boa are multiplication by zoN+M.
 Thus a has kernel and cokernel annihilated by wN+M as wanted. □

 Assume that Ç is a flat formal Banach sheaf on X. Let U be a quasi
 compact open subset of X. By Raynaud's description of quasi-compact and
 quasi-separated rigid varieties as the category of formal schemes localized with
 respect to admissible blowups, there exists an admissible blow up h: X' —>• X
 such that U is the rigid analytic fiber of an open formal subscheme if of X'.
 We define

 ■?{U) := h*d{It') K.
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 Lemma A.2.2.2. J?(U) described above is independent of the admissible
 blowup h : X' —> X used to define it.

 Proof. If g : X" —> X' is an admissible blowup, then from Lemma A.2.2.1
 it follows that

 h*m') K = g*g*h*$(ld') ®oK K = [h o gy$(g~\il')) ®oK K.
 Let U C X be a quasi-compact open subspace. Using Raynaud's theory, any
 two admissible blowups of X, such that U is the rigid fiber of an open for
 mal subscheme in both, are dominated by a third one. We deduce that the
 definition of c?{U) is independent of the choice of the blowup h. □

 Now let V C U be an inclusion of quasi-compact open subspaces of X.
 Then there exists an admissible blowup h: X' —» X such that the inclusion V C
 U is the rigid analytic fiber of an inclusion of open formal subschemes 9J' Cil'
 of X'. Using Lemma A.2.2.2, we define a restriction map &(U) —> using
 the restriction map h*$(il') —> h*£(53'). It is immediate that & thus defined
 is a presheaf on X.

 PROPOSITION A.2.2.3. The definition above attaches functorially to every
 flat formal Banach sheaf $ on X a Banach sheaf &, called the rigid analytic
 generic fiber of Moreover, condition (III) in Definition A.2.1.2 holds for
 every admissible affinoid covering of X defined upon taking the rigid analytic
 fiber of a covering of X by open affine formal subschemes.

 Proof. Using Raynaud's theory every admissible (finite) covering {lR}i of
 U by quasi-compact open subspaces of X can be realized as follows. There
 are a formal blowup h : X' —¥ X, a formal open subscheme it' of X' and formal
 open covering {it(}j of it' such that the rigid analytic generic fibers of it', it) are
 respectively U, Ui for all i. The sheaf property for h*$ with respect to the cov
 ering {iX[}i implies that & satisfies the sheaf property for the cover {W( }t of U.

 Now let be a covering of X by formal open affine subschemes with
 rigid analytic generic fibres {Ti}i- Let V be an open affinoid of T,_. Let Spf S
 be an admissible affine formal model of V. There exist an admissible blowup
 h : ïï)i —,i Ii = Spf R and an open formal subscheme 53 C 2)i such that V is its
 rigid analytic generic fiber. Moreover, using Raynaud's theory, we can assume
 that 53 is an admissible blowup of Spf S. Then jß~(V) = h*$(53) ®oK K by
 definition. Set Vn as the scheme obtained from 53 by reduction modulo wn,

 Rn := R/wnR, Fn := &,(%), K ■= H°{Vn,ûVn), R' := limnR'n and R'f :=
 R'/wnR' R'n. As in the proof of the projection formula in Lemma A.2.2.1,
 it follows from the flatness of Fn as /^-module that h*(5rn)(53) = Fn ®Rn R'n
 so that passing to the limits over n and inverting p, we get that

 (lim Fn (8)Rn R'n) ®oK K = &(V).
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 Note that H1 (03, Û^q) is a finite type torsion ^-module, so it is annihilated by
 vjn for some integer N. Set F := $(%). By the very definition of the com
 pleted tensor product, to check that ,ß~(V) = ( 7Ï ) <8>gx(7-) Ox (V), it suffices
 to check that the map

 s : lim F ®Rn R" -» lim Fn R'n

 is injective with cokernel killed by wN. Since R," injects in R'n and Fn is flat
 over Rn, then Fn 'XRn /?'' —► Fn is injective, and passing to the limit,
 we get the injectivity of the map s. On the other hand tz'NR'n C i?" so that
 there exists a map s' : limn Fn <g>Rn R'n —>• limn F <g>Rn R"n with the property
 that s o s' is multiplication by wN. This implies the claim. □

 Example 1. Let A be an affinoid algebra and X = Spm A. Let M be an A
 Banach module. We can define a presheaf A4 on the category of affinoid open
 subsets of X by A4{U) = M é) a Au, where U = Spm Ajj is an open affinoid
 subset of X. Recall that we a Banach yf-module M is projective if it is a direct
 factor of an orthonormalizable Banach module. Assume that A = Aq{\/p] with
 Ao tu-adically complete and separated, flat and topologically of finite type as
 ÖR-algebra. If M is projective, then M admits an open and bounded sub
 Ao-module Mo such that for all n, Mo/wn is Ao/tz^-flat. Proposition A.2.2.3
 shows that Ad is a sheaf in that case.

 As mentioned above, our main interest in this article is to study overcon
 vergent modular sheaves. These are formal Banach sheaves, but they are not
 necessarily flat. Therefore we need a slight generalization of the above result
 as follows. Let g : X —»• 2) be a finite map of admissible formal schemes, and
 denote by / : X —> y the associated morphism of rigid spaces. Let 5 be a flat
 formal Banach sheaf on X with rigid analytic fiber , a Banach sheaf on X.
 We denote by G a finite group acting on X over 2), and we suppose that the
 action lifts compatibly to X.

 Remark that := (g*$n)n is a formal Banach sheaf as g* is an exact
 Cr G

 functor. We now define the sheaf of invariants (g*#) '■= ((</*#) )neN as

 follows. For every n G N, we let (g*!?)^ be the sheaf associated to the presheaf

 Sjn whose values over an open subset if of 2) are (g*^!!))0 ®oK Ok/w71. As
 the presheaves Sjn, for varying n, satisfy the properties of Definition A. 1.1.1,

 we conclude that (g*#) is a formal Banach sheaf.

 Proposition A.2.2.4. The sheaf is a Banach sheaf over y.

 Moreover, (/*^) is related to (g*#)0 by the property that for every admis
 sible blowup h: 2)' —t 2) and every open formal subscheme 2J C 2)' with rigid
 analytic fiber V C y, we have

 (/*^f(V) = h* (g*S)G(2J) ®0k K.
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 692 FABRIZIO ANDREATTA, ADRIAN IOVITA, and VINCENT PILLONI

 Proof. We claim that the sheaf Sf := is a Banach sheaf. Condition
 (I) and (II) in Definition A.2.1.2 are easily verified. For condition (III) we
 remark that thanks to Proposition A.2.2.3 we can take an admissible affinoid
 covering of X defined by the inverse image under / of the rigid analytic fiber
 of an affine covering of %), as g is finite.

 For any öft-[G]-module M there is a trace map tr : M —> MG which
 maps m G M to J2geG 9 ' m- If i '• MG —> M is the inclusion, then tr o i
 is the multiplication by the order a of G. As a is invertible in K, the map

 e := (l/a)i otr for the sheaf is an idempotent such that Im(e) = (êf) . This
 implies that is a Banach sheaf, being a direct summand of .

 Next, for any ö/<-[G']-module M and for every integer n > 0, we use
 the notation Mn := M/wnM. If M is flat as ô^-rriodule, by taking the
 G-invariants of the exact sequence

 0 —>• M M -> Mn —» 0,

 we obtain an injective map MG jvjnMG <-> MG whose cokernel is a subgroup

 of H1 (G, M), and therefore it is annihilated by the order a of G.
 In particular, using the notation above, we have a natural injective map

 Sjn —> (fj*3n) with cokernel annihilated by a. Thus a-tr (where tr is the trace
 for the G'-action) defines a map g*Sn fin- This induces, after sheafification,

 G G

 an injective map an : (g*$) -» (g*$n) and a map ßn : (g*$n) (g*$) such
 that ßn o an is multiplication by a and an o ßn = a ■ tr. Using h*(an) and
 h*(ßn), we obtain maps

 ,G

 Sn : h* (gm$)n -► h*g^n, K : h*g^n -> h* (g^)n
 such that tn o sn is multiplication by a2 and sn o tn = a ■ tr. Passing to the
 inverse limits sheaves, we obtain maps s and t such that t o s is multiplication
 by o2 and s o t = a ■ tr. We conclude that the map s defines an isomorphism
 of sheaves on 2):

 lim ®oK K -> (lim h* g^n)° ®oK K.
 Thus, to conclude the proof of the claim, we are left to show that for every

 open formal subscheme 2J C 2)' with rigid analytic fiber V C T, we have

 Sf(V) = <S'(9J) ®oK K,

 where 0 := and &' := h*<5.

 Let h x g: X' -» X be the projective map obtained by base change. It is
 dominated via a map u: X" —> X' by an admissible blowup t: X" —> X. Let
 J' := (h x g)*$. Arguing as in Lemma A.2.2.1, using that u is projective, one
 shows that the adjunction —> u*u*$' has kernel and cokernel killed by a
 power of w. If g' : X' —> 2)' is the induced finite map, then by construction, we
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 have £f(V) = g^u^u*® K. But we have just proven that this if-module
 coincides with ®oK K. As g is finite, we have g'j$' = This proves
 the displayed equality and concludes the proof. □

 Appendix B. List of symbols

 B standard Borel in GLS, Section 2.1;

 U C B unipotent radical, Section 2.1;

 T C B standard torus, Section 2.1;

 B° Borel opposite to B, Section 2.1;

 U° (2 B° unipotent radical, Section 2.1;

 I Iwahori subgroup of GLg(Zp), Section 2.3;

 T, %w, formal torus, Section 4.5;

 B»,., formal groups, Section 5.2.2;

 W weight space, Section 2.2;

 W(w), W(w)°, Section 2.2;

 Acun, universal character, Proposition 2.2.2;

 k k', involution on weights, Section 5.1;

 Y moduli space of principally polarized abelian schemes (A, A) of dimension
 g equipped with a principal level N, Section 5.1;

 Y C X toroidal compactification, Section 5.1;

 Y C X*, minimal compactification, Section 8.2.2;

 X, formal scheme associated to X, Section 5.2;

 Fjw moduli space with principal level N structure and Iwahori structure
 at p, Section 5.1;

 Fiw C X\w toroidal compactification, Section 5.1;

 3d(pn)(v), Xlw+(pn)(v), X\w(pn)(v), X(v) formal schemes, Section 5.2;

 X(v) rigid space, neighbourhood of ordinary locus of width v, Section 5.2;

 Xi(pn)(v), Xlv/+(pn)(v), Xlw(prl)(v), rigid spaces, Section 5.3;

 X, Proposition 4.3.1;

 3Ww, Grassmannian of ro-compatible flags in J7, Section 4.5;

 32II+, Grassmannian of ro-compatible flags in T and bases elements of the
 graded pieces, Section 4.5;

 2TVV+, rigid space over X\ (pn)(v) associated to Section 5.3;

 rigid space over X\(pn)(v) associated to 3%Xtw, Section 5.3;

 ÎW°+, descent of to Xlw+(pn)(v), Section 5.3;
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 TW°w, descent of 1WW to Xi-W(pn)(v), Section 5.3;

 ZW°+, rigid space with dilations parameters, Section 5.6;

 roj^ the formal Banach sheaf of in-analytic, v-overconvergent modular
 forms of weight k, Definition 5.2.2.3;

 cjjf Banach sheaf of ta-analytic, u-overconvergent weight n modular forms,
 Section 5.3;

 Mlf(df[w(p) (?;)), M1k(X[w(p)) space of overconvergent modular forms of
 weight k, Definition 5.3.3;

 c<4fun, Myjjj, Ml families of overconvergent modular forms, Section 8.1.1;

 tr>lf°"n, family of integral overconvergent modular forms, Section 8.1.4;

 cojf, M,|ak-(Mw(p)(w)), variants with dilations parameters, Section 5.6;

 UPtg, U operator, Section 6.2.1;

 UPi, U operator, Section 6.2.2.
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